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1. Introduction and assumptions. Let X;, X2, - -+, Xy be N independently
identically distributed random variables with the cumulative distribution func-
tion F(z — 0), where 6 may for example be the median of the distribution.

A problem which has been considered in the literature is the testing of the
hypothesis that the distribution is symmetric about a specified value against the
alternative that it is shifted to the right (or to the left) or against two-sided
alternatives. A different problem which has also received attention is to test
whether the distribution is symmetric about a specified value against the alterna-
tive that either the symmetry is lost or the location parameter is changed.

Our problem differs from the above problems in that we do not make any as-
sumption about the knowledge of the location of the distribution. More specifi-
cally the problem considered here is that of testing the hypothesis that the dis-
tribution is symmetric about 6 against the alternative that it is more spread out
to the right of 6 than it is to the left. Alternatively we may say that the alterna-
tive of interest is that the distribution of the positive deviations from 6 is
stochastically larger than the distribution of the absolute values of the negative
deviations from 4.

This type of problem may arise in the following ways: On a symmetric dis-
tribution may be superimposed another distribution (say, of errors) which
destroys the symmetry of the original distribution. We want to test whether we
have a sample from the original symmetric distribution or from the resultant
skewed distribution. The problem of testing for symmetry may also arise without
a specific model for the alternative.

In Section 2 we review a classical test proposed for this problem under the
assumption of normality. It is shown that the test is also applicable without this
assumption provided the underlying distribution has finite moments up to order
six. In Section 3 we give some definitions and state the known results which we
are going to use later. In Section 4 we consider a test statistic for testing the
symmetry of F when 6, the location parameter, is known. In Section 5 we con-
sider the asymptotic relative efficiency (ARE) of the two test statistics, the
classical test and the proposed test, under different classes of alternatives. Section
6 gives the modified test statistic for the case of unknown location parameter.
The test in the case of unknown location is not asymptotically distribution-free.
In Section 8 we provide a consistent estimator of the asymptotic null variance
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and then obtain an asymptotically distribution-free test by Studentization. In
Section 7 we compare the two tests proposed in Sections 4 and 6 to get an idea as
to the loss incurred for not knowing 8. We also consider the loss in the case of the
classical test when 6 is not known..

For later reference we classify the assumptions.

AssumprioN 1. Xy, X,, --+, Xy are independent, each has the same dis-
tribution, and

(a) X has the distribution function F(x — 8) over R' which is absolutely con-
tinuous relative to Lebesgue measure, with density function f(x — ), where 8 is
the population median;

(b) the distribution F has a derivative F' = f which is bounded;

(¢) in a neighbourhood of the origin, f(z) is continuous and f(0) > 0.

2. A classical test of symmetry. Any general test of fit may be employed to
test for normality or to test whether a sample is from any specified symmetric
distribution. For the normal case it is a common practice to use as a test statistic
the observed moment ratio

(21) b = mz/’)nz%

where my, is the kth sample moment about the sample mean. This is known as the
“test of skewness.”

Many of the simpler methods of statistical analysis have been developed only
for variables which are normally distributed. But in many cases it is important
to obtain evidence on this point, that is to say, to apply some test for normality
to the sample. This is done by means of the sample coefficient of skewness and
kurtosis. Here we shall consider only the problem of skewness. There have long
been available tables giving the standard error of b; . The work of Craig and
Fisher made possible a considerable advance toward the solution of the problem.
They gave the sampling distributions of b, and b, (coefficient of kurtosis) if the
population is normal. E. 8. Pearson gave the first four moment coefficients of the
sampling distribution of b, and b, in samples of N from a normal population as
far as the terms in N—°.

The test statistic by could also be used for any other underlying distribution F,
provided F has finite moments up to order six. The theorem below gives the
asymptotic distribution of the test statistic by .

TarorEM 2.1. Let X1, Xs, -+, Xx be independently identically distributed
according to the non-degenerate cdf F(x — 0). Let my, and wi denote, respectively, the
sample and the population central moments of F and let by be defined by (2.1). Let
F have finite population moments up to the sixth order. Then

limyae (N} by — n)/7) = 2(0,1)

where vi = us/pa?, and E(bi) = »n, V(bi) = 7°/N to order (1) /N. Explicitly,
V(b)) = V(ms)H® + 2 cov (mg, me)H1Hy + V(me)Hy, to order (1/N), where

H1 = (6b1/6m3)m3=p3,m2=p2 5 H2 = (5b1/6m2)"‘2="2’m3=”3 >
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V(ms) = [us — 6pema + 9’ — pi’l/N, to order (1/N);
V(me) = [w — 4pps — w’ + 4pep’l/N, to order (1/N);
cov (mg, mg) = [us — 2mps — 4{_1.3;1.2 + 6umue’l/N,  to order (1/N).
Proor. A proof of this type of theorem is given in Cramér [1]. We. observe
that no assumption as to the form of the distribution has been made except for
the existence of the first six population moments.

