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OPTIMAL DESIGNS ON TCHEBYCHEFF POINTS'

By W. J. STuDDEN
Purdue University

0. Summary. Kiefer and Wolfowitz (1959) proved that the optimal design
for estimating the highest coefficient in polynomial regression is supported by
certain Tchebycheff points. Hoel and Levine (1964) showed that the optimal
designs for extrapolation in polynomial regression were all supported by the
Tchebycheff points. These results were extended by Kiefer and Wolfowitz
(1965) to cover nonpolynomial regression problems involving Tchebycheff
systems and the large class of designs supported by the Tchebycheff points was
characterized. In the present paper it is shown that the optimal design for es-
timating any specific parameter is supported by one of two sets of points for
Tchebycheff systems with certain symmetry properties. Different proofs of the
Kiefer-Wolfowitz results are also presented. The author wishes to thank Professor
Kiefer for providing one of the counterexamples in Section 6.

1. Introduction. Let f = (fo, /i, -+, f») denote n + 1 linearly independent
continuous functions on a compact set . For each = £  an experiment can be
performed. The outcome is a random variable y(z) with mean value 7= 0:f:(z)
and a common variance ¢°. The functions fo, fi, - -+ , fa , called the regression
functions, are assumed known while 6, 6, - - , 6, and ¢” are unknown. An
experimental design is a probability measure £ on X. The problem concerned with
here is that of estimating a linear form (¢, 8) = D f=ocf:. It will always be as-
sumed that D f—oc > 0. For a given design £ let ms; = myj(g) = f fif; d& and
M (&) = ||mi(§)||ij=0. A linear form (¢, 9) is called estimable with respect to £
if ¢ is contained in the range of the matrix M (£). If ¢ is estimable with respect
to £ let

Ve, £) = sup (¢, d)*/(d, M(£) d)

where the sup is taken over the set of vectors d such that the denominator is
nonzero. If ¢ is not estimable with respect to £ we define V (¢, £) = «. Suppose £
concentrates mass £; at the points z;,2 = 1,2, --- , r, and &N = n; are integers.
If N uncorrelated observations are made, taking Ng; observations at x;, then
the variance of the best linear unbiased estimate of (c, §) is given by e*N 'V (¢, £).
An arbitrary measure or design £ is called c-optimal if £ minimizes V (¢, £). For a
more complete discussion of the above model see Kiefer (1959) or Karlin and
Studden (1966b).
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1436 W. J. STUDDEN

We assume throughout that € = [—1, 1]. Hoel and Levine showed that if
fi(xz) =2',i=0,1, -+ ,n,and ¢ = f(x) with |2e| > 1 then the c-optimal design
is supported on the Tchebycheff points s, = —cos (vr/n), » = 0,1, -+, n.
These are the points where |T.(z)| = 1, T»(z) being the nth Tchebycheff poly-
nomial of the 1st kind.

Kiefer and Wolfowitz consider more general systems of regression of functions
and a related set of Tchebycheff points. Let T denote the set of all ¢ such that a
c-optimal design is supported on the entire set of Tchebycheff points. The set T™*

is divided into 2 different sets R* and 8* = T* — R* which they explicitly
characterize. Moreover they show that the set R* includes the set A of all
vectors ¢ for which (¢, 8) is not estimable for any design on fewer that n + 1
points. The set A* may be characterized by stipulating that ¢ £ A™ if and only if
the determinants

folm) o folw) e
(1.1) fl(gvo fl(?vn) fl
L@ o falm) e

do not vanish whenever the x; are all distinct.

In Sections 2 and 3 we offer different proofs of the Kiefer-Wolfowitz results and
more emphasis is placed on the fact that their sets S* and R* can be characterized
in a manner similar to the determinant characterization of A*. More explicitly
the set R™ is precisely the set of ¢ for which the determinants (1.1) are of one
strict sign for x;, Za,---, *, an ordered subset of the Tchebycheff points
s0< & < -+ < s, and 8* consists of those vectors ¢ for which the determinants
(1.1) alternate in sign as we progressively omit successive s;. The proofs offered
here rely heavily on the elegant result of Elfving which is stated in Theorem 2.1.
A close inspection of the analysis used by Kiefer and Wolfowitz and the analysis
used here shows certain similarities, however much of the preliminary discussion
and game theory has been eliminated using the Elfving result.

