NOTE ON THE INFINITE DIVISIBILITY OF EXPONENTIAL MIXTURES

By F. W. SteUTEL
Technische Hogeschool Twente, Enschede, Netherlands

1. Introduction. In one-counter waiting-time theory the Lindley case (cf.
[2]) yields infinitely divisible stationary waiting-time distributions. In connec-
tion with this in the discussion to a paper by Kingman (cf. [4]) Runnenburg
conjectured that the product of two independent exponentially distributed
random variables is infinitely divisible. Goldie [1] proved that the product of
two independent non-negative random variables is infinitely divisible if one of
the two is exponentially distributed or, equivalently, that mixtures (with posi-
tive weights) of exponential random variables are infinitely divisible. In this
note a slightly more general theorem is proved by a completely different method.

2. Definitions. We consider probability density functions (pdf’s), which are
mixtures of exponential pdf’s, i.e. functions of the form

(1) f(x) = Diaphe 7,

where p; # 0, Y71 p; = Land\; > 0. Without restriction we assume that the N’s
are ordered in the following way

(2) O<MN< A< o <

As f(x) has to be non-negative it follows, by letting  — 0 and x — o« respectively,
that Y1 p;\; = 0 and p; > 0. This however is not sufficient for f(x) to be posi-
tive as may be seen from the function e ® — 8¢** 4+ 12¢”*, which is negative
for log 2 < x < log 6. Simple sufficient conditions including negative p; do not
seem to be available.

The characteristic function (c.f.) corresponding to a pdf f(z) will be denoted
by ¢(t). For definition and properties of infinitely divisible (inf div) c.f.’s we
refer to Lukacs [3]. When convenient the pdf and the random variable correspond-
ing to an inf div c.f. will also be called inf div.

3. A theorem.
LemMA 1. A c.f. ¢(¢) is inf div if log ¢(t) can be expressed in the form

(3) log ¢(t) = dta + [5 [ — 1 — itx/(1 + 2°)]g(x) dz,

where a is real, g(z) = 0 and [2°/(1 + 2°)lg(x) integrable on (0, ).
Proor. This is a special case of the Lévy-Khinchine representation (see [3]).
LemMa 2. If f(z) = e then ¢(t) = N/(\ — it) and in the notation of Lemma 1

a = fﬁw(l + x?)—le——)\x dz, g(z) = e
Proor. See [3].
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THEOREM. A pdf of the form (1) and satisfying (2) is inf div if in the sequence
D1, D2, ", Da there is no more than one change of sign.
Proor. The c.f. corresponding to (1) is

(4) o(t) = 2 japNi/(N — it) = P(&)/]1j< (N — 1),

where °(%) is a polynomial of a degree not exceeding n — 1. It follows that ¢(¢)
cannot have more than n — 1 zeros. Putting ¢ = —iu (u real) we see from (4)
that ¢(— 4u) has at least one zero between every pair of (simple) poles \; and
A if pj and pjy are of the same sign. If all p; have the same sign this accounts
for allm — 1 zeros. If there is one change in sign then n — 2 zeros are accounted
for. If in the latter case Y pA; = O then P(t) is of degree n — 2 and no more
zeros exist. If 2 piN; > 0 then ¢( —in) is negative for large positive values of u
and therefore there is another (the n — 1st) zero on (X, , ).

I'rom the foregoing considerations it follows that P(¢) only has purely
maginary zeros ¢ = i with g > 0. The c.f. ¢(¢) can now be written in the
orm

(5) o(t) = ITia N/ — 0] 11 (e — i) /e,
where n” is either n — 1 or n — 2 and where the u, satisfy the inequalities
(6) e > N (k=1,2 ---,n).

TFrom (5) and Lemma 2 it now follows that log ¢(¢) has a representation of the
form (3), where

xg(x) = D jme ™ — D e >0

ibecause of (6). This completes the proof.

ReEMARk. Letting X\, — o« in (4) we obtain a c.f. of the form y¢(¢) =
drT N/ — dt) + P corresponding to a distribution function of the form

17 pi(1 — e™) + p,H(z), where H(z) denotes the unit-step function. It
follows that p, must be positive, i.e. there is no change of sign. Following the
proof of the theorem we now find the n — 1st zero of Y( —iu) for u > Ny :
limy 5, ¥(—1p) = —o0, limye(—iu) = p. > 0. Therefore ¢(¢) is also inf
div.

CoroLrary 1. If X is exponentially distributed and if Y 1is non-negative and
independent of X then XY 4s inf div.

Proor. Ior the c.f. of XY we have

B(t) = N [7 [5 e e™ dedF (y) = [EN/ (N — ity) dF (y),

where F'(y) denotes the distribution function of Y. Apparently ¢(¢) is an in-
finite mixture of exponential c.f.’s. This can be obtained as a limit of finite mix-
tures by taking the last integral as a limit of Darboux sums. As every c.f. which is
a limit of inf div c.f.’s is itself inf div ([3], page 82) this completes the proof.
This corollary was obtained by Goldie [1] as a corollary to a rather different
theorem, which seems to be more general in some respects and less general in
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others. It does not, for instance, include the infinite divisibility of exponential
mixtures with negative p;.
REMARK. Y may be zero with positive probability (compare Remark following

the theorem).
COROLLARY 2. All exponential mixtures of two components are inf div.
~ Proor. This is the particular case n = 2 of the theorem.

4. Counterexamples. One might be tempted to conjecture that perhaps all
exponential mixtures as given by (1) are inf div. It follows from the theorem that
the simplest counterexamples should be looked for in the class of three-compo-
nent mixtures where p; > 0, p» < 0 and p; > 0. Such an example is provided
by the pdf

fx) = 267" — 66 + e ™,
which is seen to be positive by putting e = y. This yields e’f(z) = 5y° — 6y + 2.
The corresponding c.f.
o(t) = 2/(1 —at) —6/(3 —it) + 5/(5 — it)
= (15 — &)/(1 — it)(3 — dt)(5 — it)

has real zeros and is therefore not inf div.
Finally we give an example of a c.f. in the same class which és inf div:

fa) = e — ¢ + 27,
o(t) = $(1/(1 —dt) — 4/(2 —at) + 15/(3 — it))
= 3(4 — 3it)(3 — 2it)/(1 — 4t)(2 — it)(3 — 1t).
Tor the function g(x) (see (3)) we have in this case
2g(z) = €+ 6T 4 & — 4T _ D 5
as is not difficult to prove.
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