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0. Summary. The property (W) of the class of decision functions, which cor-
responds to the concept of weak compactness in the intrinsic sense in [6], is
discussed and several sufficient conditions for it are given in this article. Some
examples concerning the non-sequential case are discussed.

1. Introduction. LeCam proved some complete class theorems under the as-
sumption that the class D of decision functions is compact in some sense [3],
and in the same paper he mentioned that the compactness of D can be replaced
by the property (W). This property is an extension of Wald’s concept of weak
compactness in the intrinsic sense, which the reader would find in Wald’s book
[6], page 77. This paper will be devoted to giving a precise description of this
property and sufficient conditions for it, some of which were previously sketched
in miscellaneous remarks (5), (6) and (8) of LeCam’s paper [3], and also in [4].

The property (W) of D is essentially a geometrical concept of the subset
R = {r(-, 8): 6 ¢ D} of the function space § on the parameter space ©, where
(8, 8) represents a risk imposed on a statistician who adopts 6 ¢ D when 6 is true
value of the parameter. We shall refer to the corresponding property of R as half-
closedness. We shall give the definitions of half-closedness and of the property
(W) in Section 2. To see how these properties work in the complete class
theorems, Wald-LeCam’s complete class theorems are restated in Section 3. The
form of Wald-LeCam’s theorem we describe here can be proved by the same way
as that done in [3], and is also a very geometrical statement, in the sense that any
structure of the risk function (8, §) will not be needed in the proof. In Section 4
we give two theorems concerning the geometrical property of a function of two
variables. These theorems could be used as a criterion of a loss function L(8, a)
being half-closed and of the class D having the property (W). To obtain more
precise criteria the risk function (8, §) is specialized in the usual way in Sections
6 and 7. We will give the definitions of decision functions and risk function in
non-sequential case, according to LeCam [3], for the completeness of descriptions
(Section 5). In Section 6 we give a sufficient condition for the class D of all the
decision functions defined in Section 5 having the property (W). Roughly speak-
ing, the condition in Theorem 4 (and Theorem 4') is the half-closedness of the
loss function L(6, a). For a subclass of ®, it happens that D does not have the
property (W) while L(0, a) satisfies the assumptions of Theorem 4. Theorem 5
of Section 7 says that if the loss function tends to « at the infinity point of the
action space and if the sample distribution has positive density everywhere, every
closed subclass of D has the property (W).
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2. The property (W) and half-closedness. Let ® be an arbitrary set, and
& the set of all nonnegative real extended functions defined on ®. We shall assign
each element f ¢ § with a family of neighborhoods V(f: 6y, - -+ , 6, €) consisting
of all elements g of F such that

lg(6:) — f(6:)] <e if f(6:) < o,
g(6:) > 1/e if f(6;) = o,

where k is an arbitrary positive integer, {6y, -, 6x} a finite subset of ® and
¢ > 0. Such a system of neighborhoods of every f in & defines a topology 3 in &,
which we shall refer as a pointwise convergence topology. § is compact with re-
spect to this topology 3.

DerFINTTION 1. A subset F of & is said to be half-closed if, for any element f* of
the closure F* of F with respect to 3, there exists an element f ¢ F such that

HOESHO) for every 6 ¢ ©.

Let us consider a statistical decision function problem (@, D, ), where © is the
space of the parameter 6, D the class of decision functions § to which the choice of
a statistician is restricted, and 7(6, §) the risk function imposed on him when 6 is
chosen and 6 is the true value of parameter. Since for each 6 ¢ D the risk function
r( -, §) is regarded as an element of &, we shall denote by R the subset of & whose
elements are all 7( -, 8), 6 ¢ D.

DerinTION 2. A class D of decision functions is said to have the property (W),
if the corresponding R is half-closed.

3. Wald-LeCam’s theorem. For the sake of understanding the role of the
property (W), we shall restate the general complete class theorem, which is
initiated by Wald [6] and then extended by LeCam [3].

