THE POWER OF THE LIKELIHOOD RATIO TEST
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1. Introduction. Suppose we are given n independent and identically dis-
tributed observations x;, 22, - -+, @, of a random variable X having density
function f(z) with respect to some measure u(x) on a measurable space 2, and
are asked to test the simple hypothesis f(z) = fo(x) versus the simple alterna-
tive f(x) = fi(x) at a significance level o, 0 < a < 1. It is well-known that the
most powerful test, which rejects for large values of the likelihood ratio

1T () ffo()),
has an “error probability of the second kind” (probability of mistakenly accept-
ing the null hypothesis) 8,(a) satisfying
(1) limy.e (log Ba(a)/n) = —1I,
where I is the Kullback-Leibler information number
(2) I = Elog (f(X)/fi(2))) = [a (log (fo(x)/fr(2)))fo(x) du(z).

A nice proof of (1), which requires no additional assumptions, can be found in

Section 4 of [4].
Here it is shown that if we make the additional assumption that

Ey(|log (fo(X)/f(X))F) < =,

(E, always indicating expectation under the null hypothesis), a better limiting
expression for 8.(a) can be derived which is sensitive enough to allow power
comparisons between different levels of a. In Section 3 the usefulness of similar
expressions for simple numerical approximation of the function 8,(e) in small
samples is illustrated.

In addition to the information number I defined above, let

(3) J = Eo(log (fo(X)/fu(X)) — I)
and
(4) K = Ey(log (fo(X)/f1(X)) — I)’,

which are both finite by the previous assumption. Then we have the following:
TaeoreM. If log (fo(X)/fi(X)) 7s not a lattice random variable under the

null hypothests, then
(5) Ba(a) = exp {—[nI — (nJ)'ea + (K/61)(1 — 2') + 4271}
-(2rnd ) (1 + 0u(1))
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where 24 15 the upper a-point of the normal distribution,

(6) (I)(za) = f.z_aoo 6_%t2/(21l‘)’} dt=1— a.
In the lattice case, oo
(7) Ba(a) = (exp {—nI — (nd)%a]} -n})e®®.

(Here 0,(1) approaches zero uniformly for « in any closed interval [a;, o],
0 < a; < dy < 1. The sequence |0,(1)| is uniformly bounded for values of «

in such an interval.)
If « and o' are different values of «, the theorem gives the following estimate
for the error ratio in the non-lattice case,

(8)  Ba(a)/Bala’)
= exp [(nJ)}(2a — 2r) + (K/8J — §)(2a" — 2a)] - (1 + 0a(1)),
and a cruder expression in the lattice case.
2. Proof of Theorem. Let T, be the random variable
(9) T, = (251 log (Fu(X0)/f( X)) + nl)/(nJ )},

which has mean 0 and variance 1 under the null hypothesis. 7, is a monotone
funection of the likelihood ratio, and therefore a sufficient statistic. Letting Hn(t)
and H,'(t) be the induced cdf’s of T', on the real line under the null and alterna-
tive hypotheses respectively, we have by sufficiency

(10)  dH,'(ta)/dHa(ta) = II% fules) /11 fo(ms) = exp {(n)’tn — nl.}

Consider the non-lattice case. Letting z.,, be the (smallest) upper o point of
H,,

(11) Hi(2am) =1 — @,

the error probability of the likelihood ratio test' is seen to be

(12) Ba(a) = [ exp {(nJ)t — nI} dHA(t).

By Theorem 2 of [2], page 210,

(13) Ha(t) = ®(¢) + n'D(t) + o(n™?) uniformly in ¢,

where

(14) D(t) = (¢%/(2m)) (K/6T)(1 — ).

Expanding the smooth functions ® and D in a Taylor’s series about 2, yields
(15) tam — 2a = — {K/6J1}(1 — 25)n + o(n™).

1 If the X1 are discrete random variables, no randomized likelihood ratio test may have
exact size a. Equation (13) shows that sizes am = o = a2, satisfying ez — ain = o)
are always possible though, and it then follows from the proof above that (5) holds even
for those values of « requiring randomization.
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If equation (12) is rewritten as
(16) Bu(a) = exp {—[nl — <nJ>%za W1}/ (nd)}
fzom (nJ)T €xXp {("J) (¢ = 2a,n)} dHA(2),

equation (15) gives
(17)  Ba(a) = exp {—[n] — (nJ)'2a + (K/67)(1 — 2]}/ (nd)}

fZor (nd ) exp {(n)(t — 2an)} dHA()(1 + 0a(1))
uniformly for « in compact intervals excluding 0 and 1. It remains to show that
the integral uniformly approaches

o(za) = (2m) %
as n approaches infinity.
Let ¢, = logn/(nJ)!. Notice that

(18) Sz (nd)} exp {(nd)}(t — 2am)} dHa(t) < (J/n).

