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1. Introduction. Let X, - -- , X, be n independent random variables. Several
properties of certain statistics have been used in order to characterize the nor-
mality of the X’s, for example, the independence of two linear statistics ( Bern-
stein, Kae, Frechet, Darmois, Gnedenko, Skitovich). If the random variables
Xi, ---, X, are, in addition, identically distributed (a sample from some
population) with distribution function F(z) then various properties imply the
normality of F, e.g., if two linear statistics are identically distributed (Mar-
kinkiewicz, Linnik), or, if the sample mean X is independent of certain poly-
nomial statistics, such as a quadratic statistic which is a multiple of the sample
variance s° (Geary’s theorem). For a detailed discussion of characterizations, we
refer to Lukacs-Laha [2], where related references and results needed here are
given.

In some cases, a relaxation or a modification of the conditions involved in the
characterization theorems was possible. For example, Laha ([2], p. 105) replaced
the condition of independence of X and s’ by the property of constant regression
of s" on X. This property was also used (see [2], Chapter 6) to characterize other
distributions besides the normal.

In [1] normality is characterized in terms of constant regression of the square
of a linear statistic ¥ on another linear statistic U. There, though on the one hand,
the condition of independence of U and V is relaxed by simply assuming con-
stant regression of ¥?on U, on the other hand, stronger conditions are imposed on
the constant coefficients involved in the forms U and V.

In the present note, normality is characterized by the property of constant
regression on a linear statistic (i) of a linear statistic and (ii) of a set of linearly
independent linear statistics. These characterizations are motivated by the
following considerations. It is well-known that two uncorrelated linear forms in
jointly normal variables are (statistically) independent; hence, a fortiorz, either
linear form has constant regression on the other. The question then arises as to
whether normality can be characterized by the property of constant regression
of a linear form on another. This, however, is not true in general in view of the
fact (see, e.g., [2], p. 104) that a linear form U = ¢,.X; + -+ + a,X, in in-
dependent and identically distributed (iid) random variables X;, ---, X,
has always linear regression on the sum 8§ = X; + --- + X, (or on the sample
mean X), namely, E(U|S) = aS, where a denotes the average of the a;;
hence, taking a; + --- + @, = 0 gives constant (zero) regression of U on
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S (or X). This points out that we should restrict attention to the case of con-
stant regression of U on some other linear statistic V = b,X; + -+ + b.X,
which is not proportional to X. Indeed, under certain conditions on the constant
coefficients a; and b; and the assumption that all the moments of the X; exist,
the property of constant regression of U on V implies that the X; are normal
(Theorem 1). The conditions on the b; can be considerably relaxed if each of
n — 1 linearly independent statistics has constant regression on V (Theorem 2).
Multivariate analogues of these theorems are given in Theorem 3.

2. The results. For our purposes we need the following lemma and definition.

Lemma ([2], p. 105) A random variable Y, with finite expectation, has constant
regression on a random variable X, i.e., the relation E(Y | X) = E(Y') holds almost
everywhere, if, and only if, the relation .

E(Ye™) = E(Y)E(e™),

where 1 1s the imaginary unit, holds for every real .

ConprrioN A. Leta = (a;, --+, @) and b = (by, -+, b,)’ be two (column)
vectors. The pair of vectors (a, b) is said to satisfy Condition A if whenever the
orthogonality relation a’d = 0 holds then ab® = 0 for every integer s > 1,
where we set b = (b, ---, b.")".

REeMARK 1. For n = 2 it is observed that Condition A is satisfied unless the
components of b are all proportional to =1 or 0. For n > 2 however this is no
longer true in general. It would be of interest, if not to characterize, to find at
least conditions under which a’b = 0 implies b # 0 for all integers s > 1.
Note also that a necessary condition for the pair (a, b) to satisfy Condition A
is that the components of b are not all proportional to 0 or =1, i.e., b # NA
where ) is a non-zero scalar and A denotes a non-zero vector with components
0,1, —1.

TueoreMm 1.* Let Xy, - -+ , X, be a random sample from a univariate population
with distribution function F(x), and assume that F(x) has moments of every order.
Consider the linear forms

U=dX, V=0X,

where X = (Xy, -+, Xa)" and suppose (a, b) satisfies Condition A. Then U
has constant regression on V, i.e.,

(1) E(U|V) = E(U)

if, and only if, the following two conditions hold:
(i) the population distribution F is normal,
(ii) a'b = 0.
Proor. The sufficiency of (i) and (ii) is well known. We show their necessity.

2 Rao gives essentially the same result as Theorem 5 in [4] where several other related
characterizations are obtained.
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By the lemma condition (1) is equivalent to

(2) E(U"") = E(U)E(e™).
Let us assume, without any loss of generality, that
(3) ah; # 0, j=1-,n,
and let
Y; = b,X;, ¢ = ab; j=1,---,n.

Then (2) reduces to the differential equation

(4) 2ot cifi (8) Tl fu(t) = iE(U) TT7fi(2),

where f;(t) = f(b;jt) denotes the characteristic function (c.f.) of Y; and f(¢)
the c.f. of F; Y stands for Y7 . Letting ¢(¢) = log f(¢) denote the cumulant
generating functions (egf) of F and ¢;(t) = log f;(¢) the cgf of Y; in a neighbor-
hood [t| < e of the origin where f(¢) < 0, we can write (4) in the form

(5) 2 cioi (t) = <E(U).

