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1. Summary and introduction. This paper is concerned with the distribution
of the value of a game with random payoffs. Two types of games are considered:
matrix games with iid matrix elements, and games of perfect information with
iid terminal payoffs.

Let ||zij]],2:1,2, - -+ ,m;j:1,2, - - - , m, be the matrix of player I’s payoffs in a
zero-sum two-person game, and let v(||z;]||) be its (possibly mixed) value. Con-
sider the random value V.. .(f) = v(||Xs]|), where the X;; are mn iid random
variables, each distributed according to the density f. It is pointed out in Section 2
that the conditional distribution of V., , given that it is pure, is that of the nth
largest of m + n — 1 iid random variables, each distributed according to f. For f
uniform on (0, 1) (i.e.,f = %), a method is given for determining the conditional
distribution of V3,,(%), given that it is mixed. This leads to an elementary ex-
pression for the distribution of Vi2(u) and the asymptotic distribution of
Vg,,.(u).

Consider as well two players alternately choosing one of two alternative moves,
with n choices to be made in all by each. Corresponding to each of the 4" possible
sequences of moves, there are 4" payoffs #(41, %2, -+ - , %2) for player I, 4, = 1 or
2, where the odd and even locations indicate, respectively, the successive alterna-
tives chosen by players I and II. The (pure) value v({z(%1, - - , %2s)}) of such a
game is

max;, min;, max,, min;, - « - Max;,, _, min;, (1, **+ , t2n).

Now replace the 4" numbers (%, - - - , 7.) by independent uniformly distributed
random variables X (%1, -« - , %2,). The asymptotic behavior of the random value
Vao=0({X(41, -+ ,%n)}) isinvestigated in Section 3; it is shown that the asymp-
totic distribution L of V-, is everywhere continuous and monotone-increasing, and
satisfies a certain functional equation; it is also shown that the moments of the
normed V, converge to those of L. It is planned, in a subsequent paper, to explore
games of perfect information in greater depth.

After this paper was submitted, Thomas M. Cover drew our attention to [3]
and [9]. The derivation in [9] of the expected value of a 2 X n game, conditionally
on there being a 2 X 2 kernel, is based on essentially the geometric considerations
leading to our distribution (5); however, since the argument in [9] is not aimed
at obtaining distributions, and is thus rather different in detail, a sketch of our
derivation of (5) has not been deleted.
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In [3], the probability is computed, in the case of payoff distributions sym-
metric about zero, that an m X n game has positive value. Also, the work of
Efron [4] and that of Sobel [8] pertain to Section 2, and that of Buehler [1] to
Section 3. Finally, closely related to this paper, and indeed the source of our
original interest in this area, is the work of Chernoff and Teicher [2].

2. Matrix games. For an (m X n) matrix ||X,;|| of iid random variables X;; ,
each distributed according to the density f, let 7. denote the event that the cor--
responding zero-sum two-person game has a pure value. Then [5], p. 79,

(1) Pr[mm] = m!nl/(m +n — 1)
and [9], p. 366,
(2) Pr(Vaa(f) =t I Tmn] = Pr [X1(n7-.§-)n——l =t

where X{%,_1 = the nth largest of m 4+ n — 1 iid random variables, each dis-
tributed according to f.

We turn next to conditioning on the complement # s 0f 7ms , and specialize the
discussion initially to the case m = 2 and f = wu; accordingly, we abbreviate
Van(f) to V.. We lean now on the usual geometric construction ([6], p. 405)
based on the convex hull CH, of the n points p;:(X1;, Xz;) and the right-
angular wedge W, , with apex on the equiangular line, touching CH,, . Condition-
ally on #, , the following will obtain with probability one: (i) CH, n W, will
contain exactly one point @, , @, lying on the equiangular line; (ii) @, will lie as
well on precisely one of the edges, say ., of CH, , and E, will connect two ex-
treme points Py, and P, , of CH, , respectively above and below the equiangular
line; (iii) there will be a unique “separating” line L, for CH, and W, , namely the
line through P;,, and Ps,, ; L, will have negative slope, and its intercepts 4, and
B, with the horizontal and vertical axes will determine V, in accordance with

(3) Vn = Aan/(An + Bn).

