GAME VALUE DISTRIBUTIONS I1

BY DAVID R. THOMAS AND H. T. DAVID

Iowa State University

1. Summary and introduction. This paper is concerned with the distribution of the value of a game with random payoffs. Two types of games are considered: matrix games with iid matrix elements, and games of perfect information with iid terminal payoffs.

Let $||x_{ij}||$, $i:1, 2, \dots, m; j:1, 2, \dots, n$, be the matrix of player I's payoffs in a zero-sum two-person game, and let $v(||x_{ij}||)$ be its (possibly mixed) value. Consider the random value $V_{m,n}(f) \equiv v(||X_{ij}||)$, where the X_{ij} are mn iid random variables, each distributed according to the density f. It is pointed out in Section 2 that the conditional distribution of $V_{m,n}$, given that it is pure, is that of the nth largest of m+n-1 iid random variables, each distributed according to f. For f uniform on (0,1) (i.e., f=u), a method is given for determining the conditional distribution of $V_{2,n}(u)$, given that it is mixed. This leads to an elementary expression for the distribution of $V_{2,n}(u)$ and the asymptotic distribution of $V_{2,n}(u)$.

Consider as well two players alternately choosing one of two alternative moves, with n choices to be made in all by each. Corresponding to each of the 4^n possible sequences of moves, there are 4^n payoffs $x(i_1, i_2, \dots, i_{2n})$ for player I, $i_k = 1$ or 2, where the odd and even locations indicate, respectively, the successive alternatives chosen by players I and II. The (pure) value $v(\{x(i_1, \dots, i_{2n})\})$ of such a game is

$$\max_{i_1} \min_{i_2} \max_{i_3} \min_{i_4} \cdots \max_{i_{2n-1}} \min_{i_{2n}} x(i_1, \cdots, i_{2n}).$$

Now replace the 4^n numbers $x(i_1, \dots, i_n)$ by independent uniformly distributed random variables $X(i_1, \dots, i_{2n})$. The asymptotic behavior of the random value $V_n \equiv v(\{X(i_1, \dots, i_{2n})\})$ is investigated in Section 3; it is shown that the asymptotic distribution L of V_n is everywhere continuous and monotone-increasing, and satisfies a certain functional equation; it is also shown that the moments of the normed V_n converge to those of L. It is planned, in a subsequent paper, to explore games of perfect information in greater depth.

After this paper was submitted, Thomas M. Cover drew our attention to [3] and [9]. The derivation in [9] of the expected value of a $2 \times n$ game, conditionally on there being a 2×2 kernel, is based on essentially the geometric considerations leading to our distribution (5); however, since the argument in [9] is not aimed at obtaining distributions, and is thus rather different in detail, a sketch of our derivation of (5) has not been deleted.

Received 11 April 1966; revised 1 August 1966.

¹ This research was supported by a National Aeronautical and Space Administration research traineeship, and also in part by National Science Foundation grant No. GP-1801.

In [3], the probability is computed, in the case of payoff distributions symmetric about zero, that an $m \times n$ game has positive value. Also, the work of Efron [4] and that of Sobel [8] pertain to Section 2, and that of Buehler [1] to Section 3. Finally, closely related to this paper, and indeed the source of our original interest in this area, is the work of Chernoff and Teicher [2].

2. Matrix games. For an $(m \times n)$ matrix $||X_{ij}||$ of iid random variables X_{ij} , each distributed according to the density f, let π_{mn} denote the event that the corresponding zero-sum two-person game has a pure value. Then [5], p. 79,

(1)
$$\Pr\left[\pi_{mn}\right] = m! \, n! / (m+n-1)!,$$

and [9], p. 366,

(2)
$$\Pr[V_{m,n}(f) \le t \mid \pi_{mn}] = \Pr[X_{m+n-1}^{(n)} \le t].$$

where $X_{m+n-1}^{(n)}$ = the *n*th largest of m+n-1 iid random variables, each distributed according to f.