In Section 4 it is shown that the vectors ¢, = (0, ---,0,1,0, --- ,0) (a one
only in the p + 1st component) are in R* if n — p is even while if n — p is odd
the c,-optimal design is supported on the Tchebycheff points of one lower order.
The case p = n was originally proven in Kiefer and Wolfowitz (1959). The above
shows that in the case of ordinary polynomial regression the optimum design for

estimating 6, is supported by the set s, = —cos (vw/n),» = 0,1, - -+ , n, when
n — piseven and by theset t, = —cos (vv/(n —1)),»=0,1, -+ ,n — 1, when
n — pis odd.

Section 5 contains some additional remarks which show that certain linear
combinations of the vector ¢, are also supported by the Tchebycheff points while
Section 6 contains a simple counterexample which shows the minimax design is
not necessarily supported by the minimal number of n + 1 points when
fo, f1, -+, fa form a Tchebycheff system.



OPTIMAL DESIGNS ON TCHEBYSCHEFF POINTS 1437

2. Designs supported by Tchebycheff points. The following result due to
Elfving (1952) characterizes the c-optimal designs ¢ and will be frequently em-
ployed throughout the paper.

THEOREM 2.1. Let ®y = {f(2) = (fo(z), -, fa(2)) |2 e X}, R = {—f(2x)|z e X}
and ® = the convex hull of Ry u R_. A design & is c-optimum if and only if
there exists a measurable function o(x) satisfying |e(z)| = 1 such that (i)
f<p(x)f(x)$(dx) = Bc for some B and (ii) B¢ ©s a boundary point of ®. M oreover Gc
lies on the boundary of ® if and only if 8° = vy " where vo = min; Ve, £).

Every vector ¢ € ® can be put in the form

(2.1) ¢ = D enf(a)

where e, = £1,p, > 0and Y_i p, = 1. The integer k may always be taken to be
at most n 4+ 2 and at most n + 1 if ¢ is a boundary point of ®. The following
simple lemma will be needed.

LemMa 2.1. A vector ¢ of the form (2.1) lies on the boundary of ® if and only if

there exists a nontrivial “polynomial” u(z) = Y, a,fy(x) such that lu(z)] £ 1
forzel—1,1), eu(z,) =1,v=1,2, --- , k,and >_, ac, = 1.
Proor. If the required polynomial exists and ¢ = (ao, a1, -++, a,) then

(a,¢) = 2, ep(a,f(z,) = 2, peu(z,) = 1and (a, y) = lforally e ®. The
vector a defines a supporting plane to ® at ¢ so that ¢ is a boundary point of ®.

If ¢ is a boundary point of ® then a supporting plane exists, i.e. there exists a
vector @ ¥ 0 such that (a, ¢) = 1 and (a, y) = 1 for all y ¢ ®. (Note that the
origin is in the interior of ®.) Therefore 1 = (a, ¢) = Y v_1 pve(a, f(z,)) and
[(a, f(z))] = |u(z)] £ 1 for all x e [—1, 1]. In this case e(a, f(z,)) = 1 for
v =1, .-+, k since we have assumed p, > 0.

REMARK 2.1. For an arbitrary vector ¢ # (0, - - -, 0), B¢ lies on the boundary
of ® for some 8 > 0 and hence 8c = D _»y' &p,f(z,) for some {&p,} and {,}. If
(a,f) = 2. 7=oa.f: denotes the polynomial of Lemma 2.1 then the minimal value
of Vic,£) is 87 = (25 aic:)’ = (a, ¢)’ since (B¢, a) = 1. Moreover

inf; V(c, §) = infesups (¢, 0)’1f (b, f(2))*(d2)]™
sups inf¢ (¢, b)’[[ (b, f(x))*%(dw)]™

= (¢, a)

%

Since the first and last terms are equal

infe sups (¢, b)*J (b, f())*(dx)]™" = sups inf; (¢, ([ (b, f(2))%(dz)] ™"

We shall assume throughout the paper that the set of functions fo, fi, -+, fa
form a Tchebycheff system or a T-system on [—1, 1] and that U(z) =
Zia,fi(x) = 1 for some set {a:}o . A T-system fo, fi, - - - , fa is such that every
linear combination Y :af«(z)[> s a > 0] has at most n distinct zeros on
[—1, 1] or equivalently the determinants
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fo(ye)  fo(m) -+ folxa)
(2.2) F <0, 17 Ctt, n — fl(.yo) fl('xl) tee fl(ivn)
Loy Zry = 5, Tn : : :
fulxo)  falm) - fa(a)
are of one strict sign provided —1 = 2o < 21 < -+ < z, £ 1. For definiteness

we shall assume that the determinants are positive. We shall call any linear com-
bination Y= a:fi(z) a polynomial. The classical example of a T-system consists
of the ordinary powers fi(z) = «,7 = 0, 1, - - - , n. In this case the determinant
(2.2) reduces to the classical Vandermonde determinant. A simple constructive
method of generating more general T-systems will be given in Section 4.

