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ON THE LOCAL BEHAVIOR OF MARKOV TRANSITION
PROBABILITIES!

By Davip BLACKWELL AND DAviD FREEDMAN

University of California, Berkeley

1. Introduction. Let P(f) = P(3, 4, j) be a semigroup of stochastic matrices on
the countable set I = {4, 7, - - -}. Suppose

(1) limgso P(t,7,2) = 1 foreach ie¢l.
Fix one state a ¢ I and abbreviate
() = P(t,a,a).
(2) TuEOREM. Suppose 0 < ¢ < land f(1) £ 1 — e. Then
[aft)dt < 1 — ‘
(3) THEOREM. Suppose 0 < ¢ < } and f(1) = 1 — e Then for all ¢ in [0, 1],
)z + (1 —4))2=1~¢— ¢ —0().

CoRrOLLARY. Suppose 0 < ¢ < Land [3f(t)dt = 1 — e. Then f(¢) > 1 — 2¢
for0 =t = 1.

Note. (3) can be restated (using algebra) in this more attractive form: if
0<é6<2andf(l)=1—6-+6,thenf(t)=1—dfor0=<t=<1.

Perhaps it is worth noting explicitly that the bounds in (2) and (3) hold for
all stochastic semigroups satisfying (1). The bounds in (3) are not supposed to
be sharp, but they cannot be improved much, as (4) and (5) show.

(4) ExawmpiE. For any § > 0, there is an f with

J(¢) £ 6 for 6 <t=<1-—6 and f(1)>¢e

(S

€.

The right coefficient for ¢ in (3) is not known to us, but
(5) Exawmpie. For K < % and small € > 0, there is an f with

f3)<1—e¢—Ké and f(1)>1 — e
The constant £ in (2) is sharp, as shown by
(6) Exawmpre. For K < 2, there is an f with
1 —f(1) > K[1 — [§f(¢) .
2. Proof of Theorem (2). Sippose @ is not absorbing, so 0 < f({) < 1 for all
t > 0. Suppose
(7) f(1) =1—5s.
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The problem is to show

(8) foft)ydt <1 — L.

But f(¢)f(1 —t) = f(1),for 0 < t < 1. Moreover,

(9) a+b—-—1<ab for 0<a,b<1,
because 0 < (1 —a)(1 —b) =1 — a — b + ab. Thus
(10) f@) +7/1 —1) <2 -

Integrate (10) from 0 to 1 and divide by 2, to get (8).[]
We are grateful to Professor G. E. H. Reuter for removing the unnecessary
half of a previous proof.

3. Proof of Theorem (3). Suppose 0 < ¢ < +and f(1) = 1 — e Begin by
establishing

(11) f&yz1—¢ for 0<¢t=<1
Indeed, for 0 = ¢ = 1,
1— €= f(1) = ff(1 —t) + 2 P(t, 0, 5)P(1 — 1, j, a)
SFOF(L = t) + 2isa P(4, 0, 7)
| = JOf(L —t) + 1 — f(1),
so that

(12) JOI —f1 =] = e

Plainly,

(13) If 2,y =20 and zy < ¢ then s or y=é
Consequently,

(14) foreach te[0,1], either f(t) <€ or f(1—1¢)=1— ¢
Similarly, or by putting 1 — ¢ for ¢,
(15) foreach tel0,1], either f({) =1 — ¢ or f(1 —1t) < €.

Now suppose f(t) > ¢ Relation (14) implies f(1 —¢) = 1 — ¢ > ¢, because
¢ < 1. Then relation (15) implies f(¢) = 1, — ¢, That is,

(16) for each ¢ in [0, 1], either f(¢) = dorft) =1 — é.

An easy continuity argument now establishes (11).

Introduce 6(z) = 1 — (¢/z). Let by = 1 — ¢ and bayx = 6(ba). If f(¢) = ba
for all t £[0, 1], use (12) with s = 1 — ¢ to check that f(s) = bn4 for all s in
{0, 1]. By algebra, 6 is convex and has fixed points

be = [1 £ (1 — 4e)l)/2.
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Moreover, b_ < by < b, . Hence b, T by .[]

4. Proof of Corollary to (8) and remarks. By way of contradiction, suppose
0<e<land [§f(t)dt=1— eandf(t) <1 — 2¢forsome ¢ in (0, 1). By (2),

Jof(uw)du < t(1 — ).