We turn next to conditioning on the complement $\bar{\pi}_{mn}$ of π_{mn} , and specialize the discussion initially to the case m=2 and f=u; accordingly, we abbreviate $V_{m,n}(f)$ to V_n . We lean now on the usual geometric construction ([6], p. 405) based on the convex hull CH_n of the n points p_j : (X_{1j}, X_{2j}) and the right-angular wedge W_n , with apex on the equiangular line, touching CH_n . Conditionally on $\bar{\pi}_{2n}$, the following will obtain with probability one: (i) $CH_n \cap W_n$ will contain exactly one point Q_n , Q_n lying on the equiangular line; (ii) Q_n will lie as well on precisely one of the edges, say E_n , of CH_n , and E_n will connect two extreme points $P_{1,n}$ and $P_{2,n}$ of CH_n , respectively above and below the equiangular line; (iii) there will be a unique "separating" line L_n for CH_n and W_n , namely the line through $P_{1,n}$ and $P_{2,n}$; L_n will have negative slope, and its intercepts A_n and B_n with the horizontal and vertical axes will determine V_n in accordance with

$$(3) V_n = A_n B_n / (A_n + B_n).$$

Our approach has been to compute the conditional (on $\bar{\pi}_{2n}$) distribution of V_n through (3) and the joint distribution of (A_n, B_n) . To this end, for any positive a, b and Δ , let l_1 be the line through (a, 0) and (0, b), l_2 the line through $(a + a\Delta/b, 0)$ and $(0, b + \Delta)$, and let U and L be, respectively, the regions in the positive quadrant bounded by the equiangular line, the vertical axis, l_1 and l_2 , and the region bounded by the equiangular line, the horizontal axis, l_1 and l_2 . Also, for any two points p and q in the positive quadrant, let h(p, q) and v(p, q) be the respective horizontal- and vertical-axis intercepts of the line l(p, q) through p and q. Now define the event $\tau_{IJ}(a, b, \Delta)$: $[p_I \in U; p_J \in L; b \leq v(p_I, p_J)]$ Then it is clear that, excepting an event of zero probability, the event $[\bar{\pi}_{2n}; a \leq A_n \leq a + a\Delta/b; b \leq B_n \leq b + \Delta]$ is the sum of the (n)(n-1) mutually exclusive events $\tau_{IJ}(a, b, \Delta)$. Moreover, symmetry implies that $\Pr[\tau_{IJ}(a, b, \Delta)]$ does not depend on

(I, J), so that

$$\Pr\left[a \leq A_n \leq a + a\Delta/b; b \leq B_n \leq b + \Delta \mid \bar{\pi}_{2n}\right]$$

=
$$n(n-1) \Pr [\tau_{12}(a, b, \Delta)] / \Pr [\bar{\pi}_{2n}]$$

and the conditional density $g_n(a, b)$ of (A_n, B_n) is given by

(4)
$$n(n-1)/\Pr\left[\bar{\pi}_{2n}\right] \cdot \lim_{\Delta \to 0} \left(b/a\Delta^2\right) \Pr\left[\tau_{12}(a,b,\Delta)\right].$$

The integration and limit for the second factor of (4), denoted, say, by $h_n(a, b)$, are routine, and yield the following expressions (where it has been convenient to set $v \equiv ab/(a + b)$):

for
$$0 < b \le a \le 1$$
, $h_n(a, b) = (v^2/2)(1 - ab/2)^{n-2}$;

(5) for
$$0 < b \le 1 < a$$
, $h_n(a, b) = (bv/2a^2)(1 - v)(1 - b(1 - \frac{1}{2}a))^{n-2}$;
for $0 < 1 < b \le a$, $ab/(a + b) \le 1$, $h_n(a, b)$

$$= (1 - v)^3/2v(1 - a - b + (a^2 + b^2 + a^2b^2))/2ab)^{n-2}.$$

Since $h_n(a, b)$ clearly is symmetric, relations (5) determine h_n as well for b > a. To obtain the conditional (on $\bar{\pi}_{2n}$) density $g_n(v)$ of V_n , one must integrate the conditional density $g_n(a, b)$ of (A_n, B_n) , as given by (4) and (5), in accordance with (3). This can be done in closed form when n = 2, and yields a density symmetric about $\frac{1}{2}$, given on $(0, \frac{1}{2}]$ by:

