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ON RECURRENT DENUMERABLE DECISION PROCESSES

By LrLoyp FisHER
University of Washington

1. Summary. This paper considers decision processes on a denumerable state
space. At each state a finite number of decisions is allowed. The main assumption
is that if one always chooses the same decision at each state the resulting Markov
chain is ergodic (i.e. positive recurrent). Under this assumption it is shown that
all possible decision procedures are (in an appropriate sense) uniformly ergodic.

2. Introduction. We follow the notation of Derman [2]. We are concerned
with control of certain types of dynamic systems. The system is observed peri-
odically and classified into one of a denumberable number of states. I denotes the
state space. After each observation one of a finite number of possible decisions
is made. Let K; be the finite number of possible decisions when the system is in
the state 7. Let Y, and A;, ¢ = 0, 1, 2 - - - , denote the sequences of states and
decisions. We assume that

P(Yu =j|Yo,Ao, o, Y= 4,0, = k) = qii(k),

where the ¢;;(k)’s are known.

A rule or policy R for controlling the system is a set of functions
Du(Yo, Ao, -+, Y;) satisfying 0 = Di(Y,, -+, Y¢) = 1, for every k£ and
S K Di(Yy, Ao, -+, Y, = i) = 1, for every history Yo, Ao,---, Y,
t=0,1,2,--+). Di(Yy, Ay, - - -, Y,) is the instruction at time ¢ to make decision
k with probability Dx(Yo, Ao, - - -, Y,) if the partial history Yo, Aq, -+, ¥, has
occurred.

Let C denote the class of all decision rules. Let C’ denote the class of stationary
Markovian rules, i.e. Di(Yo, Ao, - ++, Y, = 2) = Dy independent of ¢ and the
past history except for the present state. Let C” denote the sub-class of ¢’ for
which Dy = 0 or 1. C” is the class of nonrandomized stationary Markovian rules.

If Re(’, Y, is a denumerable Markov chain with transition probabilities

P = Y5 Dagi(k) for 4,jel.
Let E’ denote the set of transition matrices resulting from R & C'. E” bears a
similar to C”.

We shall be working under the assumption that each P ¢ E” is the transition
matrix of an ergodic (i.e. positive recurrent) chain. For P ¢ E” let a(P) be the
unique nonnegative stationary vector of mass one associated with P. Let
o(E") = infpegs a(P). (This is the pointwise inf, component by component.)

We shall show later that each P ¢ E’ is ergodic. Thus, we similarly define a(P)
for P ¢ E' and a(E’). Each rule R ¢ C will also be shown to be ergodic in the
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following sense: For any state 0 ¢ I and decision rule R, let
a(R)o = lim infr.. Bz (number of visits to 0 up to time 7 | Start at 0)/7.
Thus, we define a(C) = infz,c @(R). Then a(C) > 0.

3. Uniform ergodicity of E”. This section is devoted to showing that «(E”) > 0

We will say that a sequence of transition matrices P(n) converges to P if for
each ¢ 3 n(7) such that P;j(n) = Py for n = n(7) and all j. We shall write
P(n) — P. In other words, P(n) — P if and only if each row is fixed from some n
on, where n may depend on the row. Since each P ¢ E” has only a finite number
of possible ith rows it is easy to see that any sequence P(n), P(n) ¢ E”, has a
subsequence converging to a member of E”.

To show that a(E”) > 0 we need to show that for each ¢ &I there is no
sequence P(n) of elements of E” such that a(P(n)); — 0. We will arrive at this
result by finding a contradiction. Let 0 be some fixed element of I.

LemmMa 1. Let P(n) — P, {P(n)} € E” and a(P(n))o— 0, then a(P(n)); — 0

for each j e 1.

Proor. Since P ¢ E” is ergodic, 0 and j commute in the chain P. Pick a sequence
of states j1 y Ty jm_1 such that POjIPj;j2 cee ij_lj > 0. Forl = N let
Py.(1), P;,.(1), -+, Pj,_,.(1) be fixed (and hence having the same values as P).