Our approach has been to compute the conditional (on #e,) distribution of V.,
through (3) and the joint distribution of (A, , Bs). To this end, for any positive
a, b and A, let [, be the line through (a, 0) and (0, b), l» the line through
(a + aA/b,0) and (0,b + A), and let U and L be, respectively, the regions in the
-positive quadrant bounded by the equiangular line, the vertical axis, §; and [, ,.
and the region bounded by the equiangular line, the horizontal axis, l; and .
Also, for any two points p and ¢ in the positive quadrant, let 2(p, ¢) and »(p, q)
be the respective horizontal- and vertical-axis intercepts of the line I(p, g)
through p and q. Now define the event 71;(a, b, A):[pre U; pse L; b < v(pr, ps)
Sb+ A58 2 Wpr,ps) Sa+ad/b;p;,j#1,J,abovel(pr, ps)]. Then it is
clear that, excepting an event of zero probability, the event [#2, ;a8 £ 4, = a
+ aA/b;b < B, < b + A} is the sum of the (n)(n — 1) mutually exclusive events
71s(a, b, A). Moreover, symmetry implies that Pr [r;,(a, b, A)] does not depend on
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(I, J), so that
Prloa = 4, =a+ad/b;b = B, = b + Al
= n(n — 1) Pr [ru(a, b, A)]/Pr [#2.)]
and the conditional density g.(a, b) of (4., B,) is given by
(4) n(n — 1)/Pr [#s]-limao (b/aA’) Pr [r1a(a, b, A)].

The integration and limit for the second factor of (4), denoted, say, by h.(a, b),
are routine, and yield the following expressions (where it has been convenient to
set v = ab/(a + b)):

for0 < b < a = 1,h(a,b) = (v/2)(1 — ab/2)" %
(5) for 0 <b <1< a, ha,b) = (bv/2a®)(1 — v)(1 — b(1 — a))"%,
for 0<1<b=a,ab/(a+b) =1, hki(a,b)

=1 —v)%2(1 —a — b+ (a + b + a'b*))/2ab)" 2.

Since ka(a, b) clearly is symmetric, relations (5) determine A, as well for b > a.

To obtain the conditional (on #s,) density g.(v) of V., one must integrate
the conditional density g.(a, b) of (4., Bx), as given by (4) and (5), in accord-
ance with (3). This can be done in closed form when n = 2, and yields a density
symmetric about 3}, given on (0, %] by:

(6) g2(v) = 3(4° — v*/(1 —v) + 4’ In ((1 — v)/v)).

Finally, combining the two conditional distributions (2) and (6) with the help
of (1), one obtains for the distribution of V, a further density symmetric about
%, given on (0, ] by:

graaaw(v) = 40 — /(1 — v) + 4" In ((1 — v)/v).

Consider next the asymptotic distribution of Vs .(u) = V, , to be examined as
well through that of (A, , B,). In view of (4) and (5), the conditional (on 7s,)
density of (n*4,, n'B,) is given by

(7) 9n"(a,b) = gnisniz,(a, b)
= 3(1 — 1/n)(ab/(a + b))*(1 — ab/2n)""/Pr [7]

on the square (0, »¥] X (0, n'], and by similarly scaled modifications of (5) else-
where in the domain @ > 0, b > 0, ab/(a + b) < n'. Hence, in view of (7)
and (1), g.*(a, b) converges, at every point (@, b) of the positive quadrant, to the
function

(8) v(a,b) = (3)(ab/(a + b))* exp (—ab/2),

and v is a density, which can be seen by changing variables to (z = a/b, b)
and integrating first with respect to b. It then follows from Scheffé’s theorem
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[7] that integrals of g.* over Borel sets of form ab/(a + b) < v converge to the
corresponding integrals of v: i.e.,
Pr [}V, < v| 7o

(9) = Pr [(n'4,)(n'B,)/(n*4, + n'B.) = v| #:.)