(6)
$$g_2(v) = 3(4v^2 - v^3/(1-v) + 4v^3 \ln((1-v)/v)).$$

Finally, combining the two conditional distributions (2) and (6) with the help of (1), one obtains for the distribution of V_2 a further density symmetric about $\frac{1}{2}$, given on $(0, \frac{1}{2}]$ by:

$$g_{V_{2,2}(u)}(v) = 4v - v^3/(1-v) + 4v^3 \ln((1-v)/v).$$

Consider next the asymptotic distribution of $V_{2,n}(u) \equiv V_n$, to be examined as well through that of (A_n, B_n) . In view of (4) and (5), the conditional (on $\bar{\pi}_{2n}$) density of $(n^{\frac{1}{2}}A_n, n^{\frac{1}{2}}B_n)$ is given by

(7)
$$g_n^*(a,b) \equiv g_{n^{\frac{1}{2}}A_n,n^{\frac{1}{2}}B_n}(a,b)$$

= $\frac{1}{2}(1-1/n)(ab/(a+b))^2(1-ab/2n)^{n-2}/\Pr\left[\bar{\pi}_{2n}\right]$

on the square $(0, n^{\frac{1}{2}}] \times (0, n^{\frac{1}{2}}]$, and by similarly scaled modifications of (5) elsewhere in the domain a > 0, b > 0, $ab/(a + b) \le n^{\frac{1}{2}}$. Hence, in view of (7) and (1), $g_n^*(a, b)$ converges, at every point (a, b) of the positive quadrant, to the function

(8)
$$\gamma(a,b) = (\frac{1}{2})(ab/(a+b))^2 \exp(-ab/2),$$

and γ is a density, which can be seen by changing variables to (x = a/b, b) and integrating first with respect to b. It then follows from Scheffé's theorem

[7] that integrals of g_n^* over Borel sets of form $ab/(a+b) \leq v$ converge to the corresponding integrals of γ : i.e.,

$$\Pr\left[n^{\frac{1}{2}}V_n \leq v \mid \bar{\pi}_{2n}\right]$$

(9)
$$= \Pr\left[(n^{\frac{1}{2}}A_n)(n^{\frac{1}{2}}B_n)/(n^{\frac{1}{2}}A_n + n^{\frac{1}{2}}B_n) \le v \mid \bar{\pi}_{2n} \right]$$

$$= \int_{ab/(a+b) \le v} g_n^*(a,b) \, da \, db \to_n \int_{ab/(a+b) \le v} \gamma(a,b) \, da \, db \equiv L_1(v).$$

Finally, since

$$\Pr [n^{\frac{1}{2}}V_n \leq v] = \Pr [\pi_{2n}] \Pr [n^{\frac{1}{2}}V_n \leq v \mid \pi_{2n}] + \Pr [\bar{\pi}_{2n}] \Pr [n^{\frac{1}{2}}V_n \leq v \mid \bar{\pi}_{2n}],$$

the right-hand side of (9), in view of (1), is the asymptotic cdf of n^2V_n .

Note that our results for the uniform distribution are easily extended to distributions essentially equivalent to it. In other words, let f(t) be a density equal to zero to the left of some t_0 , and continuous to the right and discontinuous to the left at t_0 . Then $n^{\frac{1}{2}}f(t_0)(V_{2,n}(f)-t_0)$ tends in distribution to L_1 .