We next obtain the asymptotic expectation and the asymptotic variance of
by under the hypothesis of symmetry
(2.2) Eo(b) =0;  o’(b1) = [ws — Gyoms + 9:'l/ N,
where u are the central moments of the null distribution.

We shall reject the hypothesis that F is symmetric in favor of the alterna,tlve
that F is skewed to the right if b, is large.

The b;-test is not asymptotically distribution-free but it can be made distribu-
tion-free by estimating Noo'(b:1) by the corresponding function of thé sample
moments and then performing an asymptotically normal test after Studentiza-

tion.
The above form of the bi-test is appropriate if 6 is unknown. We modlfy b
in case 6 is known and compute the following statistic

(2.3) b = [22 (X: — 6)°/N)/[22 (Xi — 6)"/N]!

where 0 is the known population median.

The following theorem gives the asymptotic distribution of the test statistic
by in the case of known 6.

THEOREM 2.2. Let X1, X2, -+, Xu be tndependently identically distributed
according to the non-degenerate cdf F(x — 0). Let by be defined by (2.3) where 0 s
the population median. Let F have finite population moments up to the sixth order.
Then

limyow £(N*(b1o — v10)/70) = 9(0, 1)

where mo = E(X — 0)*/[B(X — 0)*) and
V(bo) = /N = V(2 (X: — 0)°/N)H3
+ V(22 (Xi — 0)’/N)H3,
+2 cov (2 (Xi — 0)'/N, 2. (X — 0)’/N)HuwHu,

to order (1/N)»
where

VI (Xi — 6)/N] = {E(X — 0)° — [B(X — 0)"}/N,
VIX (Xi — 6)/N] = {E(X — 0)* — [B(X — 6)F}/N,
cov [Z (X: — 0)°/N, X (Xi — 6)*/N]
= [B(X —0)° — E(X — 0)’E(X — 0)*]/N,
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Hyo and Hy are the derivatives with respect to a and b of H(a, b) = a/b* evaluated
ata = E(X — 0)’and b = E(X — 9)~.

Proor. The proof follows by the Taylor’s expansion of the statistic and an
application of the central limit theorem. )

We next obtain the expectation and asymptotic null variance of the statistic.
The expectation is given by

(24) E(bo) = E(X — 0)*/[B(X — 6)"}
= [us + (s — 0) + (1 — )Vl + (o — 0)7

where the p are the central moments.
The null variance of by is given by

(2.5) a0'(b) = we/Nys',
where the u are the central moments of the null distribution. This test statistic

is also not asymptotically distribution-free. We can make it asymptotically
distribution-free by Studentization as in the case of the b;-statistic.

3. Definitions and known results.
DeriniTioN 3.1. The distribution F(x) will be said to be symmetric about
the origin if
F(z) + F(—z) =1, for all z.

DEeriniTioN 3.2. Let the distribution F(z) have median at the origin. Then
the distribution of the positive observations is stochastically larger than the
distribution of the absolute values of the negative observations if

P(X=2z2/X>0) 2 P(—X =z/X<0), for z > 0,

with strict inequality for some z.
With the above definitions we are interested in testing the following hypothe-

S1S:
(30) H:F(z) + F(—=z) =1, all z,
H:P(X £2/X >0) £ P(—X £ 2/X <0), for = >0,

with strict inequality for some x.

DEFINITION 3.3. Let ¢(u1 , u2) be real-valued and symmetric in its arguments.

Then the statistic
Ur = ()7 Zici 6(Xi, X;)
is called a U-statistic.

If E¢’(X:, X;) < o, then Hoeffding [6] showed that N Uy — EUy) is
asymptotically normally distributed with mean zero and asymptotic variance
45 , where, {1 = E¢’(X1) — E'¢(X1, X») and ¢u(21) = Ed(a1, Xo).

DEeFINITION 3.4. (Sukhatme). Let § = (X1, X;, -+, Xx) be an estimate
of 6, the unknown location parameter in F(z — 6). Then the U-statistic with
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the observations centered at their location parameter and the modified U-sta-
tistic are, respectively,

Uy = ()7 Xucid(X: — 0, X; — 0),
Oy = ()7 Xicid(Xi — 0, X; — 0).
Finally we define a quantity Ly required in the study of the asymptotic behavior

of the modified U-statistic.
DeriniTION 3.5 (Sukhatme).

Ly = ()72 ilo(X: — 6, X; — 6) — A(6 — 0)]

where A(t — 0) = E¢(X; — t, X» — t), the expectation being taken with respect
to all the X’s.

