SOME DISTRIBUTION PROBLEMS CONNECTED WITH THE CHARACTERISTIC ROOTS OF $S_1S_2^{-1}$

BY C. G. KHATRI

Gujarat University, Ahmedabad

1. Introduction and summary. Let $S_i: p \times p$ (i = 1, 2) be independently distributed as Wishart (n_i, p, Σ_i) . Let the characteristic (ch) roots of $S_1S_2^{-1}$ and $\Sigma_1\Sigma_2^{-1}$ be denoted by f_i $(i = 1, 2, \dots, p)$ and λ_i $(i = 1, 2, \dots, p)$ respectively such that $0 < f_1 < f_2 < \dots < f_p < \infty$ and $0 < \lambda_1 \le \lambda_2 \le \dots \le \lambda_p < \infty$. The distribution of f_1, f_2, \dots, f_p as stated by James [5] is not convenient for further development and is slowly convergent for higher values of f_i 's. The distribution of (f_1, \dots, f_p) mentioned by James [5] can be written as

(1)
$$c |\mathbf{\Lambda}|^{-\frac{1}{2}n_1} |\mathbf{F}|^{\frac{1}{2}(n_1-p-1)} \alpha_p(\mathbf{F}) \int_{o(p)} |\mathbf{I}_p + \mathbf{\Lambda}^{-1}\mathbf{H}\mathbf{F}\mathbf{H}'|^{-\frac{1}{2}(n_1+n_2)} d\mathbf{H}$$

where

(2)
$$c = \pi^{\frac{1}{2}p^2} \Gamma_p(\frac{1}{2}n_1 + \frac{1}{2}n_2) \{ \Gamma_p(\frac{1}{2}p) \Gamma_p(\frac{1}{2}n_1) \Gamma_p(\frac{1}{2}n_2) \}^{-1},$$

$$\Gamma_p(t) = \pi^{\frac{1}{2}p(p-1)} \prod_{j=1}^p \Gamma(t - \frac{1}{2}j + \frac{1}{2}),$$

(3)
$$\alpha_p(\mathbf{F}) = \prod_{i=1}^{p-1} \prod_{j=i+1}^p (f_j - f_i), \quad \mathbf{F} = \text{diag}(f_1, f_2, \dots, f_p),$$

$$\Lambda = \operatorname{diag}(\lambda_1, \lambda_2, \cdots, \lambda_p)$$

and the integral is over an orthogonal group O(p) with $\int_{O(p)} d\mathbf{H} = 1$. For testing the null hypothesis $H_0(\lambda \mathbf{\Lambda} = \mathbf{I}_p), \lambda > 0$ being given, we have two statistics given by

(4) (i)
$$l = |\lambda \mathbf{F}|^{n_1}/|\mathbf{I}_p + \lambda F|^{n_1+n_2}$$
 and (ii) λf_p or $\lambda f_p/(1 + \lambda f_p)$.

l is considered by Anderson [1] and λf_p is obtained by Roy [7]. (1) is rewritten in such a way that the joint density function of $(\lambda f_1, \lambda f_2, \dots, \lambda f_p)$ has noncentral parameters $\mathbf{I}_p - (\lambda \mathbf{\Lambda})^{-1}$ and it is given by

(5)
$$c |\lambda \mathbf{\Lambda}|^{-\frac{1}{2}n_1} |\lambda \mathbf{F}|^{\frac{1}{2}(n_1-p-1)} \alpha_p(\lambda \mathbf{F}) |\mathbf{I}_p + \lambda \mathbf{F}|^{-\frac{1}{2}(n_1+n_2)} {}_{1}F_0^{(p)}(\frac{1}{2}n_1 + \frac{1}{2}n_2; \mathbf{I}_p - (\lambda \mathbf{\Lambda})^{-1}, \lambda \mathbf{F}(\mathbf{I}_p + \lambda \mathbf{F})^{-1}).$$