The following important property of T-systems will be used (see Karlin and
Studden (1966a), Theorem II. 10.1). If {f:}7 is a T-system on [—1, 1] then there
exists a unique polynomial W(z) = > iy a:*fi(x) satisfying the properties

(i) W(=x)| =1,

(ii) there exists n + 1 points —1 =< s < & < --+ < 8 = 1 such that
W(s)) = (=1)"% 4 =0,1,---,n. Moreover when U(z) = 1 is a polynomial
equality occurs in (i) only forz = s, 81, , s, and s = —1l and s, = +1.

For any vector ¢(#(0, - -+, 0)) considerable use will be made of the determi-
nants

folso) o+ fo(smr)  folsimn) =+ folsa)  co
(2'3) D,(c) _ fl(:so) cee fl(S:y_.l) f1(8:y+1) N f1(8n) czl i .
falso) o falsm)  Falsar) e Su(s)

The sign of D,(c) will be denoted by d,(c);if D,(¢) = 0 the sign may be defined
as —1 or +1. We further let L,(z) = »_;a,ifi(z) denote the Lagrange inter-
polation polynomial defined by requiring that L,(s;) = 8,;,v,7 = 0,1, -+, n.
In terms of the determinants (2.2) L,(z) has the more explicit form

L(z) = F(o, N TR T P ,n)/F (o, e, )
’ S0yt 381 ,%, 841, 0,8 S0,y 8
For any vector ¢ and any polynomial u(z) = >_;a:f:(z) we shall use the nota-
tion w*(¢) = D_iaic:. In this case we have

(=1)""D,(c) = L*(c)F <go’ ” o "s>

Now for any polynomial u(z) we have u(z) = Drou(s,)L,(z). Since the
coefficients of f; on either side are equal we find that u*(c) = X rmou(s,)L,*(c).
Letting u(x) be successively the polynomials fo, fi, - - - , f» we find that

¢ = Z:;(’f(sv)Lv*(C)
= Do (—1)"7d,(c)|L*(e)] f(s)).
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Therefore

(2.4) Be = D v (=) d,(c)pf(s)

where
P = |LXO)/ L= IL*(e)] = D)/ D= IDs(c), v =0,1,---,n,

and

B= (=L )) " = F <(8)0,

Let R denote the class of vectors ¢ such that eD,(¢) = O for» = 0,1,---,n
where e s fixed to be 41 or — 1 for a given vector ¢ (i.e. the D,(¢),» =0, 1, - - - , n,
all have the same sign in a weak sense) and let S denote those ¢ for which
e(—1)’D,(c) £ 0,v = 0,1, - -+, n. The following theorem is a slight generaliza-
tion of Theorem 3.1 of Karlin and Studden (1966) which considers only those
vectors ¢ contained in the set A™ which is described in the next section. The
theorem is also very closely related to the results of Kiefer and Wolfowitz (1965)
which are discussed in the next section.

THEOREM 2.2. Suppose that {f}¢ is a T-system such that U(z) = 1 is a poly-
nomzal.

(a) For any design &

(2.5) dle, §) = W*()F, ceR,
z [U*F, ce8,

where W (x) s the oscillatory polynomial defined above.
(b) Equality occurs in (2.5) for £ = & concentrating mass

Py = LY (e)|/220=0 |LF(e)| = |Du(e)|/2o0=0 | D (c)|

at the points s, ,v = 0,1, -+ | n.

(¢) The design & s the only design supported on sy < - - - < sy attaining equality
i (2.5). If ¢ € R then & is the only design attaining equality in (2.5).