Tueorem 3.1. (Sukhatme). Let X1, X, - -+, Xy be N independent identically
distributed random variables with cdf F(x — 6). Let ¢(u1, uz) be a real-valued
symmetric function of its arguments such that if

(3.1) W(a:l y L2, t) = ¢(x1 — §, Xy — t) - A(t - 0),
the following conditions are satisfied:
(A)

[W(zy,22,8)| = My
B\ WX, X, t+h) — W(Xi, Xs, 1) < Mh,

where My , M5 are fixed constants.
(B) There exists a sequence {t;} such that for each set of x

SUPox<t; <k ‘W(xl » L2y tJ') - W($1 » L2 O)l
= SUPo<t<k lW(xl y X2, t) - W(xl » L2, O)I'

Further, let 8 be an estimate of 8 such that given ¢ > 0, there exists a number b such
that for N sufficiently large

(3:2) P{l6 — 0] = b/N*} <

Then
limyow S(NLy) = limyae SN (Uy — EUy))

= (0, ¢*)

where ® = 4 Var [ ¢(Xy1 — 6,z — 0) dF(z — 6).

We write limy. £(Xy) = £(X) if Fx(y) — F(y) at every continuity point
y of F when Fy and F' are the ¢df’s of X and X, respectively.

Proor. The proof of this theorem is given by Sukhatme [14].

TueoreEM 3.2 (Sukhatme). Suppose in addition to the conditions of Theorem
3.1 that

(i) N*6 — 0) has a limiting distribution,
o (i) A(t) = E[¢(Xy — t, Xo — t)/60 = 0] has a derivative continuous in the
neighbourhood of the origin.
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Then we have the following conclusions:
(a) If A’(0) = O where A'(t) = dA(t)/dt, then

limysw SN Oy — EUx)) = limyow &N [Uy — EUx])
= 91(0, ¢°).

(b) If A'(0) # 0, § is asymptotically normally distributed and the joint dis-
tribution of & and Uy is asymptotically normal, then N*(Oy — EUy) is asymp-
totically normally distributed.

Proor. The proof of this theorem is given by Sukhatme [14].

TaeoreEM 3.3 (Sukhatme). Let Xy, X, , - -+, Xy be a sample of N independent
observations drawn from a population with cdf F(x — 6) and density function
f(z — 0). Let N = 2n + 1 so that the sample median 8 is uniquely determined. We
shall assume that in some meighbourhood of the origin, f(x) is conttnuous and
f(0) # 0. Let ¢(uy, uz) be a real-valued, bounded and symmetric function of its
arguments. Let

Uv = ()™ 2ici 6(X: — 0, X; — 0).
Also let
m' = [Lopy(z — 0) — m]dF (21 — 6),
m” = [7 [¢(z1 — 6) — m]dF(z, — 6),

where ¢1(x1 — 0) = E¢(xy — 0, X2 — ), expectations being taken with respect to
X, only, and m = E¢(Xy — 0) = EUy. Then the joint distribution of
N i( Uy — EUy) and I\ﬁ(é — 0) s asymptotically normal with zero means and
asymptotic variances o’ and 1/4f%(0), the asymptotic expression for the correla-
tion coefficient being (m” — m')/a.

Proor. The proof of this theorem is given by Sukhatme [13].

TuEOREM 3.4. Let N (Uy — EUy) and N*(§ — 0) be jointly asymptotically
distributed as bivariate normal distribution with asymptotic means zero, asymptotic
variances o> and 1/4f*(0) respectively, and the asymptotic expression for the cor-
relation coefficient being (m” — m')/o. Further, le¢ N[Oy — A(6 — 0)] —
N Uy — EUy) — 0 in probability and A’(h) — A’(0) in probability, where
A’(0) 5 0. Then N*[Oy — A(6 — 0)] and N*(§ — 6)A’(h) has a joint asymptotic
normal distribution with means zero, asymptotic variances o and [A’(0)]*/4f*(0) and
the asymptotic expression for the correlation coefficient being (m” — m’)/q.

Proor. The proof of this theorem follows exactly in the same way as the
proof of the corresponding univariate case [1].

4. The test statistic J. We shall now develop an alternative test to the bio-test
which in some cases has a higher efficiency than the bi-test. We shall consider
the test of the hypothesis defined in (3.0) in the case of known 6.

+ Let us define the following test statistic

(4.1) J=Jdy=@)"2icio(X: — 0, X; — )
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where
(X, —0,X;—0) =1 if either X; <0< X; and 0 — X; < X; — 6
orX; <0< X; and 0 — X; < X; — 6
=0 otherwise.

The lemma below gives an equivalent definition of Jy which is useful in com

puting the moments of Jy .
LemMA 4.1. The statistic Jx defined in (4.1) is the same as the following:

(4.2) Iv = (N7 2ici Uixerxpen — Lixiso.x;50]
where .
Ixivxppon =1 if Xi 4+ X; > 20
=0 otherwise
and
Ixsoxppn =1 fX;>0 and X; >0
=0 otherwise.