Then for I = N we have P§;™ (1) = P§’(1)Po;,Pj,s, - -+ Pi,_,i = P& (1)P*
where P* > 0. Thus,

a(P(1)); = liMamw [ D2 100 P6Y (1) /M] = limyaw [ D11 P57 (1) /M)
< P* liMpow [ 21" Poo(1) /(M — m)]-(M — m)/M = P*a(P(1))0.

By Lemma 1 we know that if a(P(n))o — 0 then a(P(n)); — 0 for each j.
In the next few lemmas the following situation will occur. Suppose that P(n) — P
and a(P(n)) — 0. It will be desirable to replace the kth row of P(n) by one fixed
decision at state k. Call the new sequence P(n). We want to consider whether or
not a(P(n)) — 0.

LeEMMa 2. Let P(n) — P and a(P(n)) — 0. Form a new sequenceP (n) by re-
placing the kth row by a row corresponding to a fixed decision at state k. If
a(P(nn)) - 0 for any subsequence n., then for all j # k, M(n) is bounded in n,
where M j(n) s the mean time to go from j to k in the Markov chain P(n). Also
Mii(n) — + .

Proor. Let M;;(n) be the expected time of first return to j after starting at j.
Since a(P(n)); = 1/M;i(n), a(P(n)) — 0 is the same as M;;(n) — « for each
7. The mean return time to j is less than or equal to the mean return time to j via
ks jor

(i) Mu(n) + Mii(n) = JJ(n) for k 5= j.

Form the new sequence P(n) — P and suppose we cannot find a subsequence
7y, with a(P(nz)) — 0. Then M ji(n) is bounded for each j where Mj;(n) is the
M ;; for the chain P(n) Since P(n) — P we may use the trick of Lemma 1 to
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show that forn = N(4,k),7 # k,
Mu(n) = P(j, k)M(n) where P(j, k) > 0.

Since Mix(n) is bounded, M(n) is bounded and by (i), Mi(n) — + . (Note
that M ;x(n) depends only on P(n) and not P(n).)

Lemma 3. Let P(n) — P, a(P(n)) — 0. With the exception of at most one row,
say the kth row, we may replace the ith row (giving P(n) — P) and have
a(P(ng)) — 0 for some subsequence ng .

Proor. Suppose that we may not replace the kth row. Then by Lemma 2,
M i(n) is bounded for ¢ # k. Since Ma(n) + Mri(n) = M;(n) this implies
that Myi(n) — + . Thus it is not true that ¥; & 7, M;i(n) is bounded (i.e. let
J = k). Thus, by Lemma 2, we may change the sth row.

Before proceeding to Lemma 4 we introduce some notation and terminology.
Let P(n) — P and K C I. We shall say that K is a fixed set if k ¢ K implies that

For any Markov chain with transition matrix P and B € I we define
Mw(P, B) = ), tP (beginning at 0 that the first return is at time ¢ and

the path up to the return is entirely in B u {0}.) Clearly, Mo(P, B) < Muy(P).

LemMa 4. Suppose that P(n) — P, {P(n)} € E” with a finite fived subsetK,

and that a(P(n)) — 0. Let N > 0. We can find a new sequence {P(n)} C E”,
P(n) — P with a finite fired subset L D K such that Pi.(n) = Pi.(n) for k ¢ K and
Myw(P,L) = N.

Proor. Since My(n) — + « choose m such that Mo(m) > 2N. By monotone
convergence choose a finite set L C I and K C L such that My(P(m), L) > N.

It would be nice if we could form a new sequence P(n) — P where P(n) = P(n)
except that all rows of P(n) corresponding to j € L are the same as the jth row of
P(m). If a(P(n)) — 0 we are done.