Proor. (a) Using the polynomials W and U in Lemma 2.1 we find that for
¢ ¢ R u S the quantity Sc in (2.4) is a boundary point of ®. Moreover for ¢ ¢ R,
BW*(c) = 1 so that the minimum value of V(c, £) is 87> = [W*(¢)]" Similarly
[U*(c)] is the minimal value of V (¢, £) for c ¢ S.

(b) The design & is c-optimal in each case by Lemma 2.1 and the properties
of U and W.

(¢) For ce S and any c-optimal design supported on s, 1, - -, sa, equation
(2.4) holds for some set (—1)" " d,(¢)p, ,» = 0,1, - -- ,n, where 8> = (U*(¢c))>.
However this set of linear equations has a unique solution since F(g;,',:::’_‘s”) # 0.
For ¢ ¢ R we have

Ve, &) = supal(c, d)*/(d, M(§) )] = (W*())*/[ (W (=)' dt = (W*(c))™

The last inequality is strict unless £ is supported on sq, 81, - - - , s» since [W (z)| < 1

) (Sl

b
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forz # so, 81, - - , 8x . The last sentence in (¢) now follows since the c-optimum
design supported by sp, s1, - -+, S, is again unique.

REMaRK 2.2. As observed by Kiefer and Wolfowitz the above theorem is a
consequence of the fact that the convex hulls A and B of the two sets {f(s,)}o
and {(—1)"7f(s,)}o both lie in boundary faces of the set ® defined by Theorem
2.1. It is easily seen that B is the entire face since |W(x)| = 1 only for
X = S, 81, ", S, i.e the intersection of ® and the hyperplane defined by
W*(¢) = 1is precisely B. The union of B and its symmetric image is the set R.

The set A is properly contained in the face of ® determined by U*(¢) = 1.
The complete face in this case is the convex hull of the whole curve
{f(z)|z e[—1, 1]} because of the assumption that U(z) = 1 is a polynomial;
thus every vector ¢ = Y, p,f(z,) is a boundary point of ®. The usefulness of S
will be apparent in the next section.

3. The Kiefer-Wolfowitz theorems. Kiefer and Wolfowitz (1965) define five
sets of vectors T, R*, 8%, A™, H*. The first set T™ consists of those ¢ such that a
c-optimal design exists on the full set of Tchebycheff points s, s1, -, s». The
next two sets R* and S consist of those ¢ which for some 8 0 are of the form

Be = 2 r-0epf(s), P >0, 20p =1

where the ¢, alternate in sign for ¢ e R* while the ¢, are the same sign for the
vectors in S*. The set A™ consists of those ¢ for which

folw) oo folan) @
(3.1) CYREEE (CORN

fn(xl) Tt fn(xn) Cn
provided the z; are distinct and lie in [—1, 1]. The set A™ is shown to consist of
those ¢ such that (¢, 8) is only estimable for designs supported by at least n + 1
points. Finally to define H* it is assumed that the regression functions

# 0,

fo,fi, -+, fn are defined on some interval containing [—1, 1] and ¢ ¢ H* if and
only if ¢ = Bf(x,) for some |zo] > 1 and 8 = 0.

With suitable further assumptions (see below) on fo, fi, -+, fa it is shown
that:

(i) R* contains a neighborhood of ¢ = (0, -+-, 0, 1).

(i) H* € A*c R*

(iii) The vectors ¢ ¢ R* have unique optimal designs while the vectors ¢ £ 8*
have unique designs among those supported by so, -+ , $n .

(iv) R* and 8™ are disjoint and R* u 8* = T™*.

In Section 2 we have formulated our sets R and S entirely in terms of the
determinants (2.3) or (3.1) using only the points so, 81, -+, 8, . If we define
Ro and S, as the subsets of R and 8 respectively such that the determinants
D,(¢c) #0,» = 0,1, -- - ,n, then it can readily be seen that Ry = R* and S, = S*.
Moreover the sets Ry and S, are simply the interiors of the sets B and S respec-
tively. The majority of the results (i)-(iv) above follow from Theorem 2.2.
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(1) To prove (i) it suffices to assume that the determinants

i Jo(s0) o fo(sy) Jo(s41) o fo(sa) !
(32) TP P
an—l(s()) cet fn—l(sv—l) fn-—l(sv-}-l) cet fn—-l(sn) |
forv = 0,1, - - - , n, are all nonzero and of the same sign. This will be true when-
ever the functions fo, fi, - , fo—1 form a T-system on [—1, 1].
(ii) That A* € R™ is clear while H* © 4™ provided fo, fi, -+- , fa is &

T-system on ( — o, »). In fact ¢ = Bf(we) ¢ A™ for fixed 202 [—1, 1] provided
fosfi, oo+, fais a T-system on [—1, 1] u {wo}.