Proor. The equivalence of (4.1) and (4.2) follows from the relation
(X1 — 0, Xy — 0) = I'xjyx>m — Iix>0.x,50 -

The test statistic Jy is based on the number of positive deviations from the
median that exceed the absolute values of the negative deviations from the
median. So if H’ is true then we would expect a high value of Jy . We shall reject
H in favor of H' if Jy is too large.

We observe that J is a U-statistic. Hence by a result of Hoeffding [6]
N¥J — EJ) is asymptotically normally distributed with mean zero and
asymptotic variance o,° which is given below in Lemma 4.2.

Lemma 4.2.

(4.3) EWJ) = [2,[1 — F(—=2)]dF(z) — %
and
(44) o = 45 + [Z[l — F(—2)dF(z) — [¢[1 — F(—=)] dF(z)

— (J2a [l — F(—2)]1dF(2))’ + 3[2.[1 — F(—2)]dF(z)],
while under the hypothesis H

(4.5) Ey(J) = %;
and
(4.6) o = 1.

~ Proor. Straightforward.
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Consistency of the J-test. Since o;° — 0 as N — « we have that
J— [Zo[l — F(—=)]dF(z) — } in probability.

Then by the application of a theorem due to Lehmann ([4], page 267), we find
that the test based on J is consistent for the set of alternatives H' given in (3.0).

5. ARE (b, J). In this section we shall make some efficiency comparisons
of the two tests by and J under two different classes of alternatives. We shall
use the concept of the Pitman efficiency in making these comparisons. We con-
sider a sequence of alternatives that gets closer and closer to the distribution
under the null hypothesis as N increases. Let N* and N be the sample sizes
needed by the J and b tests respectively of same size «, to obtain the same power
8 against the same sequence of alternatives. N* is a function of N. Suppose the
ratio N*/N tends to a limit independent of the level of significance and the power
as N — o. Then that limit is called the asymptotic relative efficiency of the
test based on by relative to the test based on J. It will be denoted by ARE (by , J).

We observe that the conditions of Pitman’s theorem [7] are satisfied in the
following cases. The asymptotic normality of a U-statistic when the distribu-
tion depends on N was shown by Lehmann [9]. When the median is known the
distribution is centered at the median before making efficiency computations.

Cask 1. Consider the following classes of distribution functions given by the
density function

(5.1) f(z) = g(@) g + g(x/m)7 " Tsa ,
where g is symmetrical about zero. Then we consider the following hypotheses:
(56.2) Hy:r =1 against Hy:7 > 1.

Efficacy of the bi-test. The expectation of by under the alternative is given by
(24) and its asymptotic null variance by (2.5). The efficacy of the bio-test for
the type of alternatives (5.2) is given by
(5.3) 1N ([Z. ol g(2) d)/ [ a'g(a) d.

Efficacy of the J-test. The expectation under the alternative of the J-test is
given by (4.3) and its asymptotic null variance by (4.6). The efficacy of the
J-test for the type of alternatives (5.2) is given by

(5.4) 48N[[§ zg’(z) dal’.
Thus the asymptotic relative efficiency is
(55) ARE (bu, J) = &(JZ |’ g(2) do)*/ [Za 2’9 (@) de- (7 29*(2) dz)”.

Next we shall consider some examples of g(z) and compute ARE given by
(5:5).
ExampLE 5.1. Normal distribution.

g(z) = (2r)Fexp (—2%/2),
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efficacy of b = 6N/5m,
efficacy of J = 3N/r°,
ARE (by ,.J) = 2r/5.

In this case the LMP test for the hypotheses (5.2) is given by the rejection
region T = .7 X? — m > ¢, where Xy, Xz, -+, X are the m positive ob-
servations in a sample of size N. The efficacy of T is N.

ExampLE 5.2. Laplace distribution.

g(z) = % exp (—el)
efficacy of bi = 9N/ 80; |
efﬁcacy of J = 3N/16,
ARE(bm,J) = 5.

In the case the LMP test for the hypotheses (5 2) is given by the reJectlon
region T = > rX; —m > ¢, where Xy, X5, -+, X, are the m positive ob-
servations in a sample of size N. The efficacy of T is N .

ExampLE 5.3. Triangular distribution.

g@) =1 -, el s
efficacy of by = 28N/ 100, V
efficacy of J = N/3,
ARE (by, J) = 21/25.
ExamrLe 5.4. Rectangular distribution.
g2) =3, =1
efficacy of bm 63N /64,
efficacy of " J = 48N /64
ARE (by, J) = 21/16.

Table 1 summarizes the above results for the case of testing the hypotheses
given in (5.2).

Casg I1. Next we consider the following class of distribution functions given
by .

(5.6) Flz — 8) = (1 — p)G(x) + pH(a),

where @ is symmetric about zero and H is any other continuous distribution func-
tion. Consider the test of hypotheses:

(5.7) : Hs:p =0 against Hy:p > 0.
Efficacy of the byo-test.

