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SEQUENTIAL SELECTION OF EXPERIMENTS!
By K. B. Gray, Jr.?

Bank Administration Institute

0. Summary. The problem of sequential selection of experiments, with fixed
and optional stopping, is considered. Conditions are given which allow selection,
stopping and terminal action rules to be based on a sequence {7T';} of statistics,
where T'; is a function of past observations X’ = (X, ---, X;,) and experiment
selections EY = (Ey, ---, E;). Randomized stopping, selection, and terminal
action rules are allowed, and all probability distributions are defined by densities
relative to o-finite measures over Euclidean spaces.

Here we give a heuristic description of the principal results for the case of
optional stopping. At each time j the random variable X, is observed and a
decision is made to stop or continue. If the procedure is stopped, a terminal
action A is taken. If it is continued, an experiment E;;, to be performed at
time j + 1, is chosen. At time 7, all decisions are based on X’, E’, the past observa-
tions and experiment selections. Upon stopping, and taking action A4, a loss
L(9, A), where 6 is the unknown state of nature, is incurred. The sampling cost
of stopping at j is C;(6, X’, E?). Let the random variable N denote the random
stopping time. A selection rule ¥ = (o, v1, ) is defined by the sequence of
conditional densities v;(ej41 | x’, €%), a stopping rule & = (¢o, ¢1, ---) by the
probabilities ¢;(x’, €’) = P{N = j|N = j, x’, ¢’}, and a terminal action rule
® = (8, 81, ---) by the conditional densities 8;(a |x’, e’). Definition of the
population densities fo( i ]xj, e™) forj = 0, 1, 2, --- completely fixes the
probability structure.

Define {T;} to be parameter sufficient (PARS) if, for j = 0, 1, 2, ---,
Diste (X?, E’| T;) is independent of 8 for all ¥ and policy sufficient (POLS)
if, forj = 0,1,2, ---, Disto,gy (T2 |Ts, Ejsa, N = j + 1) is independent of
o, v for all 6.

Tueorem. If {T;} s PARS; then the class of policies {&, v, 8°}, where 8° is
based on {T;}, is essentially complete.

TuroreMm. If {T;} s PARS and POLS, and the sampling cost ©s of the form
C;(6, T,), then the class of policies {$°, ¥°, 8°}, where ¢°, ¥°, 8° are based on {T;},
1s essentially complete.

Conditions are given to aid in the verification of PARS and POLS. The
theorems are applied to examples, including versions of the two armed bandit
problem.

1. Introduction. The concept of statistical sufficiency is of recognired value in
simplifying the search for optimal decision procedures in problems where the ex-
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periments to be performed have been fixed in advance. In the sequential selection
(some authors use the word ‘“‘design”) of experiments one must remember not
only past observations, but past experiment selections. It is natural to consider
extension of the concept of sufficiency to the sequential selection of experiments,
where the statistics are functions of both the past observations and experiments.

The theory of the sequential selection of experiments is appropriate to a broad
range of practical problems. The list of applications, other than sequential de-
sign in the narrow sense, includes inventory management, adaptive process
control, learning theory, and the design of teaching machines.

Our principal conclusions are conditions under which stopping, experiment
selection, and terminal decision rules can be based on sufficient statistics of the
past observations and experiments.

The basic reference for the general theory of sufficiency for sequential and non-
sequential decision problems, without experiment selection, is Bahadur [2]. His
paper contains an exposition of the theory of sufficiericy, for the nonsequential
case, as well as a generalization to the sequential case. Our results in the optional
stopping situation are extensions of those of Bahadur to the case of experiment
selection. The technique employed, throughout the present paper, for construct-
ing rules based on sufficient statistics, is an extension of the Blackwell-Rao
theorem [15]. Shiryaev [12] has developed a Bayesian theory of sufficiency for
the sequential selection problem. He shows that there is a Bayes procedure
which depends on past observations and experiment selections only through a
posterior probability distribution.

