A CLASS OF SEQUENTIAL PROCEDURES FOR CHOOSING ONE OF
K HYPOTHESES CONCERNING THE UNKNOWN DRIFT
PARAMETER OF THE WIENER PROCESS!

By Gorpon Simons?

University of Minnesota

1. Summary and introduction. Let X (¢) ~ N(ut, ¢%) be a Wiener process for
t = 0. Supposeo” is known and that Hy , - - - , Hx are K hypotheses concerning the
unknown drift parameter u. A general sequential testing procedure presents itself
in the following form: Continue to observe X (¢) until, for the first time s, the
point (s, X(s)) ¢ B, a subset of the right half plane. B will be called the boundary.
Let B be partitioned into K disjoints subsets B; (¢ = 1, - -- , K) called boundary
sets. Then, if (s, X(s)) ¢ B;, one accepts H; .

In this paper, we will assume that each boundary set B; is composed of a finite
number of straight lines or line segments called boundary lines. Any test using such
a procedure (for some K) will be called a boundary test. We shall derive recursive
methods for computing the exact OC functions, the average sample time (AST),
and, in fact, all the moments of the sampling time .

Even though the study of tests for Wiener processes seems to be of intrinsic
interest, their study usually has been motivated by other considerations. T. W.
Anderson [1] has developed an approximate test for the unknown mean of the
normal distribution by relating his testing procedure with a corresponding
boundary test. In a similar manner, one may derive Wald’s sequential probability
ratio test, the Neyman-Pearson fixed sample size test, and multistage tests, for
the mean of the normal distribution.

The restriction to a finite number of (straight) boundary lines may seem un-
pleasant but, of course, curvilinear boundaries can be approximated with poly-
gonal lines. One consequence of the restriction is that there will exist at most a
finite number of times at which an end-point of a boundary line, an intersection of
two boundary lines, or a vertical boundary line occurs. These times, coupled with
times { = 0 and ¢t = o, will be called critical ttmes. The recursive methods de-
veloped below will allow us to reduce the computations of the OC functions and
the moments of 7 to the computation of certain ‘“fundamental probabilities” in-
volving events which occur between critical times. We shall denote the critical

times as

O=bh<t<- - <tp<lwp = .
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The points (s, ), with s = 0, which are not in the boundary B will be denoted
by B . A point in B, which can be reached by a continuous sample path’® before
time 7 will be called an accessible point. Otherwise, the point is an inaccessible point.

An important subclass of the class of boundary tests is the class of boundary
tests which are closed for all values of u. This class has three characterizations
(See {3].):

(i) PJr < «] = 1 for all u.
(ii) Eu(7") < o forall y,forr = 1,2, ---.

(iii) Every accessible point of the form (i, , z) is contained between two paral-
lel, non-vertical boundary lines extending to infinity.*

Sections two and three will present the recursive procedures for computing the
OC functions and the moments of the stopping time , respectively. Section four
discusses the computation of the “fundamental probabilities.”

The reader will quickly perceive that the recursive methods presented below
need not be limited to straight line boundaries. The limitation arises from the
rather restricted class of computable fundamental probabilities (at the present
time).

2. The OC functions. In what follows, we shall use the letter s (subscripted or
not) to denote a fixed time and shall use the letter 2 (with the same subscript,
if any) to denote the value assumed by the Wiener process X(¢) at time ¢ = s.
With these conventions, there should be no difficulty in distinguishing between
a time interval (s, s;) and a point (s;, 1). Also, denote the set B — B, by B;
fori =1,---, K. , .