DEriniTION 3. A class D of decision functions is said to be subconvex if for any
two elements 8; and 8; of D and a real number a (0 £ a < 1) thereis a 8; ¢ D such
that

r(0, 8) = ar(6, &) + (1 — a)r(6, 8,) for every 6¢e ©.
A function £(6) on O is called a probability function when it is a nonnegative
function vanishing everywhere on © except for a finite number of #’s and
> 9 £(8) = 1. Here we shall understand that Y_s stands for the sum of non-zero
values. Denote by E the set of all such probability functions on ® and define a
function F(8) of 6 as
F(8) = infeex { 226 7(6, )£(6) — infyen 26 7(6, 8)£(6)}.

DeriniTioN 4. A decision function d&D is called a Bayes solution if
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Sor(8, 8)E(0) = infyep D078, 8")£(6) for some £ ¢ E. By B we denote the set
of all Bayes solutions.

DErinTION 5. A decision function & £ D satisfying F(8) = 0 is called a Bayes
solution in the wide sense, and the set of such §’s will be denoted by W.

Let us denote by B* the set of the &’s, 7( -, 3) of which belongs to the closure of
Ry = {r(-,48):8 eB}.

DeriniTION 6. A decision function é £ D is said to be improvable uniformly, if
there are a positive number ¢ and another decision function 6" ¢ D such that

r(6,8") < r(6,5) — e for every 6¢ 0.

LeCam extends Wald’s complete class theorems as follows:

If D is subconvex and has the property (W), then

(i) there is the minimal complete class in D,

(ii) W, B* and W n B* are all complete classes in D,

(iii) F(8) > 0 if and only if § is improvable uniformly.
((ii) and (iii) are slight modifications of LeCam’s original work, but there is no
essential difference. These are proved in a quite similar way as LeCam’s proof.)

From Definition 2 we have very easily

TueoreM 1. If D has the property (W) and C is an esentially complete class of
D, then C has the property (W).

4. Sufficient conditions for the half-closedness.

THEOREM 2. Let © and T be two arbitrary spaces, and suppose that f(0, t) is a
nonnegative real extended function defined on the cartesian product ® x T. If for any
0 € © and for any real number k < sups.r f(0, t) there exists a proper subset C of T
such that (i) G = {f(-, t): te C} is half-closed and (i) infsc f(8, ) > k, then
F = {f(-,t):te T} is half-closed.

Proor. Let h(6) be an element of the closure F* of F relative to 3 and put
S(0) = sup:.r f(6, t). Without any loss of generality we may assume that there is
a point 6y ¢ ® such that 2(6y) < S(6o). Suppose that k be a given real number such
that h(6) < k < S(6). For such 6, and k we can take C such that G = {f(-, {):
t ¢ C} is half-closed and inf,,¢ f(6o , t) > k. This shows that h belongs to the closure
@* of G. Since G is half-closed, there is an element ¢, ¢ C such that k(8) = (6, t)
for all 8 ¢ ©.

TueoreM 3. Let © be an arbitrary space and T a compact Hausdorff space.
Suppose that f(8, t) is a nonnegative real extended function on ©® x T and lower
semicontinuous on T for any fixed 0 ¢ ©. Then F = {f(-,t):t e T} s half-closed.

ProOF. Let & be an element of the closure F* of F. For any finite subset N of ©
and any ¢ > 0 we shall denote by Uy, the set of all points ¢ for which f( -, ¢)
belongs to the neighborhood V = V(h: N, ¢). Since { Uy} has the finite intersection
property, and T is compact, the intersection of the closures of all U, ,’s has at
least one point t* ¢ T. From the lower semicontinuity of (6, ¢) on T, we have

706, t*) = limy.y infregy,, £(6, £) = h(6).
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Combining Theorems 2 and 3, we have

CorOLLARY 1. Let O be an arbitrary space and T a Hausdor[f space. Suppose that
F (0, t) is a nonnegative real extended function f(6,t) on ® x T and that f(6, t) is
lower semicontinuous on T for each 0 € O. If for any 0 ¢ © and for any real number
k < super f(6, t) there is a compact proper subset C of T such that inf,.c f(6, 1) > k,
then F = {f(-,t):te T} s half-closed.

If we read T and f(6, ¢) in Theorems 2, 3 and Corollary 1 as D and r(9, &),
respectively, and ‘“half-closed of F”’ as ‘“the property (W) of D,” we have the
corresponding statement about the property (W).