We try to effect P(n) by taking our current sequence P(n) and replacing one
row corresponding to a j & L by the corresponding row of P(m) and choosing a
subsequence P(n;) — P such that a(P(n:)) — 0. If L has more than two ele-
ments by Lemma 3 we may replace at least one element of L. We keep trying in
this manner to replace more and more rows corresponding to j ¢ L (and each
time taking a subsequence of the current subsequence). As we replace a row the
row which we are not allowed to replace may shift (or not exist at all), but
eventually we have a new sequence P'(n) — P, a(P'(n)) — 0, where P’(n)
has the same jth rows as P(m) for all j ¢ L with possibly one exception. If all the
rows for j ¢ L are the same we are done.

Thus, suppose that we were not able to replace one row. Let this row be jo.
Since there are only a finite number of possibilities for the joth row we may choose
a new subsequence where the jith row is constant. We may assume that
P'(n) —» P, a(P'(n)) — 0. L is a fixed set for P'(n) and P;.(n) = P;.(m) for
jeL,j* jo.

* We now begin the whole procedure over again using L as the fixed set. We
choose a & and a set M D L such that Mo(P'(k), M) > N. We would like to re-
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place all rows in P’(n) corresponding to elements of M by the corresponding row
of P'(k) and still have « — 0. As above we replace one row at a time (taking a
subsequence of the last subsequence). The exceptional row which can not be re-
placed may move around, but eventually we have replaced all rows except one.
Suppose that the one which cannot be replaced is the joth row. Then we are done
since P’(k) has the given jith row (since that was the same for all P'(n)). If
the exceptional row is not the joth row then replace the jith row by the joth
row of P(m), (the thing we originally desired to do). Then we are done by the
fact that Mo(P(m), L) > N.

Finally, it is noted that in either eventuality K remains a fixed set.

The following theorem eliminates the need for assumption (F) in Derman [1]
since Derman’s condition (C) implies (F) which is used only in conjunction
with (C).

TaEOREM 1. o(E") > 0.

Proor. Suppose not. Pick a subsequence P(n) € E”, P(n) — P, a(P(n))o— 0.
Using Lemma 4, choose a new subsequence P'(n) — P, {P(n)} C E” with L(1)
fixed and Mo(P', L(1)) = 1. Proceeding inductively choose P*(n) — P,
{P*(n)} € E", L(k) D L(k — 1) fixed and Mo(P*, L(k)) = k.

Let P ¢ E” and P;. = P%. if l ¢ L(k) for any k. Then

Mow(P) = Mow(P*, L(k)) = k.

This implies Mo(P) = « which contradicts the assumption that all P ¢ E” are
ergodic, i.e. a(P)y = 1/Myn(P) = 0. Contradiction. Therefore one cannot find
{P(n)} € E", a(P(n))o— 0. Thus «(E") > 0.

COROLLARY 1. suppezr a(P) < 1 and M;;i(P) is uniformly bounded for P ¢ E",
(provided that I has at least two elements).

4. Uniform ergodicity of all rules R ¢C. We extend Theorem 1 to all rules
R & C by first extending it to €’ and then to C.

THEOREM 2. a(E") = a(E").

Proor. Since E' D E” it is clear that a(E') < o(E").

(A) We first show that if we take P’ ¢ E” and replace the policy at one state,
say 0, by a randomized Markovian strategy the resulting Markov chain P has
a(P) = «(E"). Thus, let P’ ¢ E” and P = P’ except for the Oth row where
Py = D2 5% N:Po.(7) where As = 0, 359 \; = 1 and P,.(¢) corresponds to a
stationary Markovian decision at state 0. Let M;; = supp.sr M;;( P). To show
that a(P) = a(E") is equivalent to M;;(P) < M;; for eachj ¢ I.

(i) Mw(P) £ My. It is easy to see that Mo(P) = > 5% NiMoo(P(7)) where
P(i) = P’ except for the Oth row where P,.(7) is used. Thus, since P(¢) ¢ E”
and Moo(P(i)) _S_ Moo, Moo(P) § Mo().

(i) j = 0, M;(P) = Mj;. N

We digress slightly before continuing the proof. Let P be an ergodic Markov
chain. Let ¢ be the stopping time of the first visit to 0 or j after time 0. Let
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M(P) = E(t|begin in state j) and M'(P) = E(t | begin in state 0). Let “H ;(P)
be the probability starting in ¢ of hitting state j before hitting state k (after time
0). Then

M;i(P) = M(P) + 'Hj(P)Mo(P)  and
Mo(P) = M'(P) + "HoMo;( P) or
Mo(P) = M'(P)/(1 — Hu(P)).