Let x and ¢ be fixed parameters. Define, for 0 < s, < s £ o,

Pi(s1, 833 1) = P[(t, X(t)) e B; before B; for some time

(2.1)
te (s, ]| X(s1) = ],

for? = 1,.--- K, and
(2.2) Polsy, sy ;1) = P[(t, X(t)) e By forall times te (s1,s]|X(s1) = a].
Define, for 0 < s; < 8, < 0,

Qi(s1, 85 ;@1 , 42) = P[(t, X(t)) e B; before B; for some time

(2.3) te(s,s)|X(si) =2,

1’ 2]’

fori =1, ---,K,
Qo(s1, s @, 23) = P[(t, X(t)) e By for all times

(24) t8(81,82]lX(8j) = $j,j = 1, 2]

3 Sample paths of the Wiener process are continuous with probability one.
4 Tn order to avoid trivial set-theoretic complications, it will be assumed, without loss

of generality, that the boundary B is a closed set.
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Finally, letting N(z | a, b) denote the normal density with mean a and variance
b, define, for 0 < s; < 53 < 83 < 0,

(2.5) g(x2 |81, 8 5m) = N(@a |2 + (s2 — s1)m, (82 — 1)),
the conditional density of X(s,) givgn_:X (s1) = 21, and

h(2s |81, 82,8 ;21,%) = N2 |21+ (235 — 21)
(82— 1) /(88 — 51)),0"(55 — 82) - [(32 — 1) /(85 — s1)]),

the conditional density of X(s,) given X(s;) = z;,forj = 1, 3.

Now, we find that P;(0, « ;0) is the probability of accepting hypothesis H; for
t=1, .-+, K. (Weshall avoid a trivial contradiction by assuming that the point
(0, 0) is an accessible point (i.e., (0, 0) £ B).) The test is closed if, and only if,
Py(0, ©; 0) = 0. By the expression “fundamental probability,” we shall mean
any one of the probabilities (2.1), (2.2), (2.3), or (2.4) for which the (open)
interval (si, s») contains no critical times (¢;,7 = 0,1, --- , m + 1).

The basis for induction is the following trivial observation: If s, s2 , and s; are
any three times, with 0 < s; < s; < 83, and s, is a critical time, then (s, s;)
contains more critical times than does either (s, s;) or (s, s5). The induction
step is contained within these four recursive formulas:

(2.6)

27) Pi(s1,85;m) = Pi(s1,5;m)
+ [20 Qo(s1, 82521, ) Pi(s2, 835 %2) -g(@2| 81, 825 1) da
fore=1,... K.
(238) Py(s1, 8253 11)

= [20Q(s1, 82531, 22)Po(se, 85 @2)-g(@a |51, 825 21) daca

(29) Qi(s1, s3; %1, %s)
= [20[Qi(s1, 8251, %) + Qo(51, %51, 22) - Qi(s2, 833 2, 3)]
“h(%2 |81, 82, 835 %1, T3) ds .
fort=1,.---, K.
(2.10) Qo(s1, 83521, 23)
= [20Qo(s1, 82321, T2)Qo(se, 835 %2, 23) -h(a |81, 82, 835 1, @) dirs .

Formulas (2.7) through (2.10) follow from rather elementary arguments in-
volving conditional probabilities.

Computing the OC functions. One simple induction procedure presents itself.

ProcEpURE I. Compute successively, fors = &, -+, tm,

(1) @0, 5;0,2) forze (—w, ©),

(ii) P«(0,s;0) forz=1,---, K,
and then compute

(ii) Pi(0, «;0) fors=1,---, K.
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This procedure uses (2.7), (2.9), and (2.10). If the test is truncated at time

tm , step (iii) is not needed. In fact, whenever Qo(0, s; 0, ) = O we do not need
to compute Pi(s, s'; ¢) for s’ > s. That is, the value of Pi(s, s, x), fors > s, is
not important unless (s, z) is an accessible point.

If T is any positive time, the conditional process X(t) given X(T) is inde-
pendent of u for 0 < ¢ < T. It follows that the @’s, unlike the P’s, do not depend
on the fixed value of x. When one wishes to compute the OC functions for many
values of g, a faster procedure (for high speed machines) is suggested.