(iii) This follows directly from Theorem 2.2.

(iv) That R* and 8™ are disjoint and both are contained in 7™ is immediate
once we note their identification with Ry and S, . For completeness we will now
prove that R*u 8* = T (or R*u 8* D T™) with the aid of Assumption 2 in
Kiefer and Wolfowitz (1965). Assumption 2 states that every polynomial
> aifi(x) either has less than or equal ton — 1 changes of direction on (—1,1)
or else is constant on (—1, 1). (A function u(z) changes direction at y ¢ (—1, 1)
if () has a local maximum or minimum at y. In particular if u(z) is constant on
an open subinterval of (—1, 1) it is said to have infinitely many changes of di-
rection). With this assumption we may prove that R* u 8* D T* (and hence that
R*u 8* = T*) asfollows. If ¢ ¢ T then

Bc = Z:;O evpvf(sl’)

for some 8 # 0,e, = £1,p, > O and > p» = 1. Moreover by Lemma 2.1 there
exists a polynomial u(z) = 2 ¢ a:fi(x) such that |u(z)| £ 1forze[—1, 1] and
eu(s,) = 1,»=0,1,---,n Now if cz R*u S then the ¢ are not constant
(hence u(z) # constant) and do not alternate in sign so that there exists a j such
that ejejra > 0. Then w(x) has a change of direction at s;, 82, -+, S, and at
least one in the open interval (s;, s;j+1). We therefore have a contradiction since
wu(z) has n changes of direction and is nonconstant.

4. Optimal designs for the individual regression coefficients. Let ¢, =
0,---,0,1,0, - -+, 0) denote the vector with a one in the p + 1st component
and zeros elsewhere. In this case (¢, ,0) = 8, . For p = n it follows from Theorem
2.2 that if fo, -+ - , fa is & T-system then the unique c.-optimal design is sup-
ported by the full set of Tchebycheff points so < 8 < - -+ < s, . This result was
first proven in Kiefer and Wolfowitz (1959). The purpose of this section is to show
that under suitable assumptions the unique c,-optimal design (p > 0) is sup-
ported by this same full set of Tchebycheff points if n — p is even and by the full
set of Tchebycheff points of one lower order if n — pis odd. Forp = 0,7 = 2 the
unique ¢, optimal design is supported entirely on z = 0. This result is motivated
by certain extremal properties of the ordinary Tchebycheff polynomial
T.(z) = cosnb, z = cos 6. The assumptions to be made on the regression fune-
tions will be such that they resemble to a very large extent the ordinary powers
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1, z,--+, 2" on [—1, 1]. An example concerning these assumptions is given in
Section 6.

We shall assume the following:

(i) {fiéfork = n — 2,n — 1, n, are T-systems on [—1, 1];

(i) folo) = 1;

(i) fi(z) = (=1D)f(—2),2=0,1,---,m;

(iv) for every subset %4, %,---, % of 0, 1,---, n the system f;(x),
fi,(x), -+ ,fi,(x) is a T-system on the half open interval (0, 1], i.e. every linear
combination of f;, , - - - , fi, has at most k — 1 distinet zeros in (0, 1];

(v) every polynomial D _¢ a.f;: either has fewer than n changes of direction on
(—1, 1) or else is constant on (—1, 1).

Since {f4¢ and {f}s " are both T-systems, the polynomials W.(z) = W(x)
and W,_1(z) exist. (W,_y is defined in terms of {f:}¢ ). Denote the Tchebycheff
points for W, by so = 1 < & < --- < s, = 1 as before and the Tchebycheff
points for W,_1(z) by to = —1 < 4 < -++ < t,a = 1. From the uniqueness
properties of W, and W,_; both of the sets {s;}¢ and {£;}¢ " are symmetric about
zero as in the case of the ordinary powers. In fact for n even, say n = 2m,
W, = D omganfu ; whileforn = 2m + 1, W, = D ko Gopraforss -

The powers 1, z, - - - , 2" satisfy all of the conditions (i)-(v). A simple con-
structive method of obtaining further systems satisfying these conditions is as
follows. Let wy, we, -+ , w, be any n strictly positive continuous functions on
[—1, 1] such that w;(z) = w;(—=z) for all j and define

fo(x> = ]-:
f@) = [fw(&)da,
fo(z) = [fw(&) fél wy(&) dep dta,

ful) = [swni(s) [§ wa(s) - [ walkn) dn -+ dir.