Moreover, f(u) < 1 — 2¢ + 4¢ fort < u < 1 by the second form of (3), since
2¢ < 1. Consequently

[if(w)du £ (1 — 8)(1 — 2¢ + 4€)
= (L—t)(1 —¢) — (1 —t)(e— 4¢).
Adding,
Jofu)du < (1 —¢) — (1 — t)(e — 4€).

But ¢ — 4¢* > 0.[]
Remark. In (2),if f(1) =1 — 6, thenf(}) =1 — 48, s0f(t) =1 — %6
fort <t < 2 (mod 6°). Now
J@) + (L —=1t) = ft)-f(1 —t) + 1 —[1 = fOII1 — f(1 —¢)
< 2 — § everywhere
<2—5—13%" on (% 2) (modsd*).

So [of(t)dt <1 — %6 — 46" + O(8°). The best value for 4 is unknown to us.
Remark. If is easy to check that the inequalities 0 < f(t) = 1 and
f()f(1 —t) = 1 were fully exploited in (2). For example, consider this function:

ft)y =1 for 0=t <
=1—46 for $1=2t=1.

It is almost as easy to check that the continuity of f and the inequalities 0 =
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F@) £ 1and f(£)f(1 —¢) £ f(1) = f@)f(1 —t) + 1 — f(t) were fully ex-
ploited in (3). For example, consider a function of this form:

J0) =1, Jd) =0+ 1 -402 f1)=1-¢

f 1s continuous and strictly decreasing on [0, 1];

f is continuous and strictly increasing on [, 1];

f(1 —1t) = 6[f(t)] for 0=t <1,
where

0(z) =1 — (e/a)
5. A construction. Let 0 < ¢, ¢ < . Let 71, 72, - - - be independent, expo-

X(t)

T >K C K> ¢ >K Ty > C

L

Fia. 2
nential random variables on (2, ¥, @), with common parameter ¢, so
®{r. = t} = ¢ . Define a stochastic process X (t) as follows:
X(@)=0 for 0=t<mn
and mm+c=St<mn+tc+ 7

and T1+C+T2+C§t<T1+C+Tz+C-‘rT3

while
X(t) = 1 elsewhere.
Let g(t) = @{X(¢) = 0}.

The process X is not Markov. However, there are stochastic semigroups P,
satisfying (1) such that P,(¢, 0, 0) — ¢(¢) uniformly on bounded ¢-sets. This
will be argued later.

Clearly,

(17) g(t)y = e for 0<t=e
and

(18) g(t) = ¢ + [ g(s)ds for ¢ S &
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In particular, g is continuous. Combine (17) and (18):
(19) g(t) = €% + gt — )™ for ¢<t =< 2

Discussion oF ExaMPLE (4). Let ¢ < lincreaseto1,andletq = 1/(1 — ¢).
Then g tends to 0 uniformly on [3, 1 — §], while g(1) decreases to ¢ .[]
Discussiov oF ExampLE (5). Fix ¢ = £ and let g decrease to 0. Then

9(3) =1— 3¢+ 30" + 0(¢")
while
9(1) = 1 — 3¢ + 7%¢" + 0(d).
Thus
9(1) = 9(3) = 3¢ + 0(¢")
= 31 — g(1)I" + 0(¢") 0
THE APPROXIMATION ARGUMENT. If o1, g2, -+, 0, are independent and
exponential with parameter n/c, then o1 + --- + o, has mean ¢ and variance
¢*/n, 50 61+ + -+ + a5 is practically ¢. Define a continuous time Markov process
Y, with state space {0, 1, - - - , n} as follows: from ¢ the process jumps to ¢ + 1,
except that from n the process jumps to 0. The holding time in 0 is exponential
with parameter g. The holding time in ¢ = 1, - - - | n is exponential with param-
eter n/c. It is not hard to verify that P,(t, 0, 0) — ¢g(¢) uniformly on bounded
t-sets, where P, is the transition matrix of Y, and satisfies (1).[]
Discussion oF ExampLE (6). Let ¢ > 0. Consider a Markov process with

state space {0, 1}, such that the holding time parameter in 0 is ¢ while 1 is ab-
sorbing. Then f(t) = P(t,0,0) = ¢ %, so for ¢ near 0,

f(1)=¢?=1—g+ 0(g)
and
Jifydt = (1 —€e9/g=1— 3q+ 0(g). 0

Obviously, the same reasoning applies in a much more general class of exam-
ples. For instance, let P be one stochastic semigroup for which (1) holds and
0 > P'(0,a,a) > — . Then study the semigroups Py , where Py(¢) = P(At),
as A — 0.



