ON THE THEORY OF RANK ORDER TESTS FOR LOCATION
IN THE MULTIVARIATE ONE SAMPLE PROBLEM!
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0. Summary. In the multivariate one sample location problem, the theory of
permutation distribution under sign-invariant transformations is extended to a
class of rank order statistics, and this is utilized in the formulation of a genuinely
distribution free class of rank order tests for location (based on Chernoff-Savage
(1958) type of test-statistics). Asymptotic properties of these permutationally
distribution free rank order tests are studied, and certain stochastic equivalence
relations with a similar class of multivariate extensions of one sample Chernoff-
Savage type of tests are derived. The power properties of these tests are studied.

1. Introduction. Let X, = (X, -+, X)), a=1,---, N be N inde-
pendent and identically distributed (vector valued) random variables (iidrv)
distributed according to a continuous p-variate cumulative distribution function
(cdf) F(x,0), wherex = (2, -+ ,2®)",6 = (6°, ---,6%)" and p is a positive
integer which in the sequel will be assumed to be greater than one. Let € be the
set of all continuous p-variate cdf’s and it is assumed that F ¢ Q. Now let w be
the set of all continuous p-variate cdf’s which are symmetric about some known
origin which we may without any loss of generality take to be x = 0. the symmetry
being defined by the invariance of the distribution F(x) under simultaneous
changes of signs of all the coordinates. If, in addition, F(x) is absolutely con-
tinuous having a density function f(x), the symmetry of F(x) may also be defined
by the invariance of the density function under simultaneous changes of signs of
all the coordinate variates. For the convenience of terminology, this will be termed
as the sign-invariance. (We shall drop the assumption of absolute continuity of
F(x), except in Sections 5 and 6.)

Thus, we may frame the null hypothesis H, of sign-invariance as

(1.1) Hy:FewCQ.

The two particular classes of alternatives in which we may usually be interested
are

(1.2) H, : F(x) is symmetric about some & # 0.
This will be the multivariate extension of the well known one sample location
problem.
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(1.3) H,:F(x) isasymmetric about x = 0,
though it may have the location vector 0.

This is the multivariate extension of the univariate symmetry problem.
Multivariate extensions of the univariate sign test are due to Hodges (1955),
Blumen (1958), Bennett (1962) and Chatterjee (1966), among others. The tests
by Hodges, Blumen and Chatterjee (all for the bivariate case) are strictly dis-
tribution free while the sign test by Bennett is only asymptotically distribution
free. For a comparative study of these sign tests, the reader is referred to
Chatterjee (1966). Bickel (1965) has also considered an asymptotically
distribution free test based on a quadratic form involving the coordinate-
wise Wilcoxon’s (1949) signed-rank statistic. The object of the present investi-
gation is to consider a general class of rank order tests based on one sample
Chernoff-Savage (1958) type of test-statistics. These tests are shown to be per-
mutationally distribution free. Moreover, they are also shown to be asymptoti-
cally power equivalent to a class of asymptotically distribution free tests based
on the multivariate extensions of the univariate one sample Chernoff-Savage
type of (unconditional) tests. Various efficiency results allied to these tests are
studied and this includes the work of Bickel (1965) as a special case.

2. The basic permutation argument. Let us denote the sample point by
(2.1) Zy = (xly""xN)r Xa, = (Xa(l)y"' ’Xa(p)), o= 1;""N»

and the sample space by Zy . Then under the null hypothesis to be tested the
joint distribution of Zy remains invariant under the following finite group Gy of
transformations gy given by

(22)  gnZyv = (=D"K, -+, (=D™&y), ji=0,1; i=1,---,N,
where

(=X = (=X, -+, = Xa™), a=1---,N.
Hence, conditionally given Zy all 2" sample points generated by Gy are equiprob-
able, each having the conditional probability 27. Let us denote this conditional

probability measure defined over {gvZy , g» € Gy} by Py . Ranking the N elements
in each row of Zy in increasing order of their absolute values we get a p X N rank

matrix

RY ... (1)
(2.3) 2 S ,
R® ... R®

where by virtue of the assumed continuity of F, the possibility of ties is neglected,
in probability. For every z = 1, - - - , p, replacing the ranks 1, - - - ; N in the ¢th
row of Ry by a set of general scores {Ey»,a = 1,2, - -+, N} which is a set of N
real constants, we get a p X N matrix of general scores Ey corresponding to Ry :
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Ef\,l,}e;l) . Ez(vl,;efv"
(2.4) D .
EP® ... EPw»
N R