Procepure II. Compute successively, for s = &, - -+, tm, (using (2.9) and
(2.10))

(i) Q«0,s;0,z) forxe(—», ®)andi =0,1,---, K,
and then compute

(ii) Pi(0, «;0) .

(2.11) = [ Q«0,tm;0,2) + Qo(0, tn ;0, ) Pi(tm, ©;)g(x|0,tn;0) da.

Equation (2.11) represents a trivial modification of (2.7). If the test is truncated
at time &, , (2.11) simplifies, and whenever the point (s, 2) is not an accessible
point, certain subsequent computations may be avoided.

If one desires computations for only a few values of u or desires explicit analytic
expressions for the OC functions, Procedure I is preferable to Procedure ITasa

rule.

3. Moments of . In this section, we shall exploit the well-known formula
(3.1) E(") = ¢ [C¢7'Plr > t]ldt for r=1,2,---,

which even holds for unclosed tests.
Define, for 0 < s; < 8 = o,

(3.2) Udsi, 25 01) = [28'Po(st, s;01)ds, for ¢=0,1,---

Also, define, for 0 = 51 < 82 < 0,

(83) Vilsi,s;2,2) = [125 [Z0Qo(s1, 851, 2)h(x [ 81,8, 82521, 22) dz ds,
fori = 0,1, --- . Then

(3.4) E(«") = rU,a(0, ©;0) for r=1,2,---.

If s, < s < s, and the interval (s;, sz) contains no critical times, Po(s1, s; 1)

and Qo(s1, s; o1, «) are fundamental probabilities. Then Ui(s, s, #1) and
Vilsi, 82, 21, T2) may be computed directly from (3.2) and (3.3), respectively.
The induction step is based on these two recursive formulas:

(3~5) Ui(Sl, S3 ;:1;1)
= Uys1, S2; 1) + ffoo Qo( 51, S2; X1, T2) Ui( 2, S35 2) - g(22 | 81, 23 71) dvg,

for0 < s <ss <3< woandi=0,1, -
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(3.6) Vs, ss;a, ;)
= [ZolVils1, 2521, 22) + Qu(s1, 82521, 2)Vilse, 835 %, )]

“h(Xs |81, 82, 83 ; 21, X3) daa

for0 =1 <ss <3< oandi =0,1,---.

Formula (3.5) holds for s; = « if we adopt the convention of calling the inte-
grand in (3.5) zero whenever Qo(si, s2; 21, 22) = 0 (i.e., 0-c = 0forc £ «).
(3.5) may be seen from

J20 Qu(s1, 82521, ) Ui(sz, 853 22)g(%2 | 81, 82 1) de
= [25 [20Qu(s1, 82521, T2)Po(s2, 8; %2)g(%2| 81, 825 1) daads
= [ s'Po(s1, s; 1) ds.
The verification of (3.6) is somewhat more delicate. It suffices to show that
(37)  [ZoVi(s1, 82521, To)h(Ta| 81, 82, S35 21, &) ds
= [ [20a@u(s1, 8531, T)h(T |81, 8, 83 @1, ) dz ds
and
(38)  [ZuQo(s1, 8231, 2)Vi(s2, 8530, xs)h(e] 81, 8,852, Ts) de,
‘ = [8s 2 Qu(s1, 8331, )A(T |81, 8, 833 21, T3) da ds.
(3.7) follows from an interchange of integrals and application of the fact that
[2uh(x |81, s, s25 @1, T2)h(a|s1, s, 855 @1, @3) dre = h(x|s1, s, 85521, ),
fors, < s < 8 < 83,
To show (3.8), one first observes that, for s; < s < s < 83,
(39) h(x|ss,s, 35T, xs) h(xa|s1, 82,821, Ts)
= h(x|s1,8, 8 ;%,2) h(x|s1,8,s;o,).

Then (3.8) follows from an interchange of integrals, (3.9), andfinally, an applica-
tion of formula (2.10).