Il
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TABLE 1
Distribution ARE (b J,)
Normal Lo 2r/5
Laplace 3/5
Triangular 21/25
Rectangular 21/16

dE(b1)/dp |0 = {m' — 3wll — 2H(0)]/29(0)}/ue’
o0’ (bw) = ye/Nus'.
Thus the efficacy of byo-test is given by
(5.8) Niws' — 3u(1 — 2H(0))/29(0)"/ws ,

where u’ are moments about the origin of the distribution function H, where H
is not symmetric about zero. u are the central moments of G.
Efficacy of the J-test.

dE(J)/dp =0 = 2 [ GdH — [2H(0) — 1] J ¢*(z) dz/g(0) — 1
and the efficacy of the J-test is given by
(5.9) 12N{2 [ GdH + [2H(0) — 1] [ ¢*(z) dz/g(0) — 1}°.
Thus
(510) ARE (bu,J) = {m — 3wl — 2H(0)]/29(0)}"
- [12u{2 | GdH + [2H(0) — 1] | (=) dz/g(0) — 1}

Let H be the rectangular distribution on —b to a. In that case (5.10)reduces to
(5.11) ARE (by,J) = {(a' = b*)/4(a +b) — 3us(a — b)/[29(0) - (a + )]}’

- [12u6{2 25 G(2) dz/(a + b) + (b — a) [ ¢’(z) dz/[g(0)-(a + b)] — 1}

We shall compute ARE in some special cases. Let H(z) be the rectangular dis-
tribution on 0 to a. In that case (5.11) reduces to

(5.12) ARE (bu,J) = {a'/4 — 3us/29(0)}?
- [12u{2 [§ Q(2) da/a — [ g*(z) dw/g(0) — 13717

ExampLE 5.5. Let @ be the standard normal distribution and H the rectangu-
lar distribution on 0 to a. Then

ARE (by, J) = (d*/4 — 3(2r)¥/2)*
- [180{2G(a) — 1.71 4+ .80(exp (—d’/2) — 1)/a}*™*

which —0 as a* — 6(2r)}, which —« as ¢ — «. The ARE <1 for small
values of a.
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ExampLE 5.6. Let G be the Laplace distribution and H the rectangular dis-
tribution on 0 to a. Then

ARE (bw, J)
= (a*/4 — $)1(6!)12{2G(a) + (1 + a) exp (—a)/a — 1/a — 3}
which -0 asa®* — 6, which — asa— «.The ARE <1 for small values of a.
ExAMPLE 5.7. Let G be the triangular distribution and H the rectangular dis-
tribution on 0 to a. Then
ARE (b, J) = 28(d*/4 — 1)’[12{2G(a) — 5/3 + 24°/3 — a}’I"
, which -0 as a— 1, itisnot defined at a = 1.
The ARE < 1 for @ > 1 but close to 1, while ARE: > 1 for large a.

6. The test statistic J. In this section we return to our original problem, that
of testing H against H' when 6 is unknown. For that purpose we modify the test
statistic J, defined in (4.1), in the following way:

(6.1) J=Ty=0)"2iso(X: — 4, X; — b).

In the above definition 4 is the sample median. We shall take N = 2n + 1 so
that there exists a unique sample median.

The statistic J is based on the number of positive deviations from the sample
median that exceed the negative of the negative deviations from the sample
median. We shall reject H if J is large.

Next we shall obtain the asymptotic distribution of the test statistic Jy .

The asymptotic distribution of J. We verify below the conditions of Theorem
3.1. We assume 6 = 0 and let N = 2n 4 1 so that there exists a unique sample
median 8.

(i) It is clear from the definition that W is bounded.

(ii) Here we verify the condition that there exists a constant M, such that

E|\W(X1,Xs,t) — W(X1,Xs,0)| < M.
In this case
E\W(X1,Xs,t) — W(X1, Xs,0)]
=E|(Xys —t, Xo — t) — ¢(X1, X,) + A(0) — A(D)]
S E¢p(X1i—t,Xo —t) — o(X1, Xo)| + | A(0) — A(B)].
Now '
A(t) — A(0) = [, [F(—2z) — F(2t — z)|dF ()
+[1 —F(0) +1— F()IF(¢) — F(0)],