Hence, similar to testing of means, we propose the statistics $T=\operatorname{tr}(\lambda \mathbf{F})$ and $V=\operatorname{tr}(\lambda \mathbf{F})(\mathbf{I}_p+\lambda \mathbf{F})^{-1}$ for testing the hypothesis H_0 and obtain their distribution of T only while the moment generating function of V is given. Moreover, if in the null hypothesis $H_0'(\lambda \Lambda = \mathbf{I}_p), \lambda > 0$ is unknown, then the test procedure will depend on the ratios of roots, and hence, we consider the joint distribution of $(x_1, x_2, \cdots, x_{p-1})$, where $x_i = f_i/f_p$ for $i = 1, 2, \cdots, p-1$, and f_p . Under null hypothesis H_0' , we obtain the density functions of x_1 (or x_{p-1}) and of $(y_2, y_3, \cdots, y_{p-1})$ for $y_i = (f_i - f_1)/(f_p - f_1), i = 2, 3, \cdots, p-1$.

944

Received 5 December 1966; revised 8 February 1967.

2. Some results on integration. We shall use the notations of Khatri [6], James [5] and Constantine [2] [3]. Wherever the order of the identity matrix I is not clear, we shall write I_p , p being the order of I.

LEMMA 1.

$$\int_{O(p)} |\mathbf{I} + \mathbf{\Lambda}^{-1} \mathbf{H} \mathbf{F} \mathbf{H}'|^{-t} d\mathbf{H} = |\mathbf{I} + \lambda \mathbf{F}|^{-1} {}_{1} F_{0}^{(p)}(t; \mathbf{I} - (\lambda \mathbf{\Lambda})^{-1}, \lambda \mathbf{F} (\mathbf{I} + \lambda \mathbf{F})^{-1})$$

where λ is any non-negative real number such that the hypergeometric series is convergent for all F.

Proof is immediate by using the following results:

$$|\mathbf{I} + \mathbf{A}\mathbf{H}\mathbf{F}\mathbf{H}'| = |\mathbf{I} + \lambda \mathbf{F}| |\mathbf{I} - (\mathbf{I} - \lambda^{-1}\mathbf{A})\mathbf{H}(\lambda \mathbf{F})(\mathbf{I} + \lambda \mathbf{F})^{-1}\mathbf{H}'|,$$

and

$$\int_{O(p)} |\mathbf{I} - \mathbf{PHQH'}|^{-t} d\mathbf{H} = {}_{1}F_{0}^{(p)}(t; \mathbf{P}, \mathbf{Q})$$
 (see James [5]).

LEMMA 2.

$$\int_{O(p)} |\mathbf{I} + \mathbf{\Lambda}^{-1} \mathbf{H} \mathbf{F} \mathbf{H}'|^{-t} d\mathbf{H}$$

=
$$|\mathbf{I} + \mathbf{\Lambda}^{-1}g(\mathbf{F})|^{-t} {}_{1}F_{0}^{(p)}(t; (\mathbf{\Lambda} + g(\mathbf{F})\mathbf{I})^{-1}, g(\mathbf{F})\mathbf{I} - \mathbf{F})$$

where $g(\mathbf{F})$ is any function of the elements of \mathbf{F} such that $g(\mathbf{F})$ is non-negative.

Proof is similar to that of Lemma 1. We shall take in our development $q(\mathbf{F}) = \operatorname{tr}(\mathbf{F})/p$ or f_p , the maximum ch root of \mathbf{F} .

LEMMA 3. Let $\mathbf{R} = \operatorname{diag}(r_1, r_2, \dots, r_m)$ such that $0 < r_1 < r_2 < \dots r_m < 1$.

$$\int |\mathbf{R}|^{t-\frac{1}{2}m-\frac{1}{2}} |\mathbf{I} - \mathbf{R}|^{u-\frac{1}{2}m-\frac{1}{2}} \alpha_m(\mathbf{R}) C_{\kappa}(\mathbf{R}) d\mathbf{R}$$

$$= \Gamma_m(t, \kappa) \Gamma_m(u) \Gamma_m(\frac{1}{2}m) C_{\kappa}(\mathbf{I}) / \Gamma_m(t+u, \kappa) \pi^{\frac{1}{2}m^2}.$$

This follows from the Theorem 3 of the Constantine [2].