It is important to note the symmetry between formulas (2.7) and (3.5) and
between (2.9) and (3.6). Because of this symmetry, Procedures I and II can be
extended in obvious ways to include the computation of moments of r. An alterna-
tive approach is to use recursive formula (2.8) and compute the moments di-

rectly from (3.1).
4. Computing the “fundamental probabilities.” Section two defines a funda-

mental probability to be either of the following two types of probabilities:
(i) Pi(s1, s2; 1), for somes = 0,1, -+, K, where 0 < s, < s £ « and

(s1, s2) contains no critical times.
(ii) Qi(s1, 8 ;%1 , %), forsomei = 0,1, .-+, K, where 0 < s; < s, < « and

(s1, s2) contains no critical times.
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For s; < «, we may use the formula

(41) Pi(Sl, Sg ;(IJ1) = ffw Qi(sl, Se ;x1,132)g(x2‘81, 82;1131) da, .
It remains to show how (i) is computed when s, = <, and how (ii) is computed
in general. C

Computing Pi(s, » ;x). We assume that the interval (s, ) contains no critical
times and the point (s, ) is an accessible point. The point (s, #) may or may not
have a non-vertical boundary line below (above) it which extends to infinity.
For this reason, there are three cases to be considered:

(a) The two line case—at least one boundary line above and one below the

point (s, z).
(b) The one line case—at least one boundary line above or at least one below
the point (s, z), but not both. .

(¢) The zero line case—no boundary lines above or below the point (s, z).

If the process X(¢) passes through (s, ) and contacts the boundary after
time s, its first such contact will be with the boundary line below (s, z) with
largest slope or the one above with smallest slope. If we are in case (a) and all of
the boundary lines below (s, ) diverge away from all the boundary lines above
(s, z) or if we are in case (b) or (¢), the test can not be closed for all values of p.
This is a consequence of the third characterization of the class of boundary tests

which are closed for all x (given in Section 1).
While case (c¢) is trivial, cases (a) and (b) are treated by using Theorem 1 and

Theorem 2, respectively.

TreoreM 1. (T. W. Anderson [1]). Let X(t) ~ N(ut, o’t) be a Wiener process.
Let v1 + 81t and vs + 8t (for t = 0) be two parallel or diverging lines with
1 < 0 < ysand 8, £ 65. The probability that X (t) makes contact with the lower line
1 + 81t before the upper line vs + 84t vs given by:

2 fexp [—(2/a)lrm — (7 — Dyallr(8 — w) — (r — 1)(8: — w)]]
— exp [—(2/6") [P {m1(81 — 1) + 7v2(82 — w)}
—r(r — Dya(8 — p) — r(r + Dye(8y — w)l} for 8 0,8 < 85
1 — >0 fexp [—(2/")(r — Dy — ryall(r — 1) (8 — p) — r(82 — )]l
— exp [—(2/")[P*{7(8 — ) + 72(8 — w)}
—r(r + Dy(8 — p) — r(r — Dva(8.— wll}, for 0= 8 < &;
(exp [—(2/0") va( 81 — u)] - 1)
-(exp [—(2/d") (y2 — 1) (8 — w)] — )7, for & = 8 # u;

and va(ve — 1), for 8 = & = p.
TueoreM 2. (J. L. Doob [2]). Let X(t) ~ N(put, o’t) be a Wiener process. Let
v + 8t (for t = 0) be a straight line with v % 0. The probability that X (t) contacts

the line is given by:
min (1, exp [—(2/6")v(3 — w)]).
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Computing Qi(s1, S2; 1, Z2). We assume the interval (s, s») contains no
critical times and the point (s, #1) is an accessible point.
Define

(4.2) Ros1, 8;x1,x) = P(t, X(t)) ¢ B;
before B; for some time te (s1, ) | X(s;) = 2,5 = 1,2],
fori =1,:--, K, and
(4.3) Ro(s1, s ;x,x) = P[(¢t, X(1)) e By
for all times te (s1, 82) | X(sj5) = z;,7=1,2]°

While the value of Q.(s1, se ; 21, 22) is affected by the existence or nonexistence
of vertical boundary lines in the line ¢ = s, , the value of R;(s;, 82 ; €1, #2) is not.
This makes the computation of the R’s more straightforward than the computa-
tion of the @’s. We shall develop methods for computing the R’s and use the fol-
lowing formula to compute the @’s.