There is a substantial body of work on the sequential design of experiments
that relates to the present study. Robbins [11] defines the problem of sequential
design of experiments, with optional stopping, and illustrates the general situa-
tion with a version of the two armed bandit problem. Blackwell [4] considers the
special case where one of two possible experiments is strongly preferable in the
sense that the class of terminal decision rules, based on only one of the experi-
ments, is complete. In the more general situation, one experiment may be pref-
erable for certain states of nature, and another preferable for other states. Thus,
accumulated partial knowledge about the state of nature influences selection of
experiments. Chernoff’s work [7] on the sequential design of experiments, when
many experiments are available, is concerned with the determination of stopping,
selection, and terminal decision procedures that are asymptotically Bayes in the
sense that the difference between their risk and the Bayes risk approaches zero
as the sampling cost approaches zero.

Several papers [3], [5], [6], [14], deal with versions of the celebrated two armed
bandit problem.

In the engineering literature, Aoki [1] discusses a Markovian control problem.
He considers the determination of control policies that are optimal in the Bayes
sense. It is shown that such Bayes policies can be based on sufficient statistics,
rather than a complete past history of process and control variables, if a certain
condition is satisfied. This condition is a specialization of the concept of policy
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sufficiency which is developed here. In another paper, Striebel [13] investigates
the adequacy of ordinary sufficiency for stochastic dynamic programming prob-
lems in which there are no unknown parameters.

2. Selection with fixed stopping.

2.1. Problem. We consider a process in which experimentation is conducted
at timesj = 1, 2, - -+, J. The sequence is initiated at time j = 0, when an ex-
periment K1 , to be performed at j = 1, is selected. Then atj = 1, the experiment
E, , is selected. Finally, at time J — 1, the experiment E; is chosen. The selection
of each experiment is determined by a randomized selection rule. At each time j,
the performance of the experiment E; allows observation of the random variable
X, the distribution of which depends on the past observations X1, ---, X,1,
past experiment choices E;, ---, E;, and an unknown state of nature 6.

After the procedure is terminated at time J, the statistician takes a terminal
action 4, chosen according to a randomized terminal action rule. The terminal
loss of taking action A = a, when 6 is the state of nature, is L(9, a). In addition,
there is a sampling cost C'(6, x’, e’) that depends on 6, the past observation

values x” = (a1, ---, x,), and past experiment selections e’ = (e;, -+, ey).
The total loss accrued is
(1) L(8, a) + C(6, %", e”).

Note that throughout we employ the convention of using lower case letters to
denote the values realized by the corresponding upper case random variables.

We assume that 6 ¢ ©, X, takes values x; ¢ X, E; takes values ¢; ¢ &, and the
terminal action random variable 4 takes values a ¢ @, where the sets ©, X, &,
and @ are Euclidean, i.e., Borel sets in Euclidean spaces. It is convenient to
denote the absence of any observations of X, £ by X°, E°.

We begin by describing the probability structure of the problem heuristically.
The sequence of population distributions Dists (X 41 | X?, E), forj = 0, 1, 2,
«++, J — 1, is implied by the nature of the problem or process. Each
Disty (X ;11 | X/, E™) describes the probability distribution of the observation
X ;41 given the past observations x’ and that the experiments e’ have been
selected. Both selection and terminal action rules are chosen by the statistician.
His choice of these rules will, of course, be affected by the particular population
distributions assumed. The selection rule ¥ = (v, 71, -+, ¥s-1) corresponds
to the sequence of conditional distributions Dist (,4; | X, E?), each of which is
determined by the conditional density v, and assumed to be independent of 6
and the terminal action rule. The conditional distribution Dist (4 |X’, E),
which is also independent of 6, is the terminal action rule. It is determined by
the conditional density é(a |x’, e”).

Next we formalize the probability structure suggested above for the case that
the random variables have both Euclidean domains and ranges. This assumption
simplifies the discussion, and, as indicated in Lehmann [10], reduces each random
variable to a “carrier of its distribution.” The book by Lehmann [10] is used as a
reference for fundamental measure theoretic and probabilistic facts.
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We begin by defining the o-finite measure spaces

(2) (Sx:} (BXyl"'X): (87 (BE) I"'E’),

which correspond to the observation and selection variables, respectively. In
addition, there is a o-finite terminal action space

(3) (@, Ba, pa)-

In terms of the spaces (2) and (3), the basic sample space

4) g=a" x& xa

can be defined. It is convenient to introduce the sub o-fields (of sets in Q)
(5) Fo = ®X",E"), Gua = ®X",E",

forn = 1,2, ---, J, of the product s-field

(6) 3= ®X’,E’, A).