3. Non-central distributions.

3.1. Density function of (f_1, \dots, f_p) . Using Lemma 1 in (1), we get the density function of (f_1, f_2, \dots, f_p) as

$$(5') \quad c \, |\mathbf{\Lambda}|^{-\frac{1}{2}n_1} \, |\mathbf{F}|^{\frac{1}{2}(n_1-p-1)} \, \alpha_p(\mathbf{F}) |\mathbf{I} \, + \, \lambda \mathbf{F}|^{-\frac{1}{2}(n_1+n_2)}$$

$$\cdot {}_{1}F_{0}^{(p)}({\scriptstyle \frac{1}{2}}n_{1}+{\scriptstyle \frac{1}{2}}n_{2}\;;\lambda \mathbf{I}-\Lambda^{-1},\,\mathbf{F}(\mathbf{I}+\lambda \mathbf{F})^{-1})$$

where λ is any non-negative real number. Note that $\lambda = 0$ gives the result as mentioned by James [5]. It is easy to see that the joint density function of $w_i = \lambda f_i/(1 + \lambda f_i)$, $i = 1, 2, \dots, p$ is given by

(6)
$$c |\lambda \mathbf{\Lambda}|^{-\frac{1}{2}n_1} |\mathbf{W}|^{\frac{1}{2}(n_1-p-1)} |\mathbf{I} - \mathbf{W}|^{\frac{1}{2}(n_2-p-1)} \alpha_p(\mathbf{W})$$

$$\cdot {}_{1}F_{0}^{(p)}({\scriptstyle \frac{1}{2}}n_{1}+{\scriptstyle \frac{1}{2}}n_{2}\;;{f I}-{(\lambda\Lambda)}^{-1},{f W})$$

where $\mathbf{W} = \operatorname{diag}(w_1, w_2, \cdots, w_p)$.

3.2. Distribution of $T = \lambda$ tr **F**. Let f_i 's be the ch roots of $S_1S_2^{-1}$. Then, (1) can be obtained from the joint density function of S_1 and S_2 , which is given by

(7) $\{|\mathbf{A}|^{\frac{1}{2}n_1} \Gamma_p(\frac{1}{2}n_1)\Gamma_p(\frac{1}{2}n_2)\}^{-1} |\mathbf{S}_1|^{\frac{1}{2}(n_1-p-1)} |\mathbf{S}_2|^{\frac{1}{2}(n_2-p-1)} \exp[-\operatorname{tr}(\mathbf{A}^{-1}\mathbf{S}_1+\mathbf{S}_2)],$ and $\operatorname{tr} \mathbf{F} = \operatorname{tr} \mathbf{S}_1\mathbf{S}_2^{-1}$. The Laplace transform of $T = \lambda \operatorname{tr} \mathbf{S}_1\mathbf{S}_2^{-1}$ is $E \exp(-t\lambda \operatorname{tr} \mathbf{S}_1\mathbf{S}_2^{-1})$. Multiplying (7) by $\exp(-t\lambda \operatorname{tr} \mathbf{S}_1\mathbf{S}_2^{-1})$ and integrating over $\mathbf{S}_1 > 0$, we get the Laplace transform of \mathbf{T} as

(8)
$$\{ |\mathbf{\Lambda}|^{\frac{1}{2}n_1} \Gamma_n(\frac{1}{2}n_2) t^{\frac{1}{2}pn_1} \}^{-1}$$

$$|\cdot|_{\mathbf{S}_2>0} |\mathbf{S}_2|^{\frac{1}{2}(n_1+n_2-p-1)} |\mathbf{I} + (t\lambda \mathbf{\Lambda})^{-1} \mathbf{S}_2|^{-\frac{1}{2}n_1} \exp(-\operatorname{tr} \mathbf{S}_2) d\mathbf{S}_2.$$

