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ON THE MOMENTS OF ELEMENTARY SYMMETRIC FUNCTIONS OF
THE ROOTS OF TWO MATRICES AND APPROXIMATIONS
TO A DISTRIBUTION

By C. G. Kuatrr anp K. C. S. PiLrar
Gugjarat Unwversity and Purdue University

1. Introduction and summary. Let A; and A, be two symmetric matrices of
order p, A; , positive definite and having a Wishart distribution ([2], [23]) with
f1degrees of freedom and A, , at least positive semi-definite and having a (pseudo)
non-central (linear) Wishart distribution ([1], [3], [23], [24]) with f, degrees of
freedom. Now let

A, = CYY'C
where Y is p X f» and C is a lower triangular matrix such that
A+ A, = CC.

Now consider the s(= minimum (f,, p)) non-zero characteristic roots of the
matrix YY'. It can be shown that the density function of the characteristic roots
of Y'Y for f» < p can be obtained from that of the characteristic roots of YY' for

fo = pif in the latter case the following changes are made: [23]

(1.1) (fr,fo,p) = (h+ fo =, 0, f2).

Now, in view of (1.1), we consider only the case s = p, based on the density func-
tion [12] of L = YY' for f» = p.

In this paper, some results are obtained first regarding the 7th elementary
symmetric function (esf) of the characteristic roots of a non-singular
matrix P (tr; P) which are useful to compute the moments of tr;L and
tr; {(I — L)™ — I}. In particular, the first two moments of tr, L are obtained in
the non-central linear case. These two moments of the above criteria in the central
case have been obtained earlier by Pillai ([18], [19]). Further, from a study of the
first four moments of U™ = tr {(I — L)~ — I}, [11], [14], two approximations to
the distribution of U® were obtained in the general non-central case. The ap-
proximations are generalizations of those given by Khatri and Pillai [10] for the
linear case. The accuracy comparisons of the approximations are also made.

2. Some results on 7th esf of the roots of a matrix. In this section, we prove
three lemmas which will be used to obtain the moments of tr;L and
tr; {I — L)™ — I} in the next section.
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LemMma 1. Let
!
x a 1
P=<a M+aa'/x)p—1
1 p—1

be a non-singular matriz and let M be equivalent to a diagonal matriz. Then, with
M’ =1, and tryM = 1,

tr;P = tr; M + 2trig M 4+ 27" 2 (—1)7(a'M%) (trie; M) for ¢ < p
=z M| i ¢=p,
and
P (—1)(a'Ma) (trp-1s ;M) =0 for k=0,1,2, ---.

Proov. Since M is equivalent to a diagonal matrix D (say), then there exists
a matrix Q such that M = QDQ™". D is non-singular because P is non-singular.
Hence there exists some 6( <1/max;|di|, di (s = 1, 2, --+, p — 1) being]the
diagonal elements of D) such that

(2.1) Dot (—1)'M%* = (I,.1 + 6M)™, a convergent series.
Now, we have

1+ 6z ga’

L, + 6P| = fa I, + 6M + 6aa’/z

= (1 + 6z)|Ip—+ oM

+ 627" (1 + 6x) aa’|
and so
(2.2) I, + 6P| = |I,.; + 6M|{1 + 6z + 6z""a’(I,_, + 6M) 'a}.
Moreover, we know that
(2.3) I, + 6A] = > 2,6 tr; A with troA = 1.
Using (2.1) and (2.3) in (2.2), we get
(24) D Po0tr:P = (O P 6 tr M) {1 + 6z + 27 D 1eo(—1)%""(a’'M’a)}

valid for 6 < 1/max; |d|, d’s being the ch. roots of M.
Equating the coefficients of 6° (for 7 < p), we get

(25) tiP=tr; M+ ztria M + 270 D ics (—1)(a’'M’a) (tria_; M).
Now, directly, it is easy to see that

(2.6) tr, P = [P| = z |M| = xt,.,M

while the coefficient of §” in (2.5) is ,

(2.7) tr, P = 2t M + 27 D220 (—1)(a’'M?a) (tr,—1—;M).
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Hence, (2.6) and (2.7) give

(2.8) o (—1)’(a'M’a) (tr, M) =0,
while the coefficient of 6°* (k = 1) from (2.5) gives
(2.9) SopHE (1) (a’'Ma) (trp11x— M) = 0.

Thus, (2.5), (2.6), (2.8) and (2.9) establish the Lemma 1.

LevmwMmA 2. Let
I U 1
L = 1 L11 P — 1

1 p—1

be a symmetric matriz of order p, Lgy = Lu — 1/l , I pe1 = Ly, , be posttive definite
andu = (Ip._l —_ ng) 2]./{lu(l bl lu)} Then with ng = Ip_l and tI‘o L22 = 1

tr;L = (tr;Las + tri_i La)
(2.10) — (1 — ly){triaLes — D920 (L — LiHu(tria—;La)}
for 1 <0p
= Iy |Lw| for <= p.
Proof follows from Lemma 1 by noting
=1y, a=1= (I, — Lp)u{lu(1 — )} and M = Lyp.