Later on, in Section 3, we shall specify certain conditions on Ey . We consider now
the usual univariate rank order statistics coordinatewise

(2.5) Th? = 20 Efr0Ca?, i=1,2-,p

andlet Ty = (Tx®, -+, Tx®), where €. = +1 or —1 according as X, > 0
or <0 respectively. Ty is thus the difference of the sum of the scores Ef% for
which X§% > 0 and the sum of those for which X, < 0.

To construct a test statistic we consider now the conditional mean and dis-
persion matrix under the conditional probability measure Py . Py attaches equal
probability 27 to each of the 2" possible sign changes of columns of (C.”) under
the group Gy of transformations, each of these transformations, however, leaves
the matrix Ex unaltered. Clearly then under Py, Co'” = 41 or —1 each with
probability %, which makes E(Tx'” |Py) = 0. Also under each g, & Gy the
product C.’C,* remains constant and for a # 8, C.”Cs*® = 41 or —1each
with probability 3. This leads to

(2.6) Cov (Tx”, Tx™ | Px)

= O B BV (1CePCe? = Noyy for jik=1,---,p.
Let then
(2.7) Vv = (vw.ix), hk=1--,p,

and assume (for the time being) that Vy is positive definite. (Vy being a co-
variance matrix will be positive semi-definite at least. If Vy is singular, then we
can work with the highest order non-singular minor of Vy and work with the
corresponding variates). Later we will show that under certain conditions Vx will
be positive definite, in probability. Thus, we consider the following positive
definite quadratic form

(2.8) Sy = (1/N){TaVy 'Ts'}

where V' is the inverse matrix of Vy . By virtue of Sy being positive definite, it
seems natural to use the following test function.

d)(ZN) =1 if Sy > SN,e(ZN)
(2.9) —av.  if Sy = Svalzy)
=0 if SN < SN'Q(ZN)

where Sy «(zx) and ay,. are so chosen such that E{¢(Zy)| Py} = ¢,0 < e < 1.
Thus, ¢(Zy) will be a similar size e test for Ho in (1.1).

For small samples, Sy..(zv) and aw,. are to be determined from the actual
permutational edf of Sy, while for large samples, we shall simplify (2.9) con-
siderably. This is done in the next section.
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3. Properties of Vy and asymptotic permutation distribution of Sy . Let us
denote the marginal cdf of X,” and of (X.”, X.*) by Fi(z;6;) and
F;u(z, y; 6;, 6), respectively, and let

(3.1) Hi(xz;0;) = Fi(x;0;) — Fi(—x;86;); (z = 0),
(3.2) Hju(z,y;0;,600) = Fi(z,y;0;,6) — Fiu(x, —y;06;, )
— Fix(—2,9;0;,0) + Fir(—2, —y; 0, 6); (0=z,y= o)

2

(3.3) Fy,j(z) = (number of X.” < z)/N,

(3.4) Fy.iu(z,y) = (number of (X.?, X,*®) = (z,¥))/N,
(3.5) Hyj(z) = Fxj(x) — Fyi(—2—),

(3.6) Hyin(%,y) = Funin(z,y) — Frju(z, —y—)

— Fuip(—2,y) + Fyju(—2—, —y)°
Finally, as in Chernoff and Savage (1958), we write
(37) Efa = Jni(a/(N + 1)) .= Ju (N/(N + 1))Hx.i(2));
Hyjz) =e/N, oa=1---,N; j=1,---,p,

where Jy,; though defined only at 1/(N + 1), .-+, N/(N + 1) may have its
domain of definition extended to (0, 1) by letting it have constant value over
[a/(N 4 1), (e + 1)/(N + 1)). Furthermore, we make the following assump-

tions:
AssuMPTION 1. limy,. Jy,;(u) = J;(u) exists for 0 < w < 1 and is not a

constant; J; (0)=0
AssuMPTION 2.