Writing

$$|\mathbf{I} + (t\lambda \mathbf{\Lambda})^{-1}\mathbf{S}_2|^{-\frac{1}{2}n_1} = \sum_{k=0}^{\infty} \sum_{\kappa} (\frac{1}{2}n_1)_{\kappa} t^{-k} C_{\kappa} ((\lambda \mathbf{\Lambda})^{-1}\mathbf{S}_2)/k!$$

in (8), we note that (8) can be integrated term-by-term with respect to t for R(t) sufficiently large (see [3], p. 222). Hence, taking the inverse Laplace transform of (8), we get finally the density function of T as

(9)
$$\Gamma_{p}(\frac{1}{2}n_{1} + \frac{1}{2}n_{2})\{|\lambda\mathbf{\Lambda}|^{\frac{1}{2}n_{1}} \Gamma_{p}(\frac{1}{2}n_{2})\}^{-1}T^{\frac{1}{2}pn_{1}-1}$$

 $\cdot \sum_{k=0}^{\infty} (-T)^{k}\{k! \Gamma(\frac{1}{2}pn_{1} + k)\}^{-1} \sum_{k} (\frac{1}{2}n_{1} + \frac{1}{2}n_{2})_{k}(\frac{1}{2}n_{1})_{k}C_{k}(\lambda\mathbf{\Lambda})^{-1}.$

Note that (9) is convergent for $|T/\lambda \lambda_1| < 1$, λ_1 being the minimum ch root of Λ . Now, if the jth moment of T exists, then it is given by

(10)
$$E(T^{j}) = \lambda^{j} \sum_{J} EC_{J}(S_{1}S_{2}^{-1})$$

= $\sum_{J} (\frac{1}{2}n_{1})_{J}C_{J}(\lambda \Lambda)(-1)^{j}/(\frac{1}{2}p - \frac{1}{2}n_{2} - \frac{1}{2})_{J}$.

Now, let us consider an alternative form for the distribution of T. Using the Lemma 2 in (1) by taking $g(\mathbf{F}) = \operatorname{tr}(\mathbf{F})/q = T/\lambda q$ for $0 < q < \infty$ and integrating \mathbf{F} over the surface $T = \sum_{i=1}^{p} \lambda f_i$ with the condition $0 < f_1 < \cdots < f_p$ and making the necessary changes, we get the density function of T as

(11)
$$c |\lambda \mathbf{\Lambda}|^{-\frac{1}{2}n_1} (T/q)^{\frac{1}{2}pn_1-1} |\mathbf{I} + (\lambda \mathbf{\Lambda})^{-1}T/q|^{-\frac{1}{2}(n_1+n_2)} \sum_{k=0}^{\infty} \sum_{\kappa} (\frac{1}{2}n_1 + \frac{1}{2}n_2)_{\kappa} \cdot \{k! C_{\kappa}(\mathbf{I}_p)\}^{-1}C_{\kappa}(T(q\lambda \mathbf{\Lambda} + T\mathbf{I})^{-1})A_{\kappa}^{(q)}(n_1, p)$$

where

(12)
$$A_{\kappa}^{(q)}(n_1, p) = \int_{\mathfrak{D}} |\mathbf{Y}|^{\frac{1}{2}(n_1-p-1)} \alpha_p(\mathbf{Y}) C_{\kappa}(\mathbf{I} - \mathbf{Y}) dy_1 \cdots dy_{p-1},$$

with
$$\mathbf{Y} = \text{diag}(y_1, y_2, \dots, y_p), y_p = q - y_1 - y_2 \dots - y_{p-1}$$
 and

(13)
$$\mathfrak{D}: \{0 \leq y_1 \leq q/p, y_1 \leq y_2 \leq (q - y_1)/(p - 1), \cdots, y_{p-2} \\ \leq y_{p-1} \leq (q - y_1 - \cdots - y_{p-2})/2\}.$$

Note that (11) is the type of the form which is conjectured by Constantine [3] under the null hypothesis when q=p. When q=p=2, $A_{\kappa}^{(2)}(n_1,2)$ can be obtained by using the zonal polynomials given by James [5] and since $2-y_1-y_2=0$, it is easy to see that $A_{\kappa}^{(2)}(n_1,2)$ vanishes when k is odd. In the null hypothesis H_0 , we obtain Hotelling's result [4].