It can be shown (see Karlin and Studden (1966a), Chapter 11) that the above
system satisfies conditions (i)—(v). The powers arise for the special case
w@(é) = 7’)7’ = 1’2: (T

Now for p = 0 and n = 11it is clear that £ is ¢,-optimal if and only if £ is sym-
metric about zero. For p = 0 and n = 2 it is easily seen that the unique cp-opti-
mum design concentrates mass one at £ = 0. We shall therefore assume that
p#=Oandn = 2.

TraEOREM 4.1. Let {fi}o satisfy conditions (1)—(v) and suppose that n = 2 and
p # 0.

(a) If n — pis even then c, € Ry = R¥, i.e. the unique c,-optimal design is sup-
ported by the full set of Tchebycheff points so, 81, «++ , sn. The cy-optimal design
and the minimal value of V(c, , §) are explicitly characterized in Theorem 2.2.

(b) For n — p odd the unique c,-optimal design is supported by the full set of
Tchebycheff points to, by, -+ , taa and this design vs obtained from Theorem 2.2 by
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considering the 1st n component of ¢, . (The vector ¢, is in fact, contained in the set
Ro(n — 1) = R*(n — 1) defined analogous to Ry using {t}5 " instead of {si5 .)
The above theorem relies on the following result. For the ordinary polynomial
case the proof is given in Natanson (1964), p. 53. The proof for the more general
systems follows essentially word for word and will therefore be omitted.
THEOREM 4.2. If n — p s even then of all polynomials u = ZLO a;f; in which
the coefficient of f, is equal to unity the polynomial W.(z)/a,"™ minimizes

Sup- <z <1 [u(z)].

If n — p is odd then the polynomial W,y (x)/a," " has the above property. (The
quantities a,™ and a,™ " are the coefficients of fp in W, and W,_y respectively).

With the aid of the above theorem we can prove

LEmmA 4.1. For n = 2 the c,-optimal design is supported by a subset of the
Tchebycheff points s, s1, * -+ , 8o tf n — p 28 even and by a subset of the Tchebycheff
points to, by, tar tf m — P 1s 0dd.

Proor. By Remark 2.1 following Lemma 2.1 we have

inf; V(c,, £) = infy supa (¢p, @)[f (a, f(2))*(dz)]™

= sup. inf; (¢y, @)°(f (a, f(z))*%(de)]™

= sup. (¢, , @)°[sup-1 a1 (a, f(2))]

(a,™)? n —p even
- {(a,,("—”)2 n —p odd.
Suppose that & is cp,-optimal and n — p is even. Then
View, £0) = supa (¢p, @)’(f (a, f(2))*o(dx)]™

(a, ™)1 (Wa(@)) ko(d)] ™
(a,™)".
Since |W,(z)| = 1 only for so, s1, - -+, sa strict inequality holds at the last step
unless & is supported by so, 81, -+, S» . The argument for n — p odd is the

same.
Proor or THEOREM 4.1. Suppose that n — pis even,n = 2 and p # 0. Since

%

(\%

any cp,-optimal design is supported by so, 81, - - - , S, there must exist a solution
{e,py} to the system of equations
(4.1) Bep = Z:L=0 &p:f(s)), B—l = lap(n)l'

It suffices to show that p, 5% 0 since in this case our assumption (») together with
the Kiefer-Wolfowitz result (iv) desecribed in Section 3 tells us that either the
e, alternate in sign or they are constant. However since p 5 0 the first component
of (4.1) reveals that ¢, cannot be all of one sign. Therefore ¢, € Ry = R*.

Now suppose that p; = 0 for some fixed 7. From equation (4.1) the determi-
nant with eolumn vectors f(so), - -+, f(8iz1), Cp ,f(Sis1), - -+, f(8x) is zero. There-
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fore there exists a polynomial P(z) = D¢ afi(x) such that Y5 al > 0,a, = 0
and P(s,) = Ofor 5= 4. Sincen — p is even, two cases may arise (a) n and p are
both even or (b) n and p are odd. If n and p are even and n = 2m we note, with
the aid of condition (iii), that

Q(z) = P(x) + P(—z) = D ioaufu(z), ap,=0.