J& Uns((N/(N + 1)Hys) — J{((N/(N + 1)Hy,)]dFxi(z) = 0p(N7).
AssumpTioN 3. J;(u) is absolutely continuous, and
W2 w)| = 1 (w)/du’| £ Ku(1 — )7, 4

for some finite K and some 6 > 0.
AssumPTION 4.

I8 [ Uni(N/(N + 1))Hy )Inp((N/(N + 1))Hw x)
— Ji((N/(N + 1))Hy;)Jx((N/(N + 1))Hwy )] dHx i (=, y) = 0p(1).
Let us now define
(3.8) vy = [5 [5 JiH(=;6,)]
Ji[H(y; )1 dH (2, y5 05, 06), J, k=1, ,p;
(3.9) v = (vi) LEk=1--,p

0,1,2

ASSUMPTION 5. v is positive definite.
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It may be noted that in the sequel often we will replace the cdf’s F(z; 6;) or
F(z,y;0;,0:)(j # k =1, ---,p) by some sequences of e¢df’s which may depend
on the sample size N in certain manner. As a result, it follows from (3.1), (3.2)
and (3.8) that the matrix vin (3.9) may also depend on N. Thus, we would prefer
in attaching a suffix N to » to denote its possible dependence of N. However, when
there is no confusion, the suffix N in vy will be suppressed. We may remark that
the Assumptions 1, 2 and 3 are needed for the proof of the joint asymptotic
normality of the permutation distribution of N*T , defined by (2.5). Assumption
4 is required only for the asymptotic convergence of the permutation covariante
matrix Vy , defined by (2.6) and (2.7).

TraEOREM 3.1. Under assumptions 1 to 4, [Vy — vy] —p 0, in probability, where 0
s a null matriz of order p X p and Vy and vy are defined by (2.7) and (3.9), re-
spectively.

Proor. Using (3.6), (3.7) and the Assumption 2, we obtain from (2.7) that

vw ik =[5 [5 In AN/(N + 1) Hy i(2)w i (N/(N + 1)) Hy 1(9)]
(3.10) “dHy ;1(2, ¥),
= [T [STAN/(N + 1))Hyi(2)Jl(N/(N + 1))Hy ()]
“dHy jx(x, y) + 0p(1).

Proceeding then exactly as in Puri and Sen (1966, Theorem 4.2), we find, on omit-
ting the details of computations that,

(811) vw,ik = [0 [T JiHi(x; 0:)uHi(y; )] dH;a(z, y; 65, 0) + 0p(1).

Hence, the theorem

REeMaRrK. It follows from Theorem 3.1 that under the Assumptions 1-5, Vy is
positive definite, in probability (as N — «).

CoRroLLARY 3.1. If

(i) Fi(z;6) = Fi(z — 6;/N7),

Fin(z,y;60;,0) = Fiu(z — 0;/N', y — 6/N7H)
where F; is symmetric and F;, diagonally symmetric about the origin, for
jEk=1,-,p; .

(i1) the assumptions of Theorem 3.1 are satisfied, then Vy — v", in probability, as
N — oo, where v = (v}) is given by
(3.12) ok = [*° [*J2F (2) — W2Fu(y) — 1) dH;u(z, y).
where H ;i (z, y) is defined by (3.2) with 6 = 0.

TrEOREM 3.2. Under the assumptions 1 to 4, N™*Ty has (under P,) asymp-
totically a p-variate normal distribution with mean vector zero and covariance matriz

Vv = (vw,) is given by (2.7). Hence, the limiting permutation distribution of
Sy in (2.8) s a chi-square with p degrees of freedom.