3.3. Moment generating function of $V = \text{tr } \mathbf{W}$. We shall obtain the moment generating function of V, which is given by

$$\begin{split} g_{1}(t) &= E(e^{t^{V}}) = \{\Gamma_{p}(\frac{1}{2}n_{1})\Gamma_{p}(\frac{1}{2}n_{2})|\lambda\mathbf{\Lambda}|^{\frac{1}{2}n_{1}}\}^{-1} \\ & \cdot \int_{\mathbf{S}>0} \int_{\mathbf{W}>0}^{\mathbf{I}} |\mathbf{W}|^{\frac{1}{2}(n_{1}-p-1)}|\mathbf{I} - \mathbf{W}|^{\frac{1}{2}(n_{2}-p-1)}|\mathbf{S}|^{\frac{1}{2}(n_{1}+n_{2}-p-1)} \\ & \cdot \exp\left[-\operatorname{tr}\mathbf{S} + \operatorname{tr}\left\{\mathbf{I}t + \mathbf{S}(\mathbf{I} - (\lambda\mathbf{\Lambda})^{-1})\right\}\mathbf{W}\right] d\mathbf{W} d\mathbf{S} \\ &= \{|\lambda\mathbf{\Lambda}|^{\frac{1}{2}n_{1}} \Gamma_{p}(\frac{1}{2}n_{1} + \frac{1}{2}n_{2})\}^{-1} \int_{\mathbf{S}>0} |\mathbf{S}|^{\frac{1}{2}(n_{1}+n_{2}-p-1)} e^{-\operatorname{tr}\mathbf{S}} \\ & \cdot {}_{1}F_{1}(\frac{1}{2}n_{1} ; \frac{1}{2}n_{1} + \frac{1}{2}n_{2} ; \mathbf{I}t + \mathbf{S}(\mathbf{I} - (\lambda\mathbf{\Lambda})^{-1})) d\mathbf{S}. \end{split}$$

Now, using

$$C_{\kappa}(\mathbf{I} + \mathbf{A})/C_{\kappa}(\mathbf{I}) = \sum_{n=0}^{k} \sum_{\eta} a_{\kappa,\eta} C_{\eta}(\mathbf{A})/C_{\eta}(\mathbf{I})$$
 (see Constantine [3])

in the expression, we get the moment generating function of V as

(14)
$$g_1(t) = |\lambda \mathbf{\Lambda}|^{-\frac{1}{2}n_1} \sum_{k=0}^{\infty} \sum_{\kappa} \sum_{n=0}^{k} \sum_{\eta} \left\{ k! \left(\frac{1}{2}n_1 + \frac{1}{2}n_2 \right)_{\kappa} \right\}^{-1} \cdot \left(\frac{1}{2}n_1 \right)_{\kappa} a_{\kappa,\eta} t^{k-\eta} C_{\eta} (\mathbf{I} - (\lambda \mathbf{\Lambda})^{-1}) C_{\kappa} (\mathbf{I}) / C_{\eta} (\mathbf{I}).$$

3.4. Distribution of f_p . We use Lemma 2 by taking $g(F)=f_p$. Changing $f_i=x_if_p$, $i=1,\,2,\,\cdots$, p-1, in (1), we get the joint density function of f_p , x_1 , \cdots , x_{p-1} as

(15)
$$C |\mathbf{\Lambda}|^{-\frac{1}{2}n_1} f_p^{\frac{1}{2}pn_1-1} |\mathbf{I} + f_p \mathbf{\Lambda}^{-1}|^{-\frac{1}{2}(n_1+n_2)} |\mathbf{X}|^{\frac{1}{2}(n_1-p-1)} |\mathbf{I}_{p-1} - \mathbf{X}| \alpha_{p-1}(\mathbf{X})$$

 $\cdot {}_1F_0^{(p)} (\frac{1}{2}n_1 + \frac{1}{2}n_2; f_p(\mathbf{\Lambda} + f_p\mathbf{I})^{-1}, \mathbf{I}_{p-1} - \mathbf{X})$

for $0 < f_p < \infty$, $0 < x_1 < \cdots < x_{p-1} < 1$ and $\mathbf{X} = \text{diag } (x_1, x_2, \cdots, x_{p-1})$. Using Lemma 3, we can integrate \mathbf{X} and get the density function of f_p as