Thus, if P ¢ E”,

(1) M;i(P) = M(P) + ‘H;( P)M'(P)/(1 — "Hu(P)) < Mj;

Returning to our proof let P(7) be the matrix P’ with the Oth row given by
Po (7). It is probabahstlcal]y clear that M (P) = M(P') = M(P(i)) and

‘Hj(P) = ‘Hi(P') = *Hjo(P(4)) fori = 1,2, , Ko since the above quantities
do not depend upon the transition probabllltles at zero. Thus,

(2) M;i(P) = M(P") + "Hj(P")Mo;(P)
where

Mo(P) = 25 M(M'(P(5)) + "Ho(P(3))Moi(P))
so that

Mo(P) = 2 FanM'(P(3))/(1 — 225 N’ Ho( P(3))).
Using M (P(%)) = M(P"), Hi(P(3)) = H,o(P") and (1)
Hio( PYM'(P(3)) £ (Mj; — M(P"))(1 — Huw(P(1))),
1=1,2,---, Ko, whence
Hi(P') 5 NM'(P(3)) = (M;; — M(P))(1 — SEaNHo(P(5)))

or ‘Hj(P)Moy(P) £ M;; — M(P') which, combined with (2), gives
M, (P) £ Mj; the desired result.

(B) We now note that we may take any P ¢ E" and randomize a finite number
of rows (i.e. change them to correspond to a randomlzed policy at that state)
and still have the new P’ satisfying a(P’) = a(E"). We have just proved this
for one state Suppose that this is true for any subset of n states. We may form a
new Ey” which consists of all of the old P ¢ E” and also allowing the n randomized
rows (or pohcles) desired. Then E,” satisfies all the conditions of E” and
a(Ey") = a(E") by induction. By using part (A) we may now randomize an
n + 1st row. By induction we may do this for any finite number of rows.

(C) Let P.c E'. Suppose that a(P), < o(E" )o , then we may choose a ﬁmte
set 8 C T such that Mo(P, 8) > My. Form P’ by Pi. = P;. for ie S and P;.
corresponds to a ﬁxed policy at j if j £ S. Then M wP) = M oo(P S) > My so
that a(P’) < a(E" )o contradicting (B). Thus, a(P) = a(E") for each P ¢ E/,
hence, a(E’) = a(E") finishing the proof.

For any R e C let My(R) be the expected value of the first return to zero
under policy R if the system begins in state 0. As before Mo = supp.zr Moo(P).
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A rule R&C is called memoryless if Di(Yo, Ao, -+, Y, = 3) = D). A
memoryless rule depends only on ¢ and the current position 7 but not on the whole
past history. We modify an argument used by Derman and Strauch [2] to prove
the following:

LemmA 5. For each R ¢ C there is a memoryless rule Ry € C such that

Moo(R) = Moo(Ro).
Proor. Given an R ¢ C we define R, by
DY = Pe(A, =k|Yy=0,Y,%0,Y:%0,Y,4,0,Y, = 1)

if the conditioning event has positive probability. Otherwise we define DS = & .
DY = Di(Y, = 0) for R. We proceed to show by induetion that

(8) Pgy(Ye=0,Y1#0,---,Y,1#0,Y,=1) = P (Same Quantity)

for each 7 ¢ I and time ¢. For ¢ = 0 and ¢ = 1 we clearly have equality. Assume
this is true for ¢ — 1, then

PEPR(Y0=O,Y1¢O,"',Yt—1¢0,Y¢=’L')
=D tr0 D i 2w Pe(Yi=i|As =k Vg = 1)
'RR(Az_l = k, Yg_l = l, Yo = O,Ao = ]Co, Yl = 7:1,A1 = ]Cl, Tty Yt—l = l)
where Z* is the sum over all (ky, %1, k1, %2, -+ -, ki—2) allowed with 7; 0,
j=1,---,t—2.1f we move the X_x past Pe(Y: = 1|Ai1 =k, Yy = 1) since