RANK ORDER TESTS FOR LOCATION 1221

Proor. To prove this theorem, it suffices to show that for any arbitrary con-
stant vector & = (&, ---, 8,), the distribution of N7BTy is asymptotically
normal under the permutational probability measure Py . From (2.5) we notice
that

(313) 8Ty = 24 1 > 0 8ESe 0 Ca” = 2N _iana(Ex,Cw , )

where by definition ay«(Ex, Cwvy , 8) depends upon Ey , Cy and &. Let us now
consider the permutation distribution generated by 2" transformations gx in Gy
defined in (2.2). It then follows that Ey and & remain invariant under Gy on Zy ,

while C, = (C.", --+, C.”) may have permutationally two equal probable
values, namely C, and (—1)C,, fora = 1, - -+ , N. Thus, we may rewrite (3.13) as
(314) Z)Z=l IaNa(EN ) C(N) ) 5)I dNa )

where {dy,} are mutually independent (under P,) and dy, = +1 or —1 with
equal probability %; and where conditionally on the given Zy , |ay,(Ex ,Cav) , 8)|,
a =1, -, N are all fixed. It is also easily seen that the permutational average
of (3.14) 1is zero, and the variance N 8V4d. So if we define Wy, =
lane(Ex ,Ciy ,8)| dy .« , then under Py , { Wy o} are independent random variables
with means zero and Wy , can assume only two values & | Wy o | each with prob-
ability 3. We will now apply the central limit theorem to the sequence
{Wya:a =1, .-, N} under the Liapounoft’s condition, [cf. Loeve (1962, p.
275)] and for this we require to show that for some r > 2,

(3.15) limpao NP2 (1/N) D et law.o(Ex, Cay , )|
A(/N) XY ayo(Ex, Cy, 8)} 72 = 0.

The denominator of the second factor of (3.15) is (8Vy8')”*, which by Theorem
3.1 converges to some positive quantity for any non-null d where v is assumed to be
positive definite. So we require only to show that for some » > 2, the numerator
of the second factor of (3.15) is bounded in probability. Since ay,o«(Ex, Ca) , 9)
is a linear function of Ey, and & (with the sign of the coefficients being a minus
or plus), on applying the well-known inequality that

12 el £ p 2k ald,
[ef. Loeve (1962, pp. 155], we get
(1/N) Xt lawo(Ex , Can , )7 S p7 Xl |87 {(1/N) Ehat [BRLl} < =,

by Assumptions 1 and 3. Thus, (3.15) converges, in probability, to zero. Hence,
the first part of the theorem. The second part is an immediate consequence of the
first part and hence the proof is omitted.

4. Asymptotic normality of Ty for arbitrary F. In this section we shall prove
that under a certain set of conditions the random vector Ty = (Tx, - -+, Tv?)
has a joint normal distribution in the limit. For the sake of convenience we shall
consider the statistic
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(4.1) T = (Twa, -+, Twp)

where

(4.2) Ty; = (1/N) 20 ERIZY:

where, Z{) = 1if X, > 0, and Z¢) = 0 otherwise. E¢) ;4 =1, ---, N;

j =1,.--, p, are the constants satisfying the Assumptions (1) to (3) of the
previous section. The reader may notice that the vector Ty* is related to the
vector Ty by the relation Ty = 2N Tx* — NEy where

Ev = (I/N)(XZES), -+, ZIWER),

and so it suffices to consider the equivalent statistic Ty*. The main theorem of
this section is the following: For the particular case of p = 1, the reader is re-
ferred to [10] and [17].

TuroreM 4.1. Under the assumptions (1) to (3) of Section 3, the random vector
N (Tx™ — un(0)) has asymptotically a p-variate normal distribution with mean
vector zero, and covariance matrix (ox i), where

(4.3) pn(0) = (pxa, =+, Bxp)s
MN,; = f;o JiHi(x;0;)]dFi(x;0;); j=1,---,p,

and where (ay,jr) is given by (4.9) and (4.10) respectively.
Proor. We can express Ty,; (cf. [10]) as

(44) Tn.j = unj+ B+ Bowv,; + Zfﬁ:l Cinj
where

(4.5) pvi = [o Ji(Hi(z, 0;)) dFj(z, 6;),

(4.6) Buwv,; = [o Ji(Hi(x, 0;)) d(Fy () — Fi(z, 6;),
(47) Bowj =[5 (Hy; — H;)J;(H;) dF (),

and the C terms are all o,( N7,

The difference N*( Twyi— bn,j) — N*(Biy,; + Bax.;) tends to zero in probability
and so to prove this theorem, it suffices to show that for any real 6;,2 =1, --- , p,
not all zero, N* D% 8;(Bix.; + Baw,;) has normal distribution in the limit. Now
proceeding as in (4], we can express N t 3P 8;(Biv.j + Bax,;) as a sum of inde-
pendent and identically distributed random variables having finite first two
moments. The proof follows.