(16)
$$c_2 |\mathbf{\Lambda}|^{-\frac{1}{2}n_1} f_p^{\frac{1}{2}pn_1-1} |\mathbf{I} + f_p \mathbf{\Lambda}^{-1}|^{-\frac{1}{2}(n_1+n_2)}$$

 $\cdot {}_3F_2(\frac{1}{2}n_1 + \frac{1}{2}n_2, \frac{1}{2}p + 1, \frac{1}{2}p - \frac{1}{2}; \frac{1}{2}p, \frac{1}{2}(n_1 + p + 1); f_p(\mathbf{\Lambda} + f_p \mathbf{I})^{-1})$

where

$$c_{2} = \Gamma(\frac{1}{2})\Gamma_{p}(\frac{1}{2}n_{1} + \frac{1}{2}n_{2})\Gamma_{p-1}(\frac{1}{2}p + 1) + \frac{1}{2}\Gamma(\frac{1}{2}n_{1})\Gamma(\frac{1}{2}n_{1})\Gamma_{n}(\frac{1}{2}n_{2})\Gamma_{n-1}(\frac{1}{2}n_{1} + \frac{1}{2}p + \frac{1}{2})\}^{-1}.$$

If p=1, we get the usual distribution, because the hypergeometric function ${}_3F_2=1$ and $\Gamma_0(x)=1$. We may note the difference in (10) and (16). Note that when $\mathbf{\Lambda}=\mathbf{I}_p$, ${}_3F_2$ can be written as ${}_2F_1(\frac{1}{2}n_1+\frac{1}{2}n_2,\frac{1}{2}p+1;\frac{1}{2}(n_1+p+1);$ $f_p(1+f_p)^{-1}\mathbf{I}_{p-1})$.

4. Certain null distributions of statistics for testing H_0' . In this section, let $\lambda \Lambda = \mathbf{I}$ in (15) and integrating f_p , we get the joint density function of $(x_1, x_2, \dots, x_{p-1})$ as

$$c |\mathbf{X}|^{\frac{1}{2}(n_{1}-p-1)} |\mathbf{I}_{p-1} - \mathbf{X}| \alpha_{p-1}(\mathbf{X})$$

$$\cdot \sum_{k=0}^{\infty} \Gamma(\frac{1}{2}pn_{1} + k) \Gamma(\frac{1}{2}pn_{2}) \{k! \Gamma(\frac{1}{2}pn_{1} + \frac{1}{2}pn_{2} + k)\}^{-1}$$

$$\cdot \sum_{k} (\frac{1}{2}n_{1} + \frac{1}{2}n_{2})_{k} C_{k}(\mathbf{I}_{p-1} - \mathbf{X}) \quad \text{for} \quad 0 < x_{1} < x_{2} < \dots < x_{p-1} < 1.$$

First of all we may note that if $\mathbf{Z} = \operatorname{diag}(z_1, \dots, z_m)$, $\mathbf{Z}_1 = \operatorname{diag}(z_2, \dots, z_m)$, n > 0 and $k = (k_1, \dots, k_m)$, $k_1 \geq k_2 \geq \dots \geq k_m \geq 0$ and $k_1 + k_2 + \dots + k_m = k$, then

(18)
$$\sum_{\kappa} (n)_{\kappa} C_{\kappa}(\mathbf{Z}) = \sum_{j=0}^{k} k! \binom{n+k-j-1}{k-j} z_{1}^{k-j} \sum_{J} (n)_{J} C_{J}(\mathbf{Z}_{1})/j!.$$

(18) is easy to prove and hence its proof is not given.