. LemwMa 3. Let L, Ly, and u be defined as in Lemma 2. Let U = (I, — L) —
and M = (I,y — Lyy)™ — Iy Then

tr; U = (@ — W) (1 —d'u)} e M + tr M
(2.11) + (1 — du)™ 2 (D) + M u(tria; M)
for 1< p
=I{(1 — W) (1 —u'u)} M| for i=p.

Proof follows from lemma 1 by noting (see [8])

_ _ -1 _ x a,
U=(@-1 L <a M + aa'/x) ’

wherez = ly/{(1 — lun)(1 —u'u)},a = (I, — L)~ ha/{(1 — )1 — uu)}
and M = (I, — L) — I,-1. Note that M+ M™M= (I,; — Lp)"M’ =
M/(I — L) ™ = (L1 — L) "M(T,s — Lp) ™

3. Moments of tr; L. First note that the distributions of I, u and Ly, in
Lemma 2 are available in [8], [9] except that the non-centrality parameter will be
denoted here by \ in place of 2\’ given there. Now let Lo be the L matrix when
N = 0 and let L o be the top left corner element of Lo . Then

(3.1) 2 =E(Q1 — luo) — EQ1 — lu) = f18(»),



FUNCTIONS OF ROOTS OF MATRICES 1277

(3.2) = E(l —lno)’ — E(l — )’ = (i + 2)As,
(3.3) g = E(1 — o) — E(1 — )® = $i(fi + 2) (i + A,
and
(34) @ =E(1 — luo) — B(1 — ln)* = (1/48)fi(fi + 2) (i + 1) (i + 6)As
wherev = fi + f»,
8(v) = v exp (—3N) 2 NG TGy + i+ )T
= 7[5 (1 — y)P exp (—3ny) dy
(3.5) =N 2 (=N +2)r+4) - (v + 2+ 2)
if A<v+2
= 2 D (=DFEH G
— (=@ exp (—N/2)(3N) 7] if Lv s an integer,
(36) A=06(y) —8(r+2), Av=25()—26(r+2)+8(r+4) and
As = 6(v) — 35(» + 2) + 38(v + 4) — 5(» + 6).

The results (3.1) - (3 4) are obtained by using the partial fractions for
b+ 2)(»+4)- ]

Moreover, let

(3.7) By = triiLay — 2500 (—1)%' (L — Lz )u(trio, Las),
and

(3.8) oy = triLes 4 triyLes.

Then

(3.9) E(tr;L) = E(tr;Lo) + 1.EBis ,

(3.10) E(tr;L)* = E(tr:Lo)’ — 2EBiw + 2mBaioBics

(3.11) E(tr;L)® = E(tr:iLo)’ + 2:EBiw — 3m:Efiwmonn + 3:EBiwmai
and

(3.12) E(tr;L)*

Il

E(triLo)* — zEBicy + 4x:EBuoancy
— 6m:EBlmain + 4a1BBiwais) -
Now consider 7 = 2. We have
(3.13)  HBiw = E{(a + 2) trLu + 2 trs Lo} /fs
{p = D — DG, = p)}/{ — D — 2)},
(3.14) Efimarey = {(a + 4)E tr Ly try Loy + (a + 2)E(tr Ly)*
+ 2E(trs L))"} /fi
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and
Eiey = {(a + 2)(a + 4)E(trLx)* + 8E(tr: L)’
(3.15) + 4(a + 3)E(tr Lo tro Los) — 4E(tr Log try Los)
— 8E traLy — 12E try Ly — 4E tr: Lo} /{fi(fL + 2)},

where a = fi — p, trLoy = tri Loy, EtriLee = (°7) [Tic { (2 — )/ (v — )},
Etan tr{ng = (EtI‘Zng){(p —_ 1)(f2 — 1)(1’ — 1 + 1) + 21,((1 + 1)}/
{(v + 1)(» — ¢ — 1)}, and E(trs Ly)® can be obtained from E(tr, L,)* by chang-
ing p to p — 1 and f» to f» — 1. Note that E(tr,Lo)’ is available in Pillai ([18],
[19]). Using the results (3.13) to (3.15) in (3.9) and (3.10) we get the first two
moments of tr; L.

4. Approximations to the distribution of U™, The moments of U™ (a con-
stant times Hotelling’s 7’) have been studied by Pillai in the central case [14],
[15], [16], [17], [22] and in the non-central linear case by Khatri and Pillai [8],
[9], [10] who obtained the first four moments of U®. Further, more recently,
Khatri and Pillai extended this study to the most general case [11], i.e., to the
case of number of population roots \; (¢ = 1,2, --- , ), r < p. Constantine [4]
has derived independently the first four moments of Hotelling’s T’y statistic in
terms of generalized Laguerre polynomials and has computed the first two
moments in the central case for illustration.