* 50 that |A(¢) — A(0)| £ 2at + 2at = 4at provided the distribution function F
has a derivative F' = f bounded by a. Next we have
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|6(X: —t; Xo — 1) — ¢(X1, Xo)|
=1 if either ¢(X; — ¢ Xo —¢) =1 and ¢(X;,X:) =0
or ¢(X:i—t,Xo—t) =0 and ¢(X1,Xe) =1
=0  otherwise.
Hence', ' .
Elo(Xi —t, X, — t) — &(X1, Xo)|
=2P{X1<t< X, and X; + X, > 2, [X; <0< X5, X1 + Xz > 0]}
4+ 2P{[Xy < 0 < X;and X; + X, > 0], [X1 < ¢ < Xy and X; 4+ X > 2]}
= 2P(A) + 2P(B), say, )
where [ 1° 'mea.ns the event complementary to the event [ ]. Now
<PO0<X1<tX,>0]=PlX,>0P0 < X, <1
S F(t) — F(0) = at
and .
PB)=P{Xi <0< X5, X1 + X2 >0, [X1 <t < Xy, X1 + Xo > 20
SPX <0< X, X1 < Xy < 2 — Xi]
= [%u[F(2t — z) — F(—2)]dF(z) < 2at [Y0dF(z) = at

provided the distribution function F has a derivative bounded by a.
So 2P(A) + 2P(B) £ 4at,and E\W(Xy, X,,t) — W(X1, X»,0)| £ 8at.
Thus condition (A) of Theorem 3.1 is satisfied. Observing that ¢ is an indi-
cator function, it is easily seen that condition (B) is also satisfied.
Thus by the application of Theorem 3.1 we get the following theorem.
TureoreMm 6.1. Let X;, X, ---, Xy be N independent identically distributed
random variables with absolutely continuous cdf F(x — 6). Assume that F has a
bounded derivative. Define J and J as in (4.1) and (6.1), respectively. Let
N = 2n + 1, so that 8 is the unique sample median. Define

Ly = ()7 2ici[6(X: — b, X; — 6) — A(b — 0)]
where A(t — 0) = E¢(Xy — t, Xy — t). Then
limyow S(N*Ly) = 900, 61)

where a1® is the asymptotic variance of N*(J — EJ) and is given by Lemma 4.2.
Next we verify the conditions of Theorem 3.2:

A@) = [2.11 — F(2t — 2)]dF(z) — [1 — F()]%;
4'(0) = f(0) — 2 [f( —x) dF(z) = f(0) — 2 [ () dz
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when H is true.

In the following theorem we obtain the asymptotic distribution of Jy .

TaEOREM 6.2. Let Xy, Xo, -+, Xy be N independently identically distributed
random variables with c¢df F(x — 0). Let A(t) = El¢(X1 — t, Xo — ¢)/6 = 0]
have a derivative continuous in the neighbourhood of the origin. Let the distribution
Sfunction have a continuous density function near the origin with f(0) 5 0. Let also
f be bounded. Then N*(J — EJ) is asymptotically normally distributed with mean
zero and asymplotic variance os'. o3 is given in terms of the asymptotic variances and

covariances of N*(J — A(6 — 0)) and N*(6 — 0)A"(h), by
o' = o' + [A/(0)/4°(0) + (m" — m")4"(0)/f(0).
Proor. We have
N(Jy — BEJy) = N}y — A(6 — 0)] + NY[A(6 — 6) — EJy).

But A(h — 6) = A(0) + (6 — 0)A’(h), where b = A(6 — 6), |A| < 1. Thus
N{(Jy — EJ) = N'Jy — A6 — 0)] + N*(§ — 0)A’(h). By continuity
A’(k) — A’(0) in probability. Also N*[Jy — A(6 — 0)] — N*(Jy — EJy) — 0
in probability as a consequence of Theorem 6.1. It follows by the application
of Theorems 3.3 and 3.4 that the joint distribution of N*Jy — 4(§ — 6)]
and N*(6 — 6)A’(h) is asymptotically normal with asymptotic means zero and
asymptotic variances o;° and [4'(0)]*/4f*(0) respectively, the asymptotic ex-
pression for the correlation coefficient being (m” — m')/oy. It then follows
that N’(j ~» — EJy) has a limiting normal distribution with mean zero and
asymptotic variance o;° given by,

ot = o + [A(OP/4£(0) + (m” — m')4'(0)/1(0).

This completes the proof of Theorem 6.2.

We observe that in deriving the asymptotic distribution of J we have made no
assumption of symmetry of F(z). Under the null hypothesis, N*(Jy — EoJ) is
asymptotically 91(0, o3), where EoJ = 1 and o5 = % + [1— 2 ffz (z) dz/
f(0)12/4. So we shall reject H if J is too large. Here the asymptotic null variance
o2 depends on the form of the distribution funection F, if 4’(0) # 0. We perform
an asymptotically normal test if F is known. If, however, F is not known, then
we shall use consistent estimate of o3 and after proper Studentization again per-
form an asymptotically normal test. This we shall discuss in detail in Section 8.

7. ARE (J, J). We shall compare the test based on the statistic Jy for test-
ing the hypothesis of symmetry when 6 is known with the corresponding mod-
ified test based on Jy when 6 is unknown in order to know how much is lost for
not knowing the value of 6. For that we obtain the efficacies of the two tests
under the same sequence of alternatives tending to the hypothesis and then
compare these efficacies with the help of the ARE. Since both J and J have
. the same asymptotic mean under the alternative the ARE (J, J) will be the
same for all types of alternatives and '
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(7.1) ARE (J,J) = o3/o%
1+ 3[1 — 2 [ f(z) de/f(0)].