5. Decision function and its linearly structured risk. In the following sections
we shall consider statistical problems (®, D, r) with a linearly structured risk. In
such a problem, there are given three factors on which the problem is based:

(1) a o-finite measure space (X, ®, ) named the sample space,

(2) alocally compact space A, named the action space, and

(3) a real nonnegative function L(6, a), named the loss function of § ¢ ® and
a ¢ A, which is Borel measurable on A for any fixed 6 ¢ ©.

Let L; be the Banach space of all integrable functions p on the sample space
(X, ®,\) with norm ||p|: = [ |p(2)| dA. The distribution space IT of this problem
is a subset of L, , consisting of nonnegative functions p of norm ||p|, = 1, whose
elements are labelled by the parameter 6 ¢ ©, and will be denoted by ps(z). De-
note by ® the linear subspace of L; spanned by II. Let us consider the space
Co(A) of all continuous functions with compact carrier, and denote by ||c|| the
norm (maxa, |c(a)|) of ¢ e Co(A).

Consider the linear space ® = ®(Co(A), ®) of all bilinear functionals ¢ on
Co(A) and @, which is bounded in the following sense: there is a positive number
k such that |¢(c, p)| = & ||c||||p|l1 for every ce Cy(A) and p & ®. The norm |¢|| of
¢ is defined as the infimum of such &’s. An element ¢ of ® is said to be positive if
¢ = 0and p = 0 implies ¢(¢, p) = 0. According to LeCam [3], if A is separable,
locally compact and metrizable, then every positive bilinear functional ¢ of norm
1 can be represented by an integral

(¢, p) = [x[[ac(a)s(da: 2)lp(z)N(d)

by using a measure-function version §(A : z), which is (1) a probability measure
defined on the o-field @ of all Borel subsets of A for all z ¢ X, and (2) an essentially
(\) bounded measurable function of  for any A & @. Here 5 and &” are called
equivalent if [ 8(A :2)ps(x)\(dz) = f&'(A :2)ps(z)A(dz) holds for every 6 ¢ © and
A ¢ @. In this meaning an equivalent class of such §’s, or in other words, a positive
bilinear functional on Co(A) and @ of norm 1 is called a decision function.
Throughout the sequel, we shall use the notation D for the set of all decision func-
tions thus defined. The risk function associated to a decision function § is defined

as
(5.1) (0, 8) = [x[[a L(8, a)s(da: z)]pe(x)\(dx)

as far as L(6, a) is Borel measurable on A for every 6 ¢ ©.
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The topology of ©, which we shall follow to LeCam [3], is a relative topology
of the weak topology of ®, i.e. a topology of ® generated by a system of neighbor-
hoods

N(p:ci, - ,CyPry " ,Dr,€)
= {¢,gq): lﬁ"(ci,pi) _9",(0171)1')] < e7i= 1) 2, )k}a

where k is an arbitrary positive integer, ¢; e Co(A), pie ® (2 = 1,2, --- , k) and
€ a positive number. When we are concerned only with a subset D of D, we shall
refer to the relative topology of D induced by the above topology of & as the
regular topology, after the Wald’s terminology ‘“the regular convergence” [6].
LeCam gave a condition for D being compact in the regular topology. As a special
case of this condition, if A is compact, so is D in the regular topology.

If for each 6 £ ®, L(8, a) is lower semicontinuous of a, then (9, §) is lower semi-
continuous in the regular topology (see [3], page 75), and so, for any nonnega-
tive extended function f(8) on O, the set Dy = {6 e D:7(6,8) = f(0)} is closed in
D. In this case the compactness of D implies that of ©; . From this fact we get

ExampLE 5.1. In the problem of testing hypothesis, the action space A is finite
and so compact. Hence D is compact. The set of all tests of level « is also compact
in the regular topology, so that it has the property (W).

6. A criterion for D having the property (W). In Section 4, Theorems 2 and 3,
we gave general criteria for the space D of decision functions available to a
statistician having the property (W), without any specialization of the structure
of the risk function. Now we have a precise structure (5.1) of the risk function
which gives us a criterion for D having the property (W).

Before we proceed to our theorem we should give a preparatory lemma.