(44) Qus1,s;21,%2) = (1 — di0)Ri(s1, 82501, 22) + 85580(s1, 8251, X2),

fori = 0,1, ---, K, where (s, 22) € B;, and where 8,5 is the Kronecker delta
(e, 8 =0,1,---, K). Note that (s, #2) ¢ B; for some j = 1, ---, K or for
j = 0. (4.4) may be verified by considering each of the various cases encom-
passed by the formula.

In computing Ri(s1, 82 ; 21, 2), it is clear that we have three cases to consider:

(a) The two line case—at least one non-vertical boundary line below and at
least one above the point (s1, #;) which extend to the right and do not cross
before time s, .

(b) The one line case—at least one non-vertical boundary line below the point
(81, 1) or at least one above, but not both.

(e¢) The zero line case—no boundary lines between time s; and time s, .

Again, the zero line case is trivial. Cases (a) and (b) are treated by using
Theorems 3 and 4, respectively.

TureoreM 3. (T. W. Anderson [1]). Let X(t)~ N(ut, o’t) be a Wiener process.
Let T > 0 be a fized time. Let v1 + 61t and vs + 85t (for t = 0) be two lines which do
not intersect before t = T with v1 < 0 < va. Thus, v1 + 0.1 £ vz + 8:.T. The con-
ditional probability that X (t) makes contact with the lower line v, + 81t before con-
tacting the upper line v2 + 85t and before time t = T given X(T') = x is given by:

2o {exp [—(2/6" Ty — (r — Dvllr(ms 4+ 8T — 2)
— (r = (v + &T — 2)]]
— exp [—(2/°T)[P{m(n + 6T — 2) + 72 + &T — z)}
—r(r — Dm(ye + 8T — @) — r(r + Dwa(ma + &T — 2)]}},
for x =2y + 6T and v+ 6T < 72 + 6T
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1 — 2% {exp [—(2/8"T)[(r — 1)y — ryll(r — 1)(m1 + &T — )
= r(v2 + 8T — 2)]]
— exp [—(2/02T)[T2{71§71 + aT — z) + v(ve + &T — =)}
= r(r 4+ Dmlre + 8T — ) — r(r = Dma(n + 6T — o)},
for & =2y 4+ 6T < 7o + 6.T;

(exp [—(2/6"T)ya(m1 + 8T — z)] — 1)
-(exp [—(2/0"T) (v2 — v1)(m + 6T — 2)] — 1),
for x# v+ 6T = v2 + 6.T;

and 72(72 — 'yl)_l,forx =7 + T = ve + 8.T.

TuEoREM 4. Let X(t) ~ N(ut, o’t) be a Wiener process. Let v1 + &t be any
stratght line (t = 0) with v #£ 0. Let T > 0 be a fized tvme. The conditional prob-
ability that X (t) contacts the line before time t = T given X(T) = x is given by:

min (1, exp [—(2/6"T)y(v + 8T — z)]).

Theorem 4 is proven by using the same technique that Anderson used in prov-
ing Theorem 3.

Some of the indicated computations in this paper, such as certain integrations,
can be carried further. In some cases, this is desirable. However, this matter
involves certain digressions which seem inappropriate in a paper of this type. For
details, see [3].

When p has a prior distribution, it is possible to extend the methods above in
order to compute ‘“global” acceptance probabilities and ““global’” moments of .
The extension is easily achieved by modifying Procedure II.
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