>« does not affect 7, or k we have
(4) P = Zlel,l;éo ZkKil PR( Y, = ilAt—l = k, Yia= l)
'PR(Az_l = ]C, Yt_l = l, Yo = 0, Yl # O, Ty, Yt_z #= O)

Now, Pa(Y, = A=k Y =1) = qu(k) = Peo(Yi=¢|Asa =k, Yoy = 1).
The second Py term in (4) is

Dk(t—l)‘PR( Yo=0,Y:#0,---,Y,2#0,Y,,=1)

=D PP (Yo=0,Y1#0,---,Y5#0, Y, =1)
=PeAra =k, Yy =1, Y, =0Y1#0,---,Y, s 0).
Thus,
P=2tro ) i Pe(Yi=i|Ay =k, YVig=1)
PrAea =k, Yy =1L, Yy =0,Y; #0,---, Y, # 0)
=Pr(Yo=10,Y1 0, , Y, 50, Y,y =1).

Thus, we have
Pr (Return to 0 for the first time at time n)
= Pg, (Same Quantity) which implies Mo(R) = Moo Ro).
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LemMA 6. For each R e C, My(R) £ M.

Proor. Suppose that Mo(R) > My . By Lemma 4 we may assume that B is a
memoryless rule.

Let ¢, be the stopping time given by the minimum of n and the first return to
zero. By monotone convergence we may find a finite m such that Ex(t,) > M.
Form the new rule R ¢ C such that R follows the rule R until time m. After time
m all transitions take place according to a fixed transition matrix P ¢ E”. R is
still a memoryless rule. Since P ¢ E” under the rule R the process returns to 0 with
probability one. Consider the new rule R* which behaves according to rule R
until a return to origin, R* then acts as if R were beginning again at zero.

Consider a state space S consisting of zero and pairs (2, ¢t),7¢ 1,7 # 0,1 = 1,
2, - - - . Consider the transition matrix P on S,

Pogn = Pae(¥1 = i| Yy = 0) for 50,
Poiy =0 for ¢t > 1,
Pog = Pes(Y1 = 0] Y, = 0).
Fori # 0, PupGurny = Pes(Yen = 3| Yo =0,Y1 50, V. %0, ---, Y, = 7),
Pino=Pee(Yua = 0| Yo = 0, V1 # 0, -+, Viy # 0, ¥ = 1),
Pao.Gan =0, t #t+ 1.

Then one has a recurrent Markov chain on 8 and Mu(R*) = My(P). Let o
be the unique positive stationary vector for P where possibly Zies a; = + oo,
Since R was memoryless

Pungem = 2iaNii(k)qi;(k)  for appropriate Ns«(k).
(i) fori = 0,¢> 1,
a(i, t) = Dierimalf, t — 1) 28 N a(k)gik).
(ii) forz £ 0,¢t = 1,
(4, 1) = a(0) 2 8% No(k) qoi( k).
(iif) for 0,
a(0) = Dirim 2 paa(i, ) 2 hilk)gu(k) + a(0) 5% No(k)goo(k).
Fori = 0 We define
ai = 2t a(t), k) = 2 a(s, (k) /ai.
Then we see that from (i) and (ii),
ai = a(0) 2t (k) goi(k) + Dot Dierimoald, £) 2otk N (k) gsi(k),
a; = a(0) 2k Mo(k)qoi( k)
t Dser.imo 21 o 2ot (g, DONg.(R) /)i k),
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(5) = D nnioa; 2ot N(K)gs(k) + (0) 2% No(K) goi(k).
Similarly,

(6) a(0) = a(0) 2ok No(k)goo(k) + Djerimo s ida Xi(k)gio(k).