- 3. Games of perfect information. Define, for $0 \le v \le 1$, $\phi(v) =$ $(1-(1-v)^2)^2$. Then the cdf of the random value $V_n \equiv v(\{X(i_1,\cdots,i_{2n})\})$ introduced in Section 1 is the *n*th iterate $\phi^{(n)}(v)$ of $\phi(v)$ on [0, 1]. This section is devoted to showing that $\phi^{(n)}(a + v/(4a)^n)$ converges to a non-degenerate continuous cdf L where a is the unique fixed point of $\phi(v)$ in (0, 1); i.e., that $(4a)^n(V_n-a)$ tends in distribution to L. The proof of this, given below in a series of steps, incorporates a fairly complete qualitative description of L. Obtaining an elementary representation for L analogous to that for L_1 seems tied to solving the functional equation (27) below, and has not been accomplished.
- (A) Define, for all $n \ge 1$ and $0 \le v \le 1$, $\phi^{(n+1)}(v) = \phi(\phi^{(n)}(v)) = \phi^{(n)}(\phi(v))$; then
 - (i) $0 \le \phi^{(n)}(v) \le 1 \text{ on } [0, 1],$
 - (ii) $\phi^{(n)}(v)$ is monotone increasing on [0, 1], and
 - (iii) $\phi^{(n)}(v)$ is continuous on [0, 1].
- (B) The number a in (0, 1) satisfying $a^2 3a + 1 = 0$ is such that, for all $n \geq 1$
 - (i) $0 < \phi^{(n)}(v) < v \text{ for } 0 < v < a$,
 - (ii) $v < \phi^{(n)}(v) < 1$ for a < v < 1, and
 - (iii) 0, a and 1 are the only fixed points of $\phi^{(n)}$ on [0, 1].
 - (C) The number m in (a, 1) satisfying $3m^2 6m + 2 = 0$ is such that
 - (i) $\phi''(v) > 0$ for 0 < v < m, (ii) $\phi''(v) < 0$ for m < v < 1,
 - (iii) $\phi''(m) = 0$,
 - (iv) $\phi(m) > m$.
- (D) Let $b \equiv \phi'(a) = 4a$, which is greater than one, and consider any interval $I:[y_0, y_1]$; there exists n_0 such that, for all $n > n_0$ and all y in I,

(10)
$$\phi^{(n+1)}(a+y/b^{n+1}) \ge \phi^{(n)}(a+y/b^n).$$

PROOF. Given I, consider n_0 large enough so that, for $n > n_0$ and y in I,

$$(11) -a \le y/b^n \le m - a.$$

Recall that, in view of (C) (i),

(12)
$$\phi(a+z) \ge a + bz \text{ for } -a \le z \le m - a.$$

Then (11) and (12) imply that

(13)
$$\phi(a + y/b^{n+1}) \ge a + y/b^{n}.$$

In addition, (11) implies that

$$(14) a + y/bn \varepsilon [0, 1]$$

and also that $a + y/b^{n+1}$ is in [0, 1], the latter implying in turn, in view of (A) (i), that

(15)
$$\phi(a + y/b^{n+1}) \varepsilon [0, 1],$$

so that (14) and (15), together with (A) (ii), imply (10).

(E) For any $y, -\infty < y < \infty$, $L(y) \equiv \lim_{n\to\infty} \phi^{(n)}(a + y/b^n)$ exists, and $0 \le L(y) \le 1$.

PROOF. In (D), take I:[y, y]. Then, according to (D), there exists n_0 such that, for $n > n_0$, $\phi^{(n+1)}(a + y/b^{n+1}) \ge \phi^{(n)}(a + y/b^n)$, i.e., $\phi^{(n)}(a + y/b^n)$ eventually is monotone non-decreasing. In addition, in view of (14) and (A) (i) $\phi^{(n)}(a + y/b^n)$ eventually is in [0, 1].

- (F) Define, on [0, 1], $\mu(v) \equiv a(v/a)^b$, $\lambda(v) \equiv 1 (1 a)((1 v)/(1 a))^l$ and the iterates $\mu^{(n)}$ and $\lambda^{(n)}$ of μ and λ on [0, 1] analogously to those of ϕ in (A) then
 - (i) $\lambda(v) \leq \phi(v) \leq \mu(v), 0 \leq v \leq 1$,
 - (ii) $\mu^{(n)}(v) = a(v/a)^{b^n}$ and $\overline{\lambda}^{(n)}(v) = 1 (1-a)((1-v)/(1-a))^{b^n}$
 - (iii) μ and λ are monotone increasing on [0, 1].
 - (G) There is a neighborhood J of 0 in which

$$\alpha(y) \equiv 1 - (1 - a) \exp\left(-y/(1 - a)\right) \le L(y) \le a \exp\left(y/a\right) \equiv \beta(y).$$

Proof. Define

(16)
$$Z_k = \{z: 0 \le \lambda^{(k)}(z+a); \mu^{(k)}(z+a) \le 1\}.$$

It is easily verified that $a + Z_1 \varepsilon [0, 1]$, so that, in view of (F) (i),

(17)
$$0 \le \lambda(z+a) \le \phi(z+a) \le \mu(z+a) \le 1 \quad \text{on} \quad Z_1.$$