The polynomial @(z) has at most m terms since a, = 0 and hence has at most

m — 1 zeros on (0, 1] by condition (iv). Note that s, = 0 and s; = —sym_s,
1=0,1,---,m — 1.If 2 = m, Q(x) vanishes at smi1, - - - , Som implying that
aw =0,k =0,1, --- ,m.If ¢ ## m we suppose that ¢ > m. In this case Q(s») = 0
and @ now has m — 1 terms and vanishesatz = s;,j=m +1,--- ,2m,j = ¢
again implying that asx = 0,k = 0, 1, - - - , m. Therefore

p (x) = ZZLl a2k—]f2k—1
vanishes at sy, $1, *-*, Sma and hence at Smt1, -+, S2m . We conclude that

P(z) = 0 which is a contradiction. The case (b) where #n and p are odd is handled
in a similar manner using Q(z) = P(z) — P(—=z). The proof is omitted.

Now when n — p is odd the c,-optimal design is supported by a subset of
to,t, - ,t.a and hence there exists a solution {ep,} of

(4.2) Bep = Z;l;ol enf(t,), B_l = ‘ap(n_l)l‘

Omitting the last component the resulting system of equations reduces to the case
n — p even so that p, # 0 and as before the ¢, alternate in sign.

For the ordinary polynomials the explicit values of inf; V (¢, , £) can be readily
obtained from the coefficients of W,(x) or W, (z). Thus if n — p is even and
E=0,1,---,[3n] then

infy V(caa, £) = {n(n — k)52
while forn — poddandk = 0,1, --- , [3(n — 1)] we have
inf; V(cpa—2, &) = {(n — 1)(n — 1 — k)‘l(n—llc—k)Qn——%—z}z'

We observe that for fixed & the minimal variance for estimating 6 is equal when
n=k+2andn=k+ 2.+ 1,2=0,1,---.

5. Remarks. We observe that the vectors 2_i— &p,f(s,) = Bc with e, alter-
nating or e, of one sign form two sets of opposing n-dimensional convex faces in
the boundary of ®. Now each of these faces determines a convex cone such that
any vector ¢ in the cone has a c-optimal design supported on the Tchebycheff
points. The simple property we wish to utilize is that a cone is closed under linear
combinations with nonnegative coefficients. Each of these faces is, of course, the
convex hull of the extreme points which are known; however it is of interest to
determine, for example, in which face each of the vector c, lie. For this purpose we
eonsider the two cones

Cn = {C|BC = Z:LO (=1)""pf(s)), 8 > 0}
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and

Cur = fc|Be = 205 (—1)" " 7¢f(4), B > 0}

where p,, ¢, = 0and 2., p, = 1 and Sug =1
Suppose that {f:}¢ is a T-system on [—1, ) such that

(5.1) F(OJ“”’”>>0
o, L1y " 3 Tn
whenever —1 £ zy < 71 < -+ < Z,. In this case f(z) € C, for z = 1 and hence
>k Nif(zi) € Chforz; = 1 and \; = 0. Infact
(5.2) J f(z) du(z) € C.

for any nonnegative measure p on [1, «) for which the integral is defined. The
optimal designs for such linear combinations can easily be obtained using
Theorem 2.2. For example the optimal design for the vector in (5.2) places mass

a (D fwa)™ at s, where a, = [|L(2)|dp(z), »=0,1,---,n.

In order to determine in which face each of the vectors ¢, lies we shall
assume that fork = n — 2,n — 1, and n

(53) F(OJ““’k>>0
xO,xl,"',xk
whenever —1 S 2o < --- < a; = 1.

TuaroreM 5.1. Let {fi}o satisfy conditions (1)—(v) of Section 4 and suppose that
(5.3) holds. If n — p s even then

(54:) (—1)kcn—2k & Cn, k= 0, 1: ) [%n]y
and if n — p is odd then
(_1)kcn—1—2k €Cn_1, k= 0’ 1; ] [%(n - 1)]

Note that we have normalized the system {f:}¢ " in such a way that c, is always
inC,.If n = 4 then ¢y, —c¢2, ¢o lie in C, so that Ay — Nece + Noco € Cr, when
Mo, A2, \s are nonnegative and hence Abs — Nz + Nofo is optimally estimated by a
design on the points so, ++« , 84

Proor oF THEOREM 5.1. The arguments are somewhat similar to that given in
Theorem 4.1. We shall consider only the case where n — p is even and p = 0.
The remaining cases are similar.