LemMA. Let T and S be o-compact, locally compact metrizable spaces, ® a linear
subspace of Ly space on a measure space (X, ®, \), where \ is a o-finite measure on
®. Suppose that u be a mapping of T onto S such that for any Borel subset B of S
the inverse tmage v (B) is also a Borel subset of T. Then for any positive bilinear
functional ¢ on (Co(8S), @) there exists a positive bilinear functional Y on (Co(T), ®)
such that [[¥|lz = llells and

(6.1) (e, p) = [x [z e(u(®))n(dt: 2)lp(x)N(dz)

for every ¢ € Co(S) and p € ®, where |||z and |- ||s are the norms of bilinear func-
tionals on (Co(T), ®) and (Co(S), @), respectively, and 1 is a measure-function
version of the bilinear functional ¢ on T.

Proor. Let © be the collection of linear subspaces of ® for which our lemma
holds. For any p eI, the integral s0p(S*) = [ 8(S*|z)p(x)A(dx) for every Borel
set S* < 8 defines a probability measure on the o-field of the Borel subsets of S,
where & is a measure-function version of ¢. By virtue of Varadarajan’s lemma, [5],
Lemma 2.2, there is a probability measure ¢, on 7' such that

(6.2) 50 p(8%) = g,(u78%)
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holds for any Borel subset S* of 8. Taking ga, = ag, for any real «, we can see that
¢p is a bilinear functional on (Co(T'), {p}), where {p} is a one-dimensional linear
subspace through p. Thus & contains all one-dimensional subspaces of ® and
hence it is nonempty. Since & is of the finite property, it follows from Zorn’s
lemma, that there is a maximal element ®, in &. Suppose that ®, does not coincide
with ® and let p" £ ® — ®, . For this p’ we can define the measure ¢,» on T and
PUt Qapr+p = agy + g, for p & ® . This ¢, is well defined for all p ¢ the subspace
{p’, ®} spanned by ® and p’ and satisfies (6.2) for all p & {p, ®}. Therefore
¥(¢, p) = [ cdg, is a linear functional satisfying (6.1), which shows that the
linear subspace {p’, ®)} belongs to & again. This is a contradiction with the
maximality of @ in &. Thus we have ® = @, or in other words, & contains ®
itself.

TraEOREM 4. Suppose that

(1) A is a o-compact, locally compact and metrizable space;

(ii) L(6, a) 7s a Borel measurable nonnegative real function of a e A for any
fized 6 € O;

(iil) & = {L(-,a):acA} is a subset of F which is homeomorphic to a c-compact,
locally compact metric space, in the relative topology of the pointwise convergence
topology 3 of F;

(iv) there is a mapping T of £, the closure of £, into & such that

(a) for any 0 & © and any positive o, the set {f € £*: L(0, 7f) < a} is the com-
mon part of £* and a Baire set in the topology 3 in F,
(b) L(8, 7f) < f(6) for all 6 ¢ © and f ¢ £%, where L(0, f) means the value of
L(-,a) atb for of = L(-, a).
Then R = {r(-, 8): 6 ¢ D} 1s half-closed and so D has the property (W).

Proor. For any decision function 6 ¢ D we shall associate a positive measure

onQ@:

sop(A4) = [8(A:z)p(x)N(dx),

for each p ¢ ®. Let V be a basic neighborhood in & given by the manner in Section
2. From the assumption (ii), {a: L(-, @) € V} is Borel measurable, and so the set
{a: L(-, a) ¢ M} is Borel measurable for any Baire subste M of §. Let #(M: 60 p)
= §op({a: L(-, a) e M}). This is a signed measure defined on the o-field of all
Baire subsets M of &, but vanishes for M disjoint of the set £. Therefore the
closure £* of £ in the topology 5 is a thick set (for definition, see [4], p. 74) rela-
tive to w( - : 8 o p). Noticing that every Borel subset of £* can be regarded as an
intersection of a Baire set and £* because of the separability of £ #(-: 50 p)
may be regarded as a signed measure on the o-field of Borel subsets of £*. We
shall denote by f an element of £* and by 6(f) the value f(8) of f at the point
0 £ ©. Then 6(f) is a continuous function of f with respect to the relative topology
of 3in &, and