If we consider the matrix P ¢ B with Dy = \i(k) for ¢ % 0 and Dy = No(k)
we see that from (5) and (6), aP = a. Thus, normalizing « so that Dwras =1
we have a(0) = 1/Mw(P) = a(E") by Theorem 2. Since « has finite mass P
is an ergodic Markov chain. Since 1/Mw(P) = «(0) we have M oo(R ) =
Moo(P) = Moo, which contradicts Mo < ER(tm) = Moo(R) = Moo(R )

Turorem 3. If R e C, a(R) = a(E").

Proor. In the previously mentioned paper of Derman and Strauch [2] during
the proof of Theorem 2 it is shown that for each R & C' there is a memoryless
Ro ¢ C such that Pr(Y; = | Yy = 0) = Pg,(Y, = 7| Yo = 0) for each 7 and ¢.
Although their proof was written under the assumption of a finite I the proof as
written is valid for denumerable I. Thus,

a(R)o = llmlnfT_,wER( Zq,_l 6oyi)/T llmlnfqv_»oER (Z 16017 )/T = a(Ro)o

so that without loss of generality we may assume that we are working with a
memoryless rule B.

Let X, be the (random) time between the n — 1st and nth return to zero.
Since our rule is memoryless the distribution of X, is completely specified if we
know S,—1 = 2=+ X;. By Lemma 5 we have E(X, | Ss1) £ Mo . Let My = 0,
M, = S, — nMy for n = 1. Then

E(Mn+1|Mn) = Mn + E(Xn+1|Sn) - MOO = ]‘[n

Thus M, is a supermartingale.

Let N, be the number of return visits to zero up to and including time n. Then
N, + 1 is a bounded stopping time and E(|Sy,+1]) £ E(Smp) < «. By a
standard martingale theorem (e.g. Kemeny, Snell and Knapp, [4] see remarks
following Theorem 3-15) we have

E(MN,H_],) E(Mo) =0 or E(N + 1)Moo E(SN"_H).

Noting that Sy,+1 = n we have

E(N, + 1)/n = E(Sy,1)/Mun = a(E")E(Sy,41)/n 2 a(E"),.
Thus,

a(R)o = im infpow B(N,) /1 = lim infrae B(N, + 1)/n = a(E"),.

The proof of the theorem is complete.

ComMeNTs. To prove part (A) in the proof of Theorem 2 one cannot use the
argument that if P and P! are matrices of ergodic chains and 0 < \ < 1, then
P”= AP + (1 — \)P'is ergodic, i.e. convex combinations preserve ergodicity.
To see that this is false let us consider the state space of the nonnegative integers.
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Let
Pos =1, Pigia = %, Poisive = %, Poinngi = 1, Poingirs = %

fOI"L.= 1,2, e Plo = 1.
Pia=1, Pig = 1, Pyigisa = 8, Prigia = 3, Piiisia = 2, Piipigis = %

Tt is easy to check that P and P' are ergodic, but P’ = 3P + 3P" is the transi-
tion matrix of a transient chain. In fact if one takes a convex combination of
two transition matrices each of which may be either transient, null recurrent
or ergodic the result may be any of the three types.

One may construct examples of denumerable decision processes where each
R & C” leads to an ergodic chain by using the criteria given in a paper by Lam-
perti [5]. )

These results may also be used to provide an example of a decision process
which has an optimal rule, but no optimal rule in €’ (Fisher and Ross [3]).

REFERENCES

[1] DeErMAN, C. (1966). Denumerable state Markovian decision processes—average cost
criterion. Ann. Math. Statist. 37 1545-1553.

[2] DErMAN, C. and StraucH, R. E. (1966). A note on memoryless rules for controlling
sequential control processes. Ann. Math. Statist. 37 276-278.

[3] FiseER, L. and Ross, 8. M. (1968). An example in denumerable decision processes.
Ann. Math. Statist. 39 674-675.

[4] Kemeny, J., Snery, J. L. and Knapp, A. (1965). Denumerable Markov Chains. Van
Nostrand, Princeton. )

[5] LamperT1, J. (1963). Criteria for stochastic processes: passage-time moments. J. Math.
Anal Appl. T 127-145.