These o-fields satisfy the nesting relationship
(7) GCHC - CG1CF.C - CF,;, C3.

We next define in a formal way the component densities that yield the joint
probability measure Ps,y,s on 3. The selection rule v = (vo, v1, ***, Yr-1),
which the statistician is free to choose, is composed of non-negative G;-measurable
components v;(e;41 | x°, €’), each of which satisfies

(8) [ vilesn | X, &) dus(essa) = 1 (as. 55).

The terminal action rule, also specified by the statistician, is a non-negative
J-measurable function 6(a|x’, e’) which satisfies

(9) [o(alx’, &’) dus(a) =1 (as.5,).

The definition of the probability measure on 3 is completed by specifying a
sequence of population densities {fo(11 X, e’™)}, composed of non-negative
F;;1-measurable functions fy(z; | x°, €™) for which

(10) [ fo(zia | X, €) dux(ain) = 1 (as. Q).

Notice that this definition depends on 6 but is independent of ¥ and 8. The re-
quirement that the population densities be independent of y and é is appropriate
in applications to sequential design of experiments, control theory, and the
theory of inventory. In many design of experiments problems, the densities of
the population distributions take the form fs(z; | ¢;). This is a type of independ-
ence. A control process with a density of the form fo(2; | 2; , ;) can be called
Markovian. In the terminology of control theory, the density fo(z;|x", €’)
defines the dynamics of the process.
Probability measures on the o-fields

(11) Goy Fry, 380, Gny o005, 55,3
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are defined recursively, using a method described by Doob [8] (Supplement,
Example 2.5). The procedure is begun by letting

(12) dP,,o(el) = ’Yg(el) duz(er)
on Gy, and
(13) dPg,yy (21, €1) = fo(x1]e1) APy (er) dpx(21)

on ;. Given the probability measure Py yn-1 on ., we define the measure
(14) AP (x", ") = yu(ena | X", €") dPgoyn—1 (X", €") dup(€nt1)

on G,, and then the measure

(15)  dPoyn(x"", ™) = fo(2ap1|X", ") dPon(x", €"™) dux(2ns1)

on 41 . The definition procedure is continued forn = 1,2, - -+, J — 1. Finally,
the probability measure Py s on 3 is defined by

(16) dPo:‘Y"’(a’: xJ7 eJ) = 5(0'li’ eJ) dP",T(XJ: eJ) d/‘A(a)'
The latter probability can be written in the closed form
(17)  dPoys(a, X', €7) = [ITi=0folsa | X, €™ )vi(ena | X, €))l6(a | X, &) dr,

where 7 = p4 X px’ X pg.

It is assumed that the terminal loss L(6, a) is B(A )-measurable for all § and
that the sampling cost C(6, x7, e”’) is &F,-measurable for all 6. Furthermore, in
order to insure the existence of the risk

(18) R(0, v, 0) = EsyalL(6, 4) + C(8, X, E')],

it is assumed that both L and C are simultaneously bounded for all points in
their domains. Using the probability measures defined above, the risk takes the
form

(19) R(9,7v,8) = [[L(6, a) + C(6,x", &) dPory 5(a, X', €”).

For a given sequence of population distributions it is the statistician’s goal to
choose selection and terminal action rules that are in some sense optimal.

ExampLE. Two armed bandit. At each stage j, of a J-stage game, the player
plays one of two slot machines M, and M;. Let the machine he selects at j be
denoted by M., , e; € {0, 1}. The selection is made on the basis of past experience
in playing the machines, so the selection’ at time j is a random variable E;,
taking values e; . After playing the machine E;, the player observes the random
variable X;, which takes values z; ¢ {0, 1}. We say that X,; = 1 if the machine
pays off and X; = 0 if it does not. Suppose the machine }/; has probability 6;
of paying off. The unknown state of nature & = (6,, 6;) is a point in @ = [0, 1]°.

We assume that the machines are constructed so the X, is independent of
Xy, ,X;qand By, -+, E; 4, orin other words, the population distributions
have the form
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(20) folzi | X7, &%) = fi(ai]e;).
For our example,
(21) f‘?(xi‘ei) = 02‘.(1 - 0ej>l_zi;

relative to counting measure on {0, 1}. The product of population distributions,
that appears in (17) has the