For any s and any 8,0 < § < 1, we have
8

by (i)}
H, (s + m) — H.(s) 3 f %) exp ()t — 2an)} AH(E)

(19) (s " <nJ>*> ) f ‘””’(n.n* exp {(n)}(t — 2u)} d2()

(nJ)*) H.(s)

(s + ) — o
Equation (13) yields

(20) [Ha(s 4 8/(n])") — Hu(s))/[2(s + 8/(n)}) — ()] =1 + on(1)/5
uniformly for 0 < § < 1 and s in any compact interval. This implies
¢+ (0a(1)/0)] < [izne, ()} exp (W)}t — 2ain)} dHa(2)
(21) (Jizne, (D)} exp {(n)X(t — 2an)} d2(1))7
< @1 + (0a(1)/0)].
As n approaches infinity, the denominator approaches
o(za) = (2r) 7l

uniformly for values of « bounded away from 0 and 1. Therefore, making use of
(18),
(22) o(za)e”[L + (0a(1)/8)]

< Jzp () exp ()Xt — 2an)} dHA(1) S (2a)¢'[L + 04(1)/8].

Hn<8 +
< e"
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Choosing é, = (|o,.(1)|)* yields the desired result
(23) limpw [250 (0d)F exp {(n) (8 — 2an)} AHA(2) = o(2a).

The proof for the lattice case follows as above from the standard Berry-
Esseen theorem. Actually, a somewhat more precise result than the one stated
can be obtained from Theorem 1, page 213 of [2].

It should be noted” that the proof given above is similar to that given by
Bahadur and Rao [1] in their study of the probability of large deviations. As a
matter of fact, under slightly stronger conditions than those assumed here our
theorem follows as a special case of their results, as extended by Petrov [3].
Letting L = log (fo(X)/fi(X)), the condition Eye’* < o for some ¢ > 1 is
needed to apply their results (Z: indicating expectation under the alternative
hypothesis) as opposed to the condition E; |L|’¢* < o« we have assumed. Con-
versely, the proof above can be used to weaken slightly the conditions needed for
some general large deviation results similar to those given in [1].

The theorem given here can be improved by making stronger assumptions
about the distribution of the log likelihood ratio, (primarily, the existence of
higher moments) and using more terms of the Cramér expansion of H,(¢) in place
of (13) in the proof above. (See page 220 of [2] for this expansion.) We then get
approximations of 8,(a) accurate up to a factor of 1 + 0,(1/2”) where p is an
arbitrarily high power, involving complicated functions of the moments of the
log likelihood ratio.

3. Numerical approximation. If we simply substitute ® for H, in formula
(12), we get the approximation

(24) Bu(a) = e [Zar exp {(nd )t — ££7})/(2r) db
or

(25) Ba(a) = exp {—n(I — J/2)}8(2an — (n])})
(26) = exp {—n(I — J/2)}®(2a — (nd)}).

[Note: For “close” alternatives, expansion of log (fi(z)/fo(z)) gives J = 2I and
I — J/2 =2 3E|(fi(x) — fo(x))/fo(z))]’.] For two different values a and «’, we
have the approximations to the error ratio

(27) Bu(a)/Ba(e) = (20 — (MI)})/®(2arn — (nd)F)
(28) = (20 — (0)})/B(20r — (nd)}).

(In plotting the error curve, it is also possible to make use of the symmetric
approximation

(29) an(B) = exp {—n(I — J/2)}8(2p0 — (n])}),

2] am very grateful to the referee for pointing out the connection between the papers
[1] and [3] and the theorem given here.
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where
I = [q (log (fi(z)/fo(x)))fa(x) du(z), ete.).

As an example of the efficacy of these approximations consider the case of ex-
ponential random variables, fo(z) = ¢, fi(x) = Me M for £ > 0, u(z)
ordinary Lebesgue measure. Table 1 was computed for « = .05, «” = .10, and
M/No = .6.

TABLE 1
@ = .05 o = .10 Bn(a)/Bn(a’)

Approx. I Approx. IT Approx. I Approx. I1 Approx. I Approx. IT
Bale) PR PGS T @) PGS oy = Actual SRR PR

10 .468 .518 .476 .350 .386 .372 1.3¢ 134 1.28
15 .338 .372 .339 .235 .259 .248 1.44 144 1.37
20 .242 .264 .239 .157 172 .165 1.54 1.53 1.45
25 17 .189 .167 .105 114 .109 1.66 1.66 1.53
30 120 .130 .116 .0692 .075 0720 1.73 1.72 1.61
45 .0395 .0422 .0374 .0196 .0212 .0201 2.02 2.00 1.86
50 .0270 .0287 .0253 .0128 .0138 L0130 2.11  2.09 1.94
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