In addition, it follows from (F) (ii) that

$$(18) Z_1 \supset Z_2 \supset \cdots.$$

Now define as well the numbers $y^- < 0$ and $y^+ > 0$ by

(19)
$$\alpha(y^{-}) = 0; \quad \beta(y^{+}) = 1.$$

Defining $J \equiv (y^-, y^+)$, we have, for any $y \in J$, in view of (F) (ii) and (19), that

(20)
$$\lim_{n\to\infty} \lambda^{(n)}(a+y/b^n) = \alpha(y) > \alpha(y^-) = 0,$$
$$\lim_{n\to\infty} \mu^{(n)}(a+y/b^n) = \beta(y) < \beta(y^+) = 1.$$

Hence there exists an N such that $y/b^n \varepsilon Z_n$ for all n > N, and, in view of (18),

$$(21) y/b^n \varepsilon Z_n, Z_{n-1}, \cdots, Z_1,$$

so that, in view of (17) and (21), for $y \in J$ and $n:1, 2, \cdots$,

(22)
$$0 \le \lambda(a + y/b^n) \le \phi(a + y/b^n) \le \mu(a + y/b^n) \le 1.$$

It follows that

(23)
$$\lambda^{(2)}(a+y/b^n) \equiv \lambda(\lambda(a+y/b^n)) \leq \lambda(\phi(a+y/b^n))$$
$$\leq \phi(\phi(a+y/b^n)) \equiv \phi^{(2)}(a+y/b^n),$$

where (22) and (F) (iii) validate the first inequality, and (22) and (F) (i) validate the second.

Similarly,

(24)
$$\phi^{(2)}(a+y/b^n) \leq \mu^{(2)}(a+y/b^n).$$

But, in view of (21), y/b^n in fact is in \mathbb{Z}_2 , so that (23) and (24) can be improved to

$$(25) 0 \le \lambda^{(2)}(a + y/b^n) \le \phi^{(2)}(a + y/b^n) \le \mu^{(2)}(a + y/b^n) \le 1.$$

The argument leading from (22) to (25), iterated n times, then yields

(26)
$$0 \le \lambda^{(n)}(a + y/b^n) \le \phi^{(n)}(a + y/b^n) \le \mu^{(n)}(a + y/b^n) \le 1,$$

whereupon going to the limit with n establishes what was to be shown.

(H) L(y) satisfies the functional equation

(27)
$$\phi^{(k)}(L(y/b^k)) = L(y) \text{ for } k:1, 2, \cdots.$$

PROOF.

$$L(y) = \lim_{n \to \infty} \phi^{(k+n)}(a + y/b^{k+n}) = \lim_{n \to \infty} \phi^{(k)}(\phi^{(n)}(a + (y/b^k)/b^n))$$
$$= \phi^{(k)}(\lim_{n \to \infty} \phi^{(n)}(a + (y/b^k)/b^n)) = \phi^{(k)}(L(y/b^k)).$$

Here the first and fourth equalities are justified by (E), and the second and third by (A).

(I) $\phi^{(n)}(a+y/b^n)$ is convex for all y such that $a+y/b^n$ is in [0, 1] and $\phi^{(n)}(a+y/b^n) \leq m$.

PROOF. In view of (C) (iv), $\phi(m) > m$, so that, by (A) (ii),

$$\phi^{-1}(m) < m.$$

Hence

$$[v \ \varepsilon \ [0, 1]; \phi^{(n)}(v) \le m] \Rightarrow [\phi^{(n-1)}(v) \le m],$$

since then, in view of (A) (ii) and (28), $\phi^{(n-1)}(v) \leq \phi^{-1}(m) < m$. Now suppose that $\phi^{(n-1)}(v)$ is convex for all v such that v is in [0, 1] and $\phi^{(n-1)}(v) \leq m$, and consider any v_1 , v_2 in [0, 1] such that $\phi^{(n)}(v_i) \leq m$. Then, in view of (29),

$$\phi^{(n-1)}(v_i) \leq m$$

and, in view of the convexity assumption concerning $\phi^{(n-1)}(v)$,

(30)
$$\phi^{(n-1)}((v_1+v_2)/2) \leq \frac{1}{2}(\phi^{(n-1)}(v_1)+\phi^{(n-1)}(v_2)),$$

which leads to

$$\phi^{(n)}((v_1 + v_2)/2) = \phi(\phi^{(n-1)}((v_1 + v_2)/2))
\leq \phi(\frac{1}{2}(\phi^{(n-1)}(v_1) + \phi^{(n-1)}(v_2))) \leq \frac{1}{2}(\phi^{(n)}(v_1) + \phi^{(n)}(v_2)),$$

where the first inequality follows from (30) and (A) (ii), and the second follows from (30) and (C) (i).