Note that, since F has moments of every order, the cumulants . of F exist for
every r and we can differentiate (5) any number of times in the interval [f| < e.
Thus differentiating once and then setting ¢ = 0, we get

(6) ke 2. cbit = " 2 ab; = 0,
by taking also into account the relation
2;”(0) = b0 (0) = bk, .

Since we assume that the distribution F is not degenerate, the variance ¢* = «,
is different than zero; hence (6) yields Y a;b; = 0, that is, condition (ii).
Differentiating (5) s times and setting ¢ = 0 gives

(7) K3+1ZCjbjs+l = x3+1a'b(” = 0,

which gives k.41 = 0 since, by Condition A, X ¢;b™ = > ab % 0fors > 1.
Thus «, = 0 for s > 2, which characterizes normality.

Remark 2. By Remark 1, the statistic V in Theorem 1 is not a multiple of X,
as already noted in Section 1, nor is it of the more general form \A’X. It is in-
teresting at this point to recall Rao’s [3] characterization of normality under the
hypothesis that ¥V s AA’X is the uniformly minimum variance least squares
estimate of an estimable parametric function in the usual regression model, when
the rank of the so-called design matrix is one, i.e., in the case of an essentially
unique estimable parametric function. Rao’s characterization involves the solu-
tion of the same type of differential equation as in (4), and his proof proceeds
like here. This points out an intrinsic relation between the property of constant
regression of a linear statistic on another and the property of minimum variance
of a linear (least squares) statistic regarded as an estimate of a parametric func-
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tion. Both properties, in the present context, imply that U (in [3] every linear
statistic in the error space) is uncorrelated with V. This in our case follows from
the fact that if ¥ has constant regression on X, then X and Y are uncorrelated.

In order to avoid Condition A on (a, b) and also motivated by Rao’s result as
just described, we consider, instead of U, n — 1 linear statistics which have
constant regression on V. More precisely, we have the following.

Turorem 2°. Let Xy, -+, X, be iid random variables with E(X;) = 0 and
0 < E(Xy") < . Suppose that there exist n — 1 linearly independent statistics

Ui=o/X, j=1,--,n—1 and V=0X
such that each U; has constant regression on V, i.e.,
(8) E(U/V) =0, . j=1---,n—1

Then each X; has the normal distribution.
Proor. Without loss of generality, let

al' = (1; 07 cte 707 aln)

a;—l = (O) 0, --- » 1, (1’4,,_1,,;).
By the lemma, condition (8) gives
(9) 'p(blt) + afn¢(bnt) =0, .7 =1--,n—1,

where ¥(¢) = '(t)/f(¢) and f denotes the c.f. of X;. Since X; is not degenerate
b, # 0, and we can take b, = 1 without loss of generality. Hence (9) can be
written as

'p(t) = df'p(bit); .7 = 1; N — 1’
and since b ¥ \A at least one b; satisfies 0 < [b;| ## 1. Thus assume without any
loss of generality that d; = 0,0 < |bs| < 1 so that
(10) Y(t) = dp(but).

Furthermore the assumption 0 < E(X;") < « implies that ¢'(¢) exists and is
continuous at ¢ = 0. Hence from (10) we get
Y(0)(1 — bidi) =0

which implies b1 dy = 1 since ¢'(0) 5 0. Thus (10) holds with |by dy] = 1 and
|b1] < 1. Now by Lemma 1 of [4] it follows that ¢(¢) = c¢t which completes the
proof.

Remark 3. Suppose b = AA and moreover some of the components of b
are proportional to +1 and some to —1. If in Theorem 2 we assume that the

3,Originally shown under the assumption that all the moments of X; exist. The author
thanks the referee for pointing out the present proof based on Rao’s recent paper [4].
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(s + 1)st moment exists, then, by analogy to (7) we obtain
(11) Kep10 0¥ = 0, j=1,-,n—1;
sinee vo = E(X,%), relation (11) with s = 1 gives

ab =0, j=1,+-,n—1,

whereas if s is even (11) implies that the (s + 1)st odd cumulant «.4; = O.
Thus if X; has moments of every order, then all the odd cumulants of X; are
zero and therefore its distribution is symmetric. Another case in which the
distribution of X; can be shown to be symmetric is obtained from (7) as a
corollary of Theorem 1.

CoroLLARY. Suppose that in addition to the assumptions of Theorem 1 the
following condition holds :

aja, >0 forall ,k=1,2,---,n.

Then the relation (1) implies that F is symmetric.

Now we give some multivariate analogues of the preceding results.

THEOREM 3. Theorems 1 and 2 hold if the random variables X, are p-vectors,
“moments’ are replaced by ‘“product moments” and ‘“normal’’ by “p-variate normal’’.

Proor. Let ¢t = (4, ---, t,)" be any constant vector and define Z;, = ¢'X;
(j =1, ---,n). Then the role of the scalar variables X; in Theorems 1 and 2 is
now played by Z;, and therefore the Z; are normal; since this is true for every
vector ¢, the assertion follows by direct application of the well-known charac-
terization of a multivariate normal distribution (see, e.g., [2], p. 30).
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