(6.3) 7(8,8) = [+ 0(f)m(df: 50 ps).
Let h be an element of R* the closure of R in 3. For any neighborhood
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V = V(h: 6,,---, 0, €) of h, there exists an element §&D such that
r(+,8) e R n V. Let us keep an element p ¢ @ fix for a while and then consider a
class

Ay = {w(-:60p):7(-,8) eRnV}

of signed measures on £”. Since £ is compact, so is the set of the signed meas-
ures, bounded by ||p|ls , in the weak topology. Take the closure Ay* of Ay in the
weak topology. Then the intersection () v Ay is not empty, because {Ay : V} has
the finite intersection property. Thus we have a signed measure =*(-: p) on £*
belonging commonly in Ay*. By the condition (a) of (iv), a signed measure
#(-: p) on & will be induced by #*(-: p) through r as follows: #(M: p) =
(7 M: p) for every Borel subset M of £. Obviously we have

(6.4) JeoN#df:p) = [o 0(H)x* (<" df:p)
= Jeo 0(eN)7*(df: p).

On the other hand, we can observe that [¢ u(f)#(df: p), u e Co(£), is a positive
bilinear functional on (Co(£), ®) of norm 1. In fact, the integral
fer u(f)r*(df: p), ue Co(£¥), is a cluster point, in the weak topology, of the
set of bilinear functionals [ u(f)«(df: 8 p), and hence it is bilinear. The posi-
tivity and the norm of functionals are preserved invariantly. Consequently
f ¢ u(f)7(df: p) has also the same property.

From the assumptions (i), (ii), (iii) and the lemma, there is a decision function
8 € D such that

(6.5) Jeu(N)7(df: p) = [x [aw(L(-, a))du(da: 2)p(x)\(dw)

for every u & Co(£). This means that #( - : p) is an induced measure on £ by the
mapping @ — f(-) = L(-, a) ¢ £. Therefore this equation holds for a continuous
function 0(f). Since 8(f) = L(6, a), we have

(6.6) [ 0N)7(df:p) = [x [a L(6, a)so(da: )p(x)\(dz).

Especially for p = ps ¢ IT, we have, by (b) of the assumption (iv),

(6.7) S 67" (df: po) £ [er 0(H)w*(df: 1)

and, by the continuity of 8(f),

(6.8) [e 6()m*(df: ps) < limpopinfrc ser Je+ 6(f)m(df: 6 o pe)
= h(#).

From (6.4) and (6.6)—(6.8), we have r(6, &) = h(0).

ReMARK. If we assume, in addition to the other conditions of Theorem 4,
that

(v) the class of sets {a: L(6, a) < a},0e0,0 < a < «, generates the o-field

@ of the Borel subsets of A,
we can prove Theorem 4 directly without using the lemma preceding Theorem 4.
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In fact, (6.5) is equivalent to the coincidence of #(-: p )and [x 8o+ : @)p(x)\(dix)
on @, and hence (6.6) is implied directly by the condition (ii) of the theorem.
For the same reason, the following theorem can be proved in a similar way as
Theorem 4 except for using the lemma.

TueorEM 4. Suppose that

(1) A is equipped with a topology 3., relative to which A is o-compact, locally
compact and metrizable and the loss function L(6, a) is Borel measurable on A for
any 6 € ©;

(2) there is a compact metric space A%, whose induced topology is denoted by
3s , having the following property

(a) A is embedded in A* as a dense subset in Jy-sense,
(b) for every 0 ¢ ©, L(8, a) is continuous on (A, 3:) and has a continuous
extension L*(0, a) onto (A%, 3,),
(¢) every Borel set in (A 3.) 1s a Borel set in (A, 31);
(3) there is a mapping T of A* into A such that
(a) for any Borel set A in (A, 31), the inverse tmage '(A) is Baire
measurable in (A, 3z),
(b) L(8, ra) < L*(8, a) for every ae A* and 0 ¢ ©.
Then D has the property (W).

Theorem 4’ covers the case of the statement [3], p. 80, Miscellaneous remark
(6), due to LeCam.