The induction is now complete since (C) (i) shows $\phi(v)$ to be convex on [0, m], and our original assertion follows since a linear transformation preserves convexity.

(J) There is a neighborhood of zero in which L is convex.

Proof. In view of (G), there is a neighborhood $[y, \bar{y}]$ of zero in which L(y) < m, and, in view of (D), there is an n_0 such that, for $n > n_0$, $\phi^{(n)}(a + y/b^n)$ is monotone non-decreasing in n for every y in J. Moreover, for all such y, $\phi^{(n)}(a + y/b^n)$ tends to L(y), in view of (E). Hence, for $n > n_0$ and y in $[y, \bar{y}]$,

$$\phi^{(n)}(a + y/b^n) \leq L(y) < m.$$

Hence, in view of (I) and (31), $\phi^{(n)}(a + y/b^n)$ is convex for $n > n_0$ and y in $[y, \bar{y}]$, so that L(y) is convex in $[y, \bar{y}]$, since the limit preserves convexity.

(K) There is a neighborhood of zero in which L is continuous.

That L is continuous in (y, \bar{y}) follows from (J).

(L) L is continuous everywhere.

PROOF. Given any y_0 , there is a k large enough so that y_0/b^k is in (y, \bar{y}) , hence, in view of (K), so that $L(y/b^k)$ is continuous at y_0 . But then, in view of (A) (iii) and (E), $\phi^{(k)}(L(y/b^k))$ is continuous at y_0 , and hence also L(y), in view of (H).

(M) L is monotone increasing.

PROOF. To begin with, L(y) is monotone non-decreasing since $\phi^{(n)}(a + y/b^n)$ is monotone increasing. It therefore remains, only, to show that there cannot be y_1 and y_2 with $y_1 \neq y_2$ and $L(y_1) = L(y_2)$. Suppose, then, that there is such a pair (y_1, y_2) ; then, in view of (G), y_1 and y_2 must be on the same side of a, say $a < y_1 < y_2$. (H) and (A) (ii) then imply that $L(y_1/b^n) = L(y_2/b^n)$ for any n, which, since L is monotone non-decreasing and in view of (J), implies in turn that L is constant in a right neighborhood of 0. But this is a contradiction of (G).

(N)
$$L(-\infty) = 1 - L(+\infty) = 0$$
.

PROOF. Consider any y < 0. Then, in view of (G) and (M), $0 \le L(y) < a$, and $\lim_{k \to \infty} \phi^{(k)}(L(y)) = 0$; hence, in view of (H), $\lim_{k \to \infty} L(b^k y) = 0$, which implies that $L(-\infty) = 0$ because of (M). That $L(+\infty) = 1$ is shown in similar fashion.

This completes the characterization of the limit law L. Analogously to the case of L_1 , the limit law L applies as well to a considerably larger set of payoff distributions F; indeed, as will be shown in a subsequent paper, to all distributions with non-zero derivative at the point x_a where $F(x_a) = a$.

A final remark concerns the convergence of the moments and absolute moments of $b^n(V_n-a)$ to those of L. Let both X and Y be R_1 , and consider any probability measure $\mathfrak F$, with cdf F, on the Borel sets b_x of X; let $\mathfrak L$ be Lebesgue measure on the Borel sets b_Y of Y. Then Fubini's theorem, applied to the function $|y|^{k-1}$ integrated with respect to $\mathfrak F \times \mathfrak L$ on the Borel set $[y \le 0; x \le y \le 0]$ of $\{b_x\} \times \{b_Y\}$, yields the identity

(32)
$$k \int_{-\infty}^{0} |y|^{k-1} F(y) dy = \int_{-\infty}^{0} |x|^{k} dF(x).$$