This ARE =1 as is expected. The loss in efficiency for not knowing 6 depends on
the magnitude of the second term in ARE.
In the next lemma we give some idea as to the range of values of this ARE in

the case of distributions with f(z) = f(0) for all .
Lemma 7.1.
(1) For distributions with f(z) =< f(0) for all z
1 £ ARE (J,J) £ 4.

(2) ARE (J, Z ) = 4 if and only if the distribution is rectangular.

(3) ARE (J,J) = 14f and only if [ f(z) dz = f(0)/2.

Proor. (1) For distributions with f(z) = £(0) for all z, [ f*(z) dx/f(0) < 1,
equality holds if and only if the distribution is rectangular.

ARE (J,7) = 14 3[1 — 2 [ f*(z) dz/f(0)]"
4 4 12[{] f(z) dz/f(0)}" — [ f'(x) dz/f(0)]
4.
We have already observed at the end of (7.1) that ARE =1.

(2) and (3) follow easily.

That the lower bound is attained by ARE is seen from the examples of Cauchy
and Laplace distributions below. There are other distributions also which attain
the value 1. For example consider

flz) =1 if —

J— 3 1
—% lfz

Il

IIA

IIA
8

IIA
LS

A e
5
A
e

=0 otherwise

and for this distribution ARE (J,J) = 1.

Table 2 gives the ARE (J,J) for a number of distributions.

ARE (b, J). The condition of the continuity of the density at the median
under the alternative of Theorem 6.2 fails to be satisfied for the class of dis-
tributions considered under Case I of Section 5. So we make the efficiency com-

TABLE 2
Probability density function ARE(, J)
Normal exp(—x?/2)/(2mr)} 1.50
Rectangular l,for— 34 =z=3% 4.00
Cauchy 1/7 1 + x2) 1.00
2] Triangular 1~ |z, for |z] =1 1.33
1.00

Laplace exp(—|z|)/2
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parisons of the two tests by and J for the following class of distribution functions
only, where the conditions of Theorem 6.2 are satisfied.

(7.2) F(z —0) = (1 — p)G(2) + pH(z)

where @ is.a symmetric distribution function, symmetric about zero and H any
other absolutely continuous distribution function. Consider the test of hypothesis

(7.3) Hy:p=0 against Hy:p >0,

when 6 is unknown.
Efficacy of the bi-test.

(dus/dp)pmo = ps' — Suap’

where y;; is the moment about the origin of the distribution H and u are central
moments of @. Efficacy of the b;-test is then given by

(7.4) efficacy of the by-test = N(us' — Swam’)’/(vs — 6 yoa + 9°).
Efficacy of the J-test.
(dB,(J)/dp)pmo = [2 [ GIH — [ ¢'(=) dz/g(0) — 1],
and hence
(7.5) efficacy of the J-test = 12N[2 f GdH — [ ¢*(z) dz/g(0) — 1]
{1+ 811 — 2 [ g(a) da/g(O)FI

Thus
(7.6) ARE (b1,J) = (us — 3wem)[l + 3[1 — 2 [ ¢*(2) dz/g(0)]']

[12(ws — by e + 9w") {2 [ GAH — [ g¥(z) da/g(0) — 1}

Let us compute ARE for some special cases. Let H(x) be the rectangular dis-
tribution on 0 to a. In that case (7.6) reduces to

(7.7) ARE (b, J) = (a'/4 — 3ays/2)’[1 + 301 — 2 [ ¢’(2) dw/g(0)]']
112(ys — 6wz ws + 9"){2 [$ G(2) da/a — [ g*(w) du/g(0) — 1.
ExampLE 7.7. Let G be the standard normal distribution and H the rectangular
distribution on 0 to a. Then
ARE (b:,J)
= (a*/4 — 3a/2)%(1.5)/72[2G(a) — .80(exp (—d’/2) — 1)/a — 1.71]%
From this expression we find that ARE = 0 fora = 6! and ARE — 0 asa — 0,
while ARE —»® asa — .

- ExampLE 7.8. Let G be the Laplace distribution and H the rectangular
distribution on 0 to a. Then
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ARE (b, J)
= (a’/4 — 3a)*/(12)(504)[2G(a) + exp (—a)(1 + a)/a — 1/a — 4

which is zero for a = (12)* and also ARE —0asa — 0 whileARE — asa —w.
ExampLE 7.9. Let G be the triangular distribution and H as before, the rec-
tangular distribution on 0 to a. Then

ARE (b ,J) = 46.5(a® — a)*/72[2G(a) — 5/3 + 24%/3 — a]’.

This is not defined at ¢ = 1, for then both the efficacies are equal to zero.
ARE —0asa— 1, ARE >1 for large a and ARE <1 for small a.