ExampLE 6.1. The quadratlc loss estimation of a real valued parameter is one
of the cases of Theorems 4 and 4’, and so the class of all estimates has the property
(w). Furthermore the class D* of all nonrandomized estimates has the property
(W), since D* is an essentially complete class in D [1], page 294. In a later sec-
tion (Example 7.3) we shall discuss this problem again.

ExampLE 6.2. Consider an interval estimation problem of a real valued
parameter 6 with the loss function L(6, (8, 8)) = u(8 — 8) + (9, 8, 6), where
(8, 6), 8 < 6, is an estimated interval, u(¢) a monotone nondecreasing left-
continuous nonnegative function of ¢ > 0, a a positive real and

v(0,8,6) =1, wheng < gorb <6,
= 0, wheng <6 £ 0.

In the case of u(t) = ¢, the class D does not have the property (W) and there is no
minimal complete class in ®. However if we assume that u(¢) = 0 for ¢ < &
for some £, > 0, D has the property (W). We shall show this fact.

Let us denote by U the closure of the range U of the function u(t). Clearly U
consists of an at most countable number of closed intervals. As easily seen, the
closure £* of the class £ of the loss functions in & is the set of the functions of
the following four forms:

(a) f(8) = u + a, for some u & U;

(b) f(8) = w(t) + av(6, o', 6 -I- t) for some 8" and somet > 0;

(¢) f(8) = u(t+) + ow(() 9,8 + t) for some 6’ and some discontinuity
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point £ of u(t);
(d) f(6) = @, forg =4,

=0, for = 6 for some 6.

The mapping 7 of £* into £ is
() = u(t) + av(6, 0, t), when f is of the form (a),
= f(6), when f is of the form (b),
= u(t) + aw(0,6,0 + 1), when f is of the form (¢),
= ow(6,0 — 3,60 + ), whenfis of the form (d).
We can easily see that this mapping 7 satisfies the conditions of Theorem 4.
Thus © has the property (W).

7. The property (W) of the closed subclass of D. Theorems 4 and 4 are very
powerful for the whole class ©, but they do not answer the question whether a
restricted subclass of D satisfies the property (W). However in many practical
problems statisticians’ concern is about a subclass of D, as the class of unbiased
estimates, the class of tests of level a, etc. Some of such subclasses do not have the
property (W). Even closed subclasses of © do not have this property.

ExampLE 7.1. Consider the case where the parameter space ©, the action
space A and the sample space X are all the real line and the loss function
L(8,a) = 0if |§ — a| < 1, and = 1 otherwise. For this loss function L(6, a),
& = {L(-, a): a e A} is apparently half-closed, and so, by Theorem 4, D has
the property (W). Let

() =z +n f—-1l1<z<l,
=z —n ifn—1<z<n+4+1,
=2 otherwise,

and 86,(A:z) = 1if A 5 au(z), and = 0 if 4 7 a,(x). Consider the class D =
{6.),n = 1,2, -, of decision functions and, for the simplicity of calculations,
the family of Cauchy distributions [r{1 4+ (z — 6)*}]”" on X with the location
parameter 6. Then D is not compact, but closed in © in the regular topology.
The linearly structured risk (6, 8,) of 8. is as follows:

7(6,8,) = 5+ P([-n — 1, —n+1n[6 — 1,0 + 1])
+P([n—1,n+1n[—0—1,—-0+1])
— P([—-1,1]n[—6—1,—6 4+ 1])
— P([-L,1lnln—0—1,n—6+41)])

and f(0) = lim,.e7(8, 8,) = £ — P([—1,1]n[—6 — 1, —0 + 1]) is a single
cluster point of R = {r(-, 8,): 6, ¢ D}, where P(4) = [4[r(1 + ) da.
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Therefore for n > 1 thereis a 8 < 0 such that r(8, 8,) > f(8), which shows that D
does not have the property (W).

ExavpLE 7.2. Consider an estimation problem of the real parameter 6 in
the uniform distribution pe(z) = 1if 0 — 3 < ¢ < 0 + %; and = 0 otherwise,
with the quadratic loss (8 — a@)® The class D = {a.(-)} of nonrandomized
estimates

a.(z) = sign (z)-|z|”

is obviously closed in the space ©. And a simple calculation shows us that the
risk function 7(6, a.(-)) has the limit:

o if o] > 3,
=6 il <4,

I

limpne 7(6, an( - ))

and we have, at § = 0, 7(0, a.(-)) > 0 = lim,., (0, a.(-)) for any positive
integer n. This shows that D does not satisfy the property (W). Thus we see
that the closedness of D does not imply the property (W) even if the loss func-
tion is quadratic.