But, for $y \leq 0$ and $n:1, 2, \cdots$,

(33)
$$\phi^{(n)}(a + y/b^n) \le \mu^{(n)}(a + y/b^n) < a \exp(y/a),$$

where the first inequality follows from (26), and the second follows from the known monotonicity of the approach of $(1 + x/n)^n$ to e^x . It follows from (33) and (F) that $L(y) \leq a \exp(y/a)$ for $y \leq 0$, so that

$$\int_{-\infty}^{0} |y|^{k} dL(y) < +\infty.$$

It follows as well that

(35)
$$\lim_{n\to\infty} \int_{-\infty}^{0} |x|^{k} d\phi^{(n)}(a + x/b^{n}) = \lim_{n\to\infty} \left[k \int_{-\infty}^{0} |y|^{k-1} \phi^{(n)}(a + y/b^{n}) dy \right]$$
$$= k \int_{-\infty}^{0} |y|^{k-1} \left[\lim_{n\to\infty} \phi^{(n)}(a + y/b^{n}) \right] dy$$
$$= k \int_{-\infty}^{0} |y|^{k-1} L(y) dy$$
$$= \int_{-\infty}^{0} |x|^{k} dL(x),$$

where the first and fourth equalities follow from (32), and the second and third from (E), (32), (34) and Lebesgue's theorem.

Similarly,

(36)
$$\lim_{n\to\infty} \int_0^\infty x^k d\phi^{(n)}(a+x/b^n) = \int_0^\infty x^k dL(x) < +\infty.$$

Relations (35) and (36) establish the desired convergence. The latter may be of some interest from the following elementary game-theoretic point of view: Consider a composite game G consisting of the successive playing of N zero-sum games G_1 , G_2 , \cdots , G_N of the type under consideration here. Then, as often happens also in the case of less trivial composite games (see [6], Appendix 8), G is itself a zero-sum game for which the minimax strategies simply call for mini-

max strategies in the component games G_i . If now N is large and the payoffs in the component games can be thought of as randomly selected from a single distribution, the average per-component-game gain of Player I, in a single play of G, will be approximated by the expectation $E(V_n)$; $E(V_n)$ thus approximates the per-component-game payment of Player I to Player II that makes G fair. If μ is the first moment of L, the convergence of the first moment of $\Phi^{(n)}(a + y/b^n)$ to μ then allows us the further approximation $E(V_n) \doteq a + \mu/b^n$ for large n.

REFERENCES

- [1] BUEHLER, ROBERT J. (1965). The limit of the nth power of density. Ann. Math. Statist. 35 1878-1882.
- [2] CHERNOFF, HERMAN and TEICHER, HENRY. (1964). Limit distributions of the minimax of independent identically distributed random variables. Trans. Amer. Math. Soc. 116 474-491.
- [3] COVER, THOMAS M. The probability that a random game is unfair. To be published in the Ann. Math. Statist.
- [4] EFRON, BRADLEY. (1965). The convex hull of a random set of points. Biometrika 52 331-344.
- [5] KARLIN, SAMUEL. (1959). Mathematical Methods and Theory in Games, Programming and Economics. 1 Addison-Wesley, Reading, Mass.
- [6] LUCE, R. DUNCAN and RAIFFA, HOWARD. (1964). Games and Decisions. Wiley, New York.
- [7] SCHEFFÉ, HENRY. (1947). A useful convergence theorem for probability distributions. Ann. Math. Statist. 18 434-438.
- [8] Sobel, M. and Barndorff-Nielsen, O. (1966). On the distribution of the number of admissible points. *Theor. Prob. Appl.* 11 283-304.
- [9] THRALL, R. M. and FALK, J. E. (1965). Some results concerning the kernel of a game. SIAM Rev. 7 359-375.
- [10] Thomas, David R. (1965). Asymptotic value distributions for certain $2 \times n$ games and n-stage games of perfect information. Unpublished Ph.D. thesis, Iowa State University.
- [11] THOMAS, DAVID R. and DAVID, H. T. (1965). Asymptotic value distributions for certain 2 × n games and n-stage games of perfect information. (Invited paper presented at the Lincoln meetings of the I.M.S., April 1965.)