Observe that ¢, € C, when D,(cp) > 0 and —c¢, € C, if D,(cp,) < 0. Now the
sign of D,(c,) is the same as the sign of the coefficient of f, in the polynomial

P(z) = F<O’ Loyn—l n) = 2t afi(x).

S0,8, """ y,8%1 T
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For n = 2m the polynomial
Q(x) = 2_1(P(x) + P(—x)) = Zz;oazkfzk(ﬁ)

vanishes at s, = 0 (so that ap = 0) and at the m — 1 points Sp1, *** , Som—1.

Now the system {fu}1 satisfies Descartes rule of signs (see Theorem 4.4, p. 25
in Karlin and Studden (1966a)). That is, the number of zeros of Q(z) on (0, 1]
is bounded above by the number of sign changes in the sequence as, @y, « - - , don
where zero terms are omitted if there are any. Since Q(z) has m — 1 zeros the
sequence @, Gy, *** , Os, must alternate in sign. Since as, > 0 we have
(—1)*an_ox > 0,k = 0, - -+, m. Therefore (—1)*coor £ C, , fork = 0,1, - -+, m.

6. Counterexamples. It is natural to inquire about the necessity of the assump-
tions (i)-(v) imposed on our system of functions {fo ,f1, : + + , fa} for the validity
of Theorem 4.1. The assumptions (iii) and (iv) are of particular interest. Con-
cerning the necessity of something like assumption (iv), the following example
was provided by Professor J. Kiefer. For n = 3 consider the estimation of §; when
fo,f1,fa,fs} = {1, 2, 2% * — x/2} which satisfies all of the assumptions except
(iv). It is not hard to prove that the unique ¢;-optimum design is not supported
on a subset of {s;} or {¢;} and in fact is given by £( +27% = 1. This follows from a
direct computation which shows that the best Tchebycheff approximation of z on
[—1, 1] by a linear combination of 1, 2* and 2° — z/2is (z* — z/2), and the
residual z — (2 — z/2) attains its maximum in absolute value at +27F

The remainder of this section is devoted to an example concerning minimax
designs. In the case where fi(z) = 2°,4 = 0, 1, - - - ,n, on [—1, 1] it is known that
the minimax design, which minimizes max_; <.<1 V(z, £), is supported by » + 1
points, namely the zeros of (1 — )P, (z) = 0 where P, is the nth Legendre
polynomial. In fact in the ordinary polynomial case all admissible designs (see
Kiefer (1959)) use only n — 1 points in the open interval (—1, 1). The purpose
of the following example is to exhibit a 7T-system for which any minimax design
must be supported by more than n + 1 points. We shall utilize the theorem of
Kiefer and Wolfowitz (1960) which states that £ minimizes max_;<.<1 V(z, &)
if and only if & maximizes the determinant of M (£). Moreover V(z, &) <n + 1
forall ze[—1, 1].

Consider the functions fo, fi, fo on [—1, 1] where fo = 1, fi(z) = z and f,
is such that fi(z) = 0, f2(0) = 0, fo(£1) = 1 and f> is convex. With these
assumptions the design which minimizes max_; <. <1 V(, £), among those con-
centrating all mass on 3 points, has equal mass at the points —1, 0, 1. This is
geometrically clear after noting that for a design & with weights \o, A1, A\, on
2o, T1, T2 we have

IM (£)| = Nohihaldet [fi(z5) |7 i=0]”

and that the above determinant is the volume of the parallelopipe spanned by

f(@o), f(@1), f(2).

Now if the design & with equal mass on —1, 0, 1 is minimax then

(6.1) (f(z), M~ (&)f(z)) £ 3 for ze[-1,1].
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However the quadratic surface
(1,9, 2 )M (&) (1,9,2) =3
is given by
2= H2 = (4 = 3¢))

which is strictly positive for y £ 0. Thus (6.1) cannot hold when f.(z) is “suf-
ficiently close” to zero. It can easily be verified that the system {1, z, z,} does
not satisfy (6.1) and hence the minimax design is on at least four points. Further
analysis in this particular case shows that four points actually suffice.
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