The above two examples show that the property (W) is a more profound
character than the topological character of D like the closedness. It seems to the
author that the topological structures of D are mainly determined by the topology
of the action space A, whereas the property (W) is closely related to the property
of the loss function L(6, a) and the sample distribution family II. We shall give a
sufficient condition for the subclass D of D having the property (W) in the rest
of this section.

The family 9 of the probability measures on the locally compact space A
is topologized by the convergence of the integral [ u(a)m(da), m e 9, for every
u € Co(A). This topology is usually called the weak topology of 9. A subset
M of 9 is relatively compact in this topology if and only if for any positive e there
corresponds a compact subset C such that m(C) > 1 — e for every m ¢ M. For
any subset D of © we shall denote by D o p the set {6 o p: § € D} of the probability
measures on A for every p ¢ II.

DrerinitioN 7.1. A subset D of D is said to be homogeneous relative to a dis-
tribution family II if for any subset D* of D the compactness of D* o p™* for some
p* e I implies that of D* o p for all p & II.

The homogeneity is satisfied by D when elements of II are mutually absolutely
continuous. In fact, let () be the power of the most powerful test of level
for the hypothesis p*(e II) against p(eII). Since p and p* are mutually ab-
solutely continuous, for any positive ¢ > 0 there is a uniquely determined posi-
tive number ap such that 8(ay) = 1 — e. Suppose that there is a compact subset
Co of A such that 50 p*(Cy’) < a for every 5 e D* C D, where Cy’ is the com-
plementary of Cy. For such a 8 ¢ D¥, o(z) = 8(Cy: z) can be regarded as a
test function of level ap, so that 6o p(Co") = E,lp] < B(a) = 1 — ¢ which
shows the homogeneity of © for II.
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TuEOREM 5. Suppose that

(1) the action space A is a o-compact, locally compact and metrizable space;

(ii) for any fized 0 the loss function L(0, a) is a lower semicontinuous function
of a;

(iii) D s a closed subset of D being homogeneous relative to I1;

(iv) for any 6 € © and for any positive number n there exists a compact proper
subset Cr,p of A such that

n = infye, , L(6, a).

Then D has the property (W).

Proor. It follows from the assumption (ii) that, for 6 € ©, (6, §) is a lower
semicontinuous function of § (see [3], p. 75). Therefore by Corollary 1 of Theorem
3 it is sufficient to prove that for any 6 £ ® and nonnegative k there is a compact
subset Dy9 € D such that infsp, , 7(6, 8) > k holds. Consider the set

Dio = Nn=1{6eD:60py(Cuy) = 1 — k/n}

(which may be empty) of decision functions. This Dy g o ps is a compact subset
of 9N in the weak topology, and so from the assumption (iii) Dy, o ps is also
compact for every pe € II. From Lemma 2 of [3], p. 74, Dy, is relatively compact
in the regular topology of D. Since D is closed in D, the closure Dy of Dy is a
compact subset of D.

Let 6 D — Dy © D — Dy, . By the definition of Dy, there corresponds a
positive integer n such that § o pe(Cne) < 1 — k/n. Therefore we have

(60, 8) = [4 L(6, a)é © po(da)
2o L(6, a)8 © py(da)
= n-80pe(Cny) > n(k/n) = k.

1%

Thus our theorem is proved.

ExampLE 7.3. Consider a problem of estimating a real valued parameter with
quadratic loss, and suppose that the sample distribution has a positive density
function. Since the homogeneity of D is an inherited character for subsets,
Theorem 5 is available for every closed subset D of O, and hence D has the prop-
erty (W). As stated at the end of Section 5, the class Dy of decision functions
¢ D whose risk function is bounded by a function f(8) is closed. Therefore D,
has the property (W). Moreover the intersection of D, and the class D* of non-
randomized decision functions is essentially complete in Dy , and so by Theorem
1 the class D;* = D; n D™ has the property (W).
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