ARE (b, b1). Let us now compare the test statistics by and by , discussed in
Section 2, to find out the loss of efficiency for not knowing 6. The case here is
different from that of Jy and Jy . For by, and b, have different asymptotic means
so the ARE will depend on the type of alternative we consider.

Let us consider the test of hypothesis given by (5.1) and (5.2). We have
already obtained the efficacy of the byo-test in (5.3). Now we find the efficacy of
the b;-test.

Efficacy of the by-test. The expectation under the alternative is given by
E(b1) ~ ps/pat. So

AE(by)/dr |rmy ~ (dps/d7) |1/ 0e.
The efficacy of the b;-test is then given by
(dps/dr)* |rma/00’(b1)ws” = N(dps/dr)” |r=1/(ws — 6uz s + 9us’)
Thus
ARE (bu, b1) = [(dps/dr) + Bus(dps/dr)]7=
“(us — Byzus + 9uo")/lus(da/dr) ], =

where the u are the central moments under the null hypothesis and u; the third
central moment and w; the mean under the alternative.

Table 3 gives the results for different distributions in the testing situation
given by (5.1) and (5.2).

8. Consistent estimators of f fX(z) dz and £(0). Theorem 6.2 gives the asymp-
totic distribution of J . But it is not distribution-free under the null hypothesis
if A’(0) s 0. In that case the asymptotic distribution of Jy depends on F

) TABLE 3
Distribution ARE(bo , b1)
Normal 1.60
Laplace 1.57
“Triangular 10.80

’ Rectangular 4.80




AN ASYMPTOTICALLY NONPARAMETRIC TEST OF SYMMETRY 865

through o3 . In this section we shall give consistent estimators for [ f(x)dx
and f(0) and hence of o3 . Then we shall Studentize the statistic Jy and make
it distribution-free.

Consistent estimator of [ f*(x) dx. Let Xy, Xz, -+, Xx be independent ob-
servations from a symmetric distribution F(x — 6) with median 6. Let N'(68) be
the number of averages (X; + X;)/2 with ¢ < j which exceed 6. If the ()
averages (X; + X;)/2, 7 < j after ordering them are denotedby A® < 4® <
<o < A where M = (), then the confidence interval obtained from the
two sided symmetric level a-test of hypothesis H'(6): 8 = 6, is seen to be
(Lehmann [10])

(8.1) 86<06<b
where
(8:2) f =A%, §=A0H

where ¢, is given by
Plea = N'(60) £ () —ca/H1 =1 — a.

Lemma 8.1 (Lehmann). If L = § — @ is the length of the confidence interval
defined by (8.2) then

(8N)*L/kajr — 1/ () dx, in probability,

where kaye s the 1000/2 upper percentage point of the standard normal distribution.

Proor. Lehmann [10] has given the proof of it.

Consistent estimator of f(0). Let Xy , X, - -+ , Xy be independently identically
distributed according to the cdf F(x — 6). Let 8 be the sample median. We take
N = 2n + 1, so that there exists a unique sample median.

Define

v = {228 Tiiohzx, <ivn} /2Nh,

where & is a function of the sample size N such that limy 2 = 0 and limy Nh = -
Lemma 8.2 below proves that fx is a consistent estimator of f(0), the density
at the population median.

Lemma 8.2. Let fx be defined as above. Then, under assumption 1 of Section 1,
fx — f(0), in probability.

Proor. We have

Elfx/0] = 1 + X xmi P{0 — h < X: < 6 + n/8}]/2NA
=@ND)* + (N — 1)N'[F(6 — 6+ h) — F(6 — 6 — h)]/2h.

Since f is bounded, the last ratio is bounded, and since f is continuous at 0, the
ratio converges to f(0) in probability. Thus we have a sequence of uniformly
bounded random variables converging to f(0) in probability and so their ex-
pected values converge to f(0). Hence Efy — f(0). Similarly it follows that

Efy' — £*(0).
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Hence fx — f(0) in probability. This completes the proof of Lemma 8.2.
Using Lemma 8.1 and Lemma 8.2 we obtain a consistent estimator of o

from Lemma 8.3.
Lemma 8.3. Let the notations and assumptions be the same as in Lemma 8.1

and Lemma 8.2. Then
=+ [ — 2/fal’/4 = & + [1 — 2 [ f(2) dz/f(0)])/4 in probability,

where 1y = kajp/(3N)IL.
Proor. The proof follows from Lemma 8.1, Lemma 8.2 and Slutsky’s theorem.
We remarked at the end of Section 6 that o3 depends on the form of the dis-
tribution function F. Now we have a consistent estimator of o3 in Lemma 8.3.
Let us denote it by Sy’. Then by Cramér’s theorem [1], N*(J — EJ)/Sy tends
in law to 91(0, 1) and is thus asymptotically distribution-free. We can thus
perform the test of H vs. H' with the help of this Studentized statistic which is

asymptotically 91(0, 1).
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