To compute the variance-covariance matrix of N }(Biy.; + Bux.;), we note from

(4.6) and (4.7) that
NYBiy,; + Bon.j)
(4.8) = N [T (Fyi(z) — Fi(z; 6,))J; (Hi(z; 0;)) dFi( —2; 6;)
— N} [T (Fyi(—2) — Fi(—=;6;))J; (Hi(=; 6;)) dF i(; 6;).
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This has mean zero, and variance
on s = 2 [ focacucw Fi(2; 611 — Fi(y; 6,1 (H(w; 6;))
-Ji (Hi(y; 6;)) dF;(—x; 6;) dF;( —y; 6;)
(4.9) + 2 [ Jococrce Fi( —y; 6:)[1 — Fi(—a; 0,15 (Hy(=; 6;))
Ji' (Hi(y; 6;)) dF (x; 0;) dF(y; 6;)
— 2 [0 [T Fi( —y; 0,)[1 — Fi(=; ;)M (Hy(; ;)

Ji (Hi(y; 8;)) dFi( —x; 6;) dF;(y; 6,)-
Similarly,

owik = [amo [oma [Fin(, y; 05, 6) — Fi(x; 0;)Fi(y; 0:)1J ;
I 1H (w3 0,14 [H(y; 0)] AP —36;) dFu( —y; 64)
= Jomo [imo (Fin(z, —y; 63, 6) — Fi(w; 6)Fu( —y; 60)]
(4.10) Ji[H(; 0 [Hi(y; 0x)] dF( —2; 05) dFi(y; 61)
— [2mo [ma [Fin( =2, y; 05, 6x) — Fi(—=; 6,)Fi(y; 6i)]
Ji[H(x; 0:)10 [He( y; 6)] dF (5 6;) AFk( —y; 04)
+ [0 [i=o Fin( =2, —y;0;,6.) — Fi( —x;0;)Fi( —y; 6)]
Ji[Hi(x; 0V [Hu(y; 6)] dF (x5 0;) dFi(y; 6,).

In what follows, we shall concern ourselves with a sequénce of admissible
alternative hypothesis { Hy"}, which specifies that for eachj, k = 1, - - - , p,

(4.11) Fj(z;0;) = Fi(x — 6;/N*);

Fix(z,y;0;;6:) = Fiu(z — 0;/N*, y — 6,/N?)
where F;(z) and F;(x, n) are symmetric about zero, and 6 = (6;, --- , 6,)" is
unknown. .

We shall also assume that the constant Ef} , i =1, --- ,N;j=1,---,p,is

the expected value of the ith order statistic of a sample of size N from a distribu-
tion function ¥;(x) given by

(4.12) Vi(z) = ¥,%(z) — ¥,*(—2); T

v

0,

where ¥;*(z) is a distribution function either symmetric about zero or uniform
over (—1, 1). It may be noted that the above definition of E{) implies that the
function

(4.13) Ji(z) =¥ (z) = ¥, (A + 2)/2).

The following corollary is then an immediate consequence of Theorem 4.1.
CoRrOLLARY 4.1. If, for every j, k = 1, --- | p, (4.11) holds and the conditions of
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Theorem 4.1 are satisfied, then N*(Ty — ux) has asymptotically a p-variate normal
distribution with a null mean vector and a dispersion matrix T = ((7x)); where

i = 1 [1J74(=) da, =k JE =l
(4.14) =1 [I2 [Z2J7(Fi(x))
J’T(Fk(y)) dFJ',k(x7 y)) .7 # k‘: '];‘ = \I,;'k—l'

It may be noted that the limiting distribution of N YTy™ — uy) is nonsingular
if and only if the functions J; and F; are such that the moment matrix of
{Ji(Fi(z)),j = 1, -+, p} is non-singular. Furthermore, the limiting distribu-
tion of N*(Tx™ — ux) is singular, if and only if, a.s. F