Let us use the transformation $y_i = (x_i - x_1)/(1 - x_1)$ for $i = 2, 3, \dots, p-1$ in (17). With the help of (20), the joint density function of x_1 and (y_2, \dots, y_{p-1}) can be written as

$$cx_{1}^{\frac{1}{2}(n_{1}-p-1)}(1-x_{1})^{\frac{1}{2}p(p+1)-2}|\mathbf{I}_{p-2}-(1-x_{1})(\mathbf{I}_{p-2}-\mathbf{Y})|^{\frac{1}{2}(n_{1}-p-1)}$$

$$(19) \qquad \qquad \cdot |\mathbf{Y}||\mathbf{I}_{p-2}-\mathbf{Y}|\alpha_{p-2}(\mathbf{Y})\sum_{k=0}^{\infty}\sum_{j=0}^{k}\Gamma(\frac{1}{2}pn_{1}+k)\Gamma(\frac{1}{2}pn_{2})$$

$$\cdot \{j!(k-j)!\Gamma(\frac{1}{2}pn_{1}+\frac{1}{2}pn_{2}+k)\}^{-\Gamma}(\frac{1}{2}n_{1}+\frac{1}{2}n_{2})_{k-j}(1-x_{1})^{k}$$

$$\cdot \sum_{J}(\frac{1}{2}n_{1}+\frac{1}{2}n_{2})_{J}C_{J}(\mathbf{I}_{p-2}-\mathbf{Y}) \quad \text{for} \quad 0 < x_{1} < 1$$
and $0 < y_{2} < \cdots < y_{p-1} < 1$

with $Y = \text{diag}(y_2, y_3, \dots, y_{p-1})$. Integrating x_1 , we get the joint density function of $y_i = (f_i - f_1)/(f_p - f_1)$ for $i = 2, 3, \dots, p-1$ as

$$c|\mathbf{Y}||\mathbf{I}_{p-2} - \mathbf{Y}|\alpha_{p-2}(\mathbf{Y}) \sum_{n=0}^{\infty} \sum_{\eta} \sum_{k=0}^{\infty} \sum_{j=0}^{k} \sum_{J} \Gamma(\frac{1}{2}(n_{1} - p + 1))$$

$$\cdot \Gamma(\frac{1}{2}p^{2} + \frac{1}{2}p + n + k - 1)\Gamma(\frac{1}{2}pn_{1} + k)\Gamma(\frac{1}{2}pn_{2})$$

$$\cdot [j!\Gamma(\frac{1}{2}n_{1} + \frac{1}{2}p^{2} - \frac{1}{2} + n + k)\Gamma(\frac{1}{2}pn_{1} + \frac{1}{2}pn_{2} + k)(k - j)!]^{-1}$$

$$\cdot (\frac{1}{2}n_{1} + \frac{1}{2}n_{2})_{J} C_{\eta}(\mathbf{I}_{p-2} - \mathbf{Y})C_{J}(\mathbf{I}_{p-2} - \mathbf{Y})$$
for $0 < y_{2} < y_{3} < \cdots < y_{p-1} < 1$.

If we integrate Y from (19), we get the density function of x_1 , but it is much complicated and hence we do not like to give it here. Similarly, we can obtain the density function of x_{p-1} by making the transformation $x_i/x_{p-1} = z_i$ for $i = 1, 2, \dots, p-2$ in (17) and then integrating z_i for $i = 1, 2, \dots, p-2$.

REFERENCES

- Anderson, T. W. (1958). An Introduction to Multivariate Statistical Analysis. Wiley, New York.
- [2] Constantine, A. G. (1963). Some non-central distribution problems in multivariate analysis. Ann. Math. Statist. 34 1270-1285.
- [3] CONSTANTINE, A. G. (1966). The distribution of Hotelling's generalized T₀². Ann. Math. Statist. 37 215-225.
- [4] Hotelling, H. (1951). A generalized T-test and measure of multivariate dispersion. Proc. Second Berkeley Symp. Math. Statist. Prob. 23-42. Univ. of California Press.
- [5] James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. Ann. Math. Statist. 35 475-501.
- [6] Khatri, C. G. (1966). On certain distribution problems based on positive definite quadratic functions in normal vectors. Ann. Math. Statist. 37 468-479.
- [7] Roy, S. N. (1958). Some aspects on multivariate analysis. Wiley, New York.