Pillai [20] has given an approximation to the distribution of U® in the linear
case for fi > f». This has been generalized to the case of U® by Khatri and
Pillai [10] in the linear case for f; > (p — 1)f,. The following is a further generali-
zation of the latter to the most general case in the light of the first four general
non-central moments.

(4'1) g(U(p)) — (U(p))m—l/{(l + U(p)/k)p1+qx+1kmﬁ(pl ,q _|_ 1)}’
0<UP < w,

where

P = 2q/{q:(h — 1) — 2h},

@ =2{(@—3)h—(c+d)’(a—D}/{(a—=3)(h+1) —2(c+d)(a — 1)},
k= cfg(h — 1) — 2h}/{2(a — 1)},
h = (c+ 1.99d)*(a — 1)/{(c + d)*(a — 5)c},

c=pf+ 2N and d={fi+ (1 — p)fs — 1}/a.

Further, as a generalization of Patnaik’s non-central F approximation, [13],
a second approximation for the distribution of U® was suggested by Khatri and
Pillai in the linear case [10]. That second approximation is further generalized as
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below:
(42) q(U?)
= (U1 + U /) Ok 8(3m, dm)}, 0 < U < o,

where
2{w' (U} (a — Dl/l(a — 3)w'(U?) — (a — 1){m' (U™},

vro=a-+1 and kl = {M1,<U(p))}<a - 1)/111.

It may be pointed out that approximation (4.2) has been obtained by equat-
ing the first two respective moments of the approximate and exact distributions,

while (4.1) has been suggested using the first three exact moments but equating
only the first approximate and exact moments.

Il

41

6. Accuracy comparisons. For p = 2, Pillai and Jayachandran [21] have

TABLE 1
Values of GU®), G1(U®) and F(UD)

f Sa M A2 um QU®) G U®) FU™D)
13 3 1 1 1.45081 .895 .891 .888
23 7 1 1 1.31973 .914 .911 .910
13 5 1 2 2.17706 .892 .889 .885
23 3 1.5 1.5 0.68072 .844 .833 .829
13 5 1 3 2.17706 .868 .863 .858
33 5 2 2 0.65171 .830 .823 .819

obtained the cdf of U® which is also given in [10]. Denoting this cdf by F(U?),
the cdf from (4.1) by @(U®) and from (4.2) by Gi(U*®), some numerical com-
parisons may be made on the accuracy of the approximations from Table 1.

The values of U® in Table 1 are taken from [21]. As in [10], for p > 2, the
method of comparison assumes the exact cdf to be a Pearson type with the first
four moments the same as those of the exact. Thus using the “Table of per-
centage points of Pearson curves for given B! and B., expressed in standard
measure” [7], upper 5 per cent points are obtained for selected values for f;,
fa,and \; (¢ = 1, -+ -, p), and similar upper percentage points are obtained for
approximations (4.1) and (4.2). These are presented in Table 2. In Table 2,
forp = 3,1 = 84 and f, = 14, the 95 per cent point from Pearson type approxi-
mation(given under the exact column) is 0.858. From Ito’s asymptotic formula,
[5], (6], the probability corresponding to 0.858 is 0.957. But for p = 3,f; = 64 and
fo = 14, corresponding to 1.278, the probability from Ito’s formula is 0.965.
Since the values of f; are not too large, these results are to be expected. In fact,
for the power tabulations [6] Ito has taken values of fi = 100 or above. It may
be pointed out that for computing from Ito’s formulae, Patnaik’s approximation
[13] to the non-central chi-square has been used, as did Ito.
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TABLE 2
Upper § per cent points using the exact moment quotienis and the approzimations (4.1) and
(4.2)
P tage Poi

P 2 A N N N N . ercentage Points

Eqn. (4.1) Eqn. (4.2) Exact
2 23 3 0 25 2.768 2.937 2.931
3 24 4 1 2 3 1.655 1.693 1.685
3 84 14 1 2 3 0.853 0.861 0.858
3 24 4 2 3 6 2.065 2.109 2.123
3 64 14 2 3 6 1.266 1.279 1.278
5 56 6 1 1 1 1 1 1.058 1.068 1.061
5 56 6 1 1 2 2 2 1.141 1.155 1.146

Tables 1 and 2 show that approximation (4.1) becomes closer to the exact as
p increases. However, approximation (4.2) still maintains its accuracy noted for
p = 1 (Patnaik’s), [13], even for larger values of p considered in the tables above.
Further, it should be pointed out that the condition f; > (p — 1)f, applies for
both approximations. The findings about the approximations in the general
case discussed above are similar to those obtained for less general cases discussed
earlier [10], [20].

The authors wish to thank Mrs. Louise Mao Lui, Statistical Laboratory,
Purdue University, for the excellent programming of the material for the com-
putations in this paper carried out on the IBM 7094 Computer, Purdue Uni-
versity’s Computer Science’s Center.
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