(4.15) JI(Fiz)) = Zk#i arJi (Fi(y)) + constant,
(where a,’s are some constants)

6. The proposed class of asymptotic tests and its limiting distribution. We
now assume that the covariance matrix T defined by (4.14) is non-singular. Then
for testing the hypothesis H, given by (1.1), we propose to consider the test
statistics Sy* defined as

(5.1) Sy* = N(Ty* — wn™)T7(Tx" — n(0))’

where T»* is defined by (4.1) and (4.2); T7' is a consistent estimator of T, and
(5.2) pn(0) = (pwa(0), -+, v p(0))

where

(5.3) pni(0) = [r= Ji(2F () — 1) dFi(z), J; =¥ .

Then we have:

TuroreM 5.1. If (i) the conditions of Corollary 4.1 are satisfied, and (ii) the
assumptions of Lemma 7.2 of Puri (1964) hold for each F ; and Jizg=1,--,p,
then for N — o, the limiting distribution of the statistics S.* is non- central chi-
square with p degrees of freedom and non-centrality parameter A(Sx™) given by

(5.4) A(Sy*) = ¢T7'd' = oT* '@’
where
(55) a= (cbr, -+, cobp),
¢ = —2 [5J/(2F(x) — Dfy(z) dFs(x), j =1, ,p,
and T* = (77:) is given by
(5.6) e = mie/(cioc) for j k=1 --- p.

Proor. The proof of this theorem is a consequence of the facts that under the
given assumptions, N Y(Ty*™ — un(0)) has asymptotically a p-variate normaldis-
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tribution with mean vector ¢ and covariance matrix T, and T~ is a consistent
estimator of T7". .

From Theorem 5.1, it is clear that the choice of T~ is of no importance in the
limit. Any consistent estimator of T~ will preserve the asymptotic distribution
of the statistic Sx*. One such consistent estimator is provided by the permuta-
tional covariance elements in Section 3. We may also use a theorem by
Bhuchongkul (1964) to propose a similar class of estimates. However here con-
ditions are relatively more restrictive (since they relate to asymptotic normality)
than the ones in Theorem 3.1, and for our purpose, we need not bother about the
conditions as we simply require here the asymptotic convergence (not normality)
of the estimates.

TueoREM 5.2. The permutation test based on Sy given by (2.8) and the asymp-
totically non-parametric test based on Sx™ given by (5.1) are asymptotically power
equivalent for the sequence of translation type of alternatives defined by (4.11).

Proor. From Corollary 4.1, it follows that for any such translation type of
alternatives, the covariance matrix of the proposed vector of rank order statistics
converges asymptotically to T, of which T is a consistent estimator. Again by
Corollary 3.1, it readily follows that under any such sequence of translation type
of alternatives, the permutation covariance matrix in Theorem 3.2 also converges
to T. Thus by looking at (2.8) and Theorem 5.1, we observe that under (4.11)
SyFSy*, (where ¥ means stochastically equivalent). The proof follows.

By virtue of the stochastic equivalence of the tests Sy and Sx*, we shall only
consider the asymptotic properties of the unconditional test based on Sy* in the
next section.

SpecIAL cases. (a) Let J; be the inverse of a chi-distribution with one degree
of freedom. Then the Sy* test reduces to the normal scores Sy*(®x) test which
may be regarded as a p-variate version of the univariate one-sample normal
scores test. Let us define

(5.7) Bi(F;®) = [Zof(z) dz/6[®7'(Fi(x))];

(5.8) vi(F; @) = [Z, [Z, @7 (Fi(2))® (Fi(y)) dF;i(z, y), J#Ek
=1, J=k;
(59) )‘jk = Vik(F; Q)/[BJ(Fy CI))Bk(F) 113)]’ j) k= 1) D,

Then for the normal score test, the non-centrality parameter (5.4) reduces to
(5.10) 8(®) = 007’6 where A = ((\;ix)) is given by (5.9).