= fab/(a—{—b)gv gn*( a, b) da db —n fab/(a-}-b)gv 'Y(a’ b) da db ELI( U).
Finally, since

Pr [0}V, < o] = Pr [ma] Pr W'V, < 0| m] + Pr [#a) Pr [0}V, < 0|#a),

the right-hand side of (9), in view of (1), is the asymptotic cdf of V..

Note that our results for the uniform distribution are easily extended to
distributions essentially equivalent to it. In other words, let f(¢) be a density
equal to zero to the left of some #o, and continuous to the right and discontinuous
to the left at t. Then n'f(t0)(Van(f) — t) tends in distribution to L .

3. Games of perfect information. Define, for 0 =< » = 1, ¢(») =
(1 — (1 — v)*)%. Then the cdf of the random value V, = o({X(d1, --* ,%2m)})
introduced in Section 1 is the nth iterate ™ (v) of ¢(v) on [0, 1]. This section is
devoted to showing that ¢™(a + v/(4a)™) converges to a non-degenerate con-
tinuous cdf L where a is the unique fixed point of ¢(v) in (0, 1); i.e., that
(4a)™(V, — a) tends in distribution to L. The proof of this, given below in a
series of steps, incorporates a fairly complete qualitative description of L. Ob-
taining an elementary representation for L analogous to that for L; seems tied to
solving the functional equation (27) below, and has not been accomplished.

(A) Define, foralin = 1and 0 < v < 1,6 (2) = ¢(¢™(v)) = ™ ($(2));
then

(i) 0 = ¢™(») =10n[0,1],
(ii) ¢™(v) is monotone increasing on [0, 1], and

(iii) ¢™ (v) s continuous on [0, 1].

(B) The number a in (0, 1) satisfying o’ — 3a + 1 = 0 s such that, for all
n1,

(i) 0 < ¢™(v) <vfor0<v<a,

(i) » < ¢™(v) < 1fora < v < 1,and

(iii) 0, @ and 1 are the only fixed points of o™ on [0, 1].

(C) The number m in (a, 1) satisfying 3m’ — 6m + 2 = 0 is such that
(i) ¢"(v) > 0for0 < v < m,

(ii) ¢"(v) < O0form < v < 1,

(iii) ¢”"(m) =0,

(iv) ¢(m) > m.

(D) Letb = ¢'(a) = 4a, which is greater than one, and consider any interval
I:[yo, y1]; there exists no such that, for all n > ng and all y in I,

(10) ¢(n+l)(a + y/bn+l) > ¢(n)(a+ y/bn).
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Proor. Given I, consider ng large enough so that, for n > ng and y in I,

(11) —a 2 y/b" = m — a.

Recall that, in view of (C) (i),

(12) ¢(a+2)=2a+bz for —a<z=m—a.
Then (11) and (12) imply that

(13) o(a + y/b"™") = a + y/b"

In addition, (11) implies that

(14) a4+ y/b"el0,1]

and also that @ 4+ y/b™"" is in [0, 1], the latter implying in turn, in view of (A)
(i), that

(15) ¢(a + y/b"™) e 0, 1],

so that (14) and (15), together with (A) (ii), imply (10).

(E) Forany y, — < y < ®, L(y) = limn.» 9™ (a + y/b") exists, and
0=L(y) =1

Proor. In (D), take I:[y, y]. Then, according to (D), there exists no such
that, for n > no, ¢™™(a + y/b"") = ¢™(a + y/b"), ie., $™(a + y/b")
eventually is monotone non-decreasing. In addition, in view of (14) and (A) (i).
™ (a + y/b") eventually is in [0, 1].

(F) Define, on [0, 1], u(v) = a(v/a)’,N(») =1 — (1 — a)((1 — v)/(1 = a))
and the iterates p™ and \™ of u and \ on [0, 1] analogously to those of ¢ in (A)
then

(1) Mv) = ¢(v) = p(v),0 =0 =1,

(ii) p™(v) = a(v/a)” and N”(v) = 1 — (1 — a)((1 — v)/(1 — a))"

(iii) m and N are monotone increasing on [0, 1].