(b) Let Jj(u) = u, then the Sy* test reduces to the rank-sum Sy*(R) test
(which may be regarded as a p-variase version of the univariate one sample test)
considered in detail by Bickel (1965). In this case the non-centrality parameter
(5.4) reduces to

(5.11) 8(R) = or'e’



1226 PRANAB KUMAR SEN AND MADAN LAL PURI

where I' = (v;) is given by
vt = 1/12B}(F; R),

(5.12) = [Bi(F; R)Bw(F; R]™

S [T P (@) Pu(y) dF (e, ) — 3, G = ks
forj,k =1, ..., p, where
(5.13) Bi(F;R) = [Z,f/(x)dz, for j=1,---,p.

6. Asymptotic relative efficiency. It is well known [14] that in the situations
we are considering the asymptotic efficiency of one statistic relative to another
is equal to the ratio of their noncentrality parameters. Hence, denoting ery,ry+ as
the asymptotic efficiency of a test Ty relative to Tx*, we have

(6.1) esy,ry2 = (0T*70')/(0117%0")

where T," denotes the Hotelling’s T test, T* = (r%) is given by (5.6) and
II = (o) is the covariance matrix of F.

SPECIAL cASES. (a) Normal Scores and Rank Sum Tests. From (6.1), we find
that the efficiencies of the normal scores S*(®) test and the rank sum Sx*(R)
test relative to Ty’-test are

(6.2) esn* (@), Ty = (03»—10')/( 011—10’)
where & = () is given by (5.9) and IT = (o),
(6.3) esy*(R), Ty2 = (0F~10,)/(0H—10')

where I' = (v;) is given by (5.13).

We may remark that the expression (6.3) is the same as the one obtained by
Bickel (1965) for the p-variate one-sample problem, and by Chatterjee and Sen
(1964) for the bivariate two-sample problem. For the study of the various aspects
of the efficiency (6.3) in special situations the reader is referred to the interesting
paper of Chatterjee and Sen (1964 ).

(b) Totally symmetric case. A bivariate random vector (X, Y) is said to be
totally symmetric if (X, Y), (X, —Y), (=X, —Y) have the same distribution
function. It can be shown following the lines of the argument of Bickel (1965),
that a sufficient condition for the asymptotic independence of the components of
Ty" is the total symmetry of (X, X:®) for every pair (j, k). Thus in the event
of totally symmetric case v, I, T are all diagonal matrices, and hence we have

(6.4) esyv@. 1y = 2 0= 07 (B(F; @)/ D Py 07/0f,
(6.5) esyswy,ye = 12 2.2 02 (B(F; R))Y/ 2.2 6/0
(6.6) esyr@,oyvm = 211 07 (B(F; 8))*/12 > 24 63(B(F; R))?,

where B;(F; ®) and B;(F; R) are defined by (5.7) and (5.13), respectively.
Applying a theorem of courant, Bickel (1965) has proved that
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(67) infpgg info €3n*(R), TN2 = 0.86

where § is the family of all totally symmetric p-variate distributions whose
marginal densities exist.

It may be noted that the efficiency factors (6.4) and (6.6) are the same asin
the case of the corresponding tests for the multivariate two sample problem (cf.
Puri and Sen [16]).

In passing we may remark that when the components of F are totally sym-
metric as well as identically distributed, then the expressions (6.4), (6.5) and
(6.6) become independent of 6’s, and the results are the same as in the case of the
corresponding univariate one-sample problems.

(¢) Normal case. Let us now assume that the underlying distribution function
F is a non-singular p-variate normal with mean vector zero and covariance matrix
II = (o). Then it can easily be checked that

(6.8) esy*@),ry2 = L.

This means that in the case of normal distributions, the property of the uni-
variate normal scores test relative to the student’s ¢ test is preserved in the multi-
variate case. This is interesting in the sense that the same is not the case with the
multivariate rank sum test as Bickel (1965) has shown that

(6.9) infes infy esysry,rye = 0 for p = 3,
and
(6.10) 3 < esyrmy,rye < 0965 for p = 2.

From (6.8) and (6.9), it follows that
(6.11) SUDrca SUDPg Esy*@),sy* ) = © for p = 3.

[® is the family of all nonsingular p-variate normal distributions.]

For the related study regarding the bounds of esy+@),sy*r the reader is re-
ferred to Bhattacharyya (1966); and for the corresponding study of the estima-
tion of location parameters, the reader is referred to Puri and Sen (1967a)
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