(G) There is a netghborhood J of 0 in which

a(y) =1 — (1 —a) exp (—y/(1 — a)) = L(y) = aexp (y/a) = B(y).
Proor. Define

(16) Zy = {2:0 = \®( + a); u%(z + a) = 1}.

It is easily verified that @ + Z; ¢ [0, 1], so that, in view of (F) (i),

(17) 0=Nz4+a)=¢(e+a)2wz+a)=1 on Z.

In addition, it follows from (F) (ii) that

(18) ZiDZyD -+,

Now define as well the numbers ¥~ < 0 and y* > 0 by

(19) a(y”) =0; B =1
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Defining J = (y~, y*), we have, for any y £ J, in view of (F) (ii) and (19),
that
(20) limp.e N7 (a + y/b") = a(y) > a(y") =0,
limp.w 4™ (a + y/b") = B(y) < B(y") = 1.
Hence there exists an N such that y/b" £ Z, for alln > N, and, in view of (18),

(21) Y/ eZn,Zna, 0 21,

so that, in view of (17) and (21),fory ¢ J and n:1,2, -- -,

(22) 0 < Na + y/b") < ¢(a+ y/b") < p(a+y/b") 1.
It follows that

(23) A®(a + y/b") = MM (a + y/bY) = Né(a + y/b"))
< ¢(¢(a + y/b") = ¢%(a + y/b"),

where (22) and (F) (iii) validate the first inequality, and (22) and (F) (i)
validate the second.
Similarly,

(24) % (a + y/b") < u®(a + y/b").

But, in view of (21), y/b" in fact is in Zz , so that (23) and (24) can be improved
to

(25) 0 =A%(a+y/h") < ¢P(a+ y/b") u®@+y/b") S L.
The argument leading from (22) to (25), iterated n times, then yields
(26) 0 =A"(a+y/") = ¢™(a+y/b") =p™(a+yh") =1,

whereupon going to the limit with n establishes what was to be shown.
(H) L(y) satisfies the functional equation

(27) $U(L(y") = L(y) for k:il,2, .
Proor.
L(y) = limnew $*™(a + 9/b""") = limaw $¥(67(a + (9/8")/6"))
= ¢¥(limnew 6™ (a + (4/67)/87) = 6 (L(y/8)-

Here the first and fourth equalities are justified by (E), and the second and third
by (A).

(I) ¢™(a + y/b") is convex for all y such that a + y/b" 4s in [0, 1] and
¢™(a + y/b") = m.

Proor. In view of (C) (iv), ¢(m) > m, so that, by (A) (ii),

(28) ¢ (m) < m.



248 DAVID R. THOMAS AND H. T. DAVID

Hence
(29) el0, 1]; 6™ (v) < ml= [ P(v) < m),

since then, in view of (A) (ii) and (28), o™ (v) < ¢(m) < m. Now suppose
that ¢ () is convex for all v such that v is in [0,1] and ¢ (v) < m, and con-
sider any v; , vz in [0, 1] such that ™ (v;) < m. Then, in view of (29),

" () = m
and, in view of the convexity assumption concerning ¢ (v),

(30) " ((0n 4+ 1)/2) £ 36"V (n) + 6" (1)),
which leads to

™ ((nn 4 12)/2) = (6" (01 + v2)/2))
< 03" P (n) + 6" V(1)) £ 2™ (n) + 6™ (1)),

where the first inequality follows from (30) and (A) (ii), and the second follows
from (30) and (C) (i).

The induction is now complete since (C) (i) shows ¢(v) to be convex on
[0, m], and our original assertion follows since a linear transformation preserves
convexity.

(J) There 1s a neighborhood of zero in which L s conver.

Proor. In view of (G), there is a neighborhood [y, 7] of zero in which L(y) < m,
and, in view of (D), there is an no such that, forn > no, $™(a + y/b") is mono-
tone non-decreasing in n for every y in J. Moreover, for all such y, ™ (a + y/b")
tends to L(y), in view of (E). Hence, for n > n and y in [y, 7],

(31) ¢™(a +y/b") = L(y) < m.

Hence, in view of (I) and (31), ¢™(a + y/b") is convex for n > no and y in
ly, 9], so that L(y) is convex in [y, 7], since the limit preserves convexity.

(K) There is a neighborhood of zero in which L is continuous.

That L is continuous in (y, ) follows from (J).

(L) L s continuous everywhere.

Proor. Given any %o , there is a k large enough so that yo/b* is in (¥, 79), hence,
in view of (K), so that L(y/b*) is continuous at yo . But then, in view of (A) (iii)
and (E), ¢® (L(y/b*)) is continuous at o , and hence also L(y), in view of (H).

(M) L s monotone increasing.

Proor. To begin with, L(y) is monotone non-decreasing since ¢™ (a + y/b")
is monotone increasing. It therefore remains, only, to show that there cannot be
y1 and y. with y1 & y2 and L(y:) = L(ys). Suppose, then, that there is such a pair
(%1, y2); then, in view of (G), 1 and y. must be on the same side of a, say
a <y <y2.(H) and (A) (ii) then imply that L(y:/b") = L(y./b") for any n,
which, since L is monotone non-decreasing and in view of (J), implies in turn
that L is constant in a right neighborhood of 0. But this is a contradiction of (G).



GAME VALUE DISTRIBUTIONS 249

(N) L(—») =1 — L(+») = 0.

Proor. Consider any y < 0. Then, in view of (G) and (M), 0 £ L(y) < a,
and limg,. ¢®(L(y)) = 0; hence, in view of (H), limy., L(b*y) = 0, which
implies that L( — « ) = 0 because of (M). That L(+4 ) = 1 is shown in similar
fashion.

This completes the characterization of the limit law L. Analogously to the case
of Ly, the limit law L applies as well to a considerably larger set of payoff dis-
tributions F; indeed, as will be shown in a subsequent, paper, to all distributions
with non-zero derivative at the point z, where F(z,) = a.

A final remark concerns the convergence of the moments and absolute moments
of b*(V, — a) to those of L. Let both X and ¥ be R, , and consider any probability
measure F, with cdf ', on the Borel sets bx of X ; let £ be Lebesgue measure on the
Borel sets by of Y. Then Fubini’s theorem, applied to the function Iyl"_1 integrated
with respect to & X &£ on the Borel set [y < 0;z < y < 0] of {bx} X {by}, yields
the identity

(32) k[ alyl" F(y) dy = [2 |z* dF(z).
But, fory £ 0and n:1, 2, -- -,
(33) o™ (a + y/b") < u™(a + y/b") < aexp (y/a),

where the first inequality follows from (26), and the second follows from the
known monotonicity of the approach of (1 + z/2)" to ¢*. It follows from (33)
and (F) that L(y) =< aexp (y/a) for y < 0, so that

(34) J eyl dL(y) < +co.
It follows as well that
limpe [2 |2]* dp™ (@ + 2/b") = limasw [k [20 [y]*™ 6™ (a + y/b") dy]
(35) =k Y [y[*" (limaw ™ (a + y/b™)] dy
=k [2 ly/*" L(y) dy
= J2a|aff dL(2),

where the first and fourth equalities follow from (32), and the second and third
from (E), (32), (34) and Lebesgue’s theorem.
Similarly,

(36) limp.o [§ 2*d¢™(a + z/b") = [T 2¥dL(z) < + .

Relations (35) and (36) establish the desired convergence. The latter may be of
some interest from the following elementary game-theoretic point of view: Con-
sider a composite game G consisting of the successive playing of N zero-sum
games Gi, G, -+, Gy of the type under consideration here. Then, as often
happens also in the case of less trivial composite games (see [6], Appendix 8),
G is itself a zero-sum'game for which the minimax strategies simply call for mini-
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max strategies in the component games @; . If now N is large and the payoffs in the
component games can be thought of as randomly selected from a single dis-
tribution, the average per-component-game gain of Player I, in a single play of G,
will be approximated by the expectation E(V,); E(V,) thus approximates the
per-component-game payment of Player I to Player II that makes @ fair. If u is
the first moment of L, the convergence of the first moment of ¢™(a + y/b") to
u then allows us the further approximation E(V,) = a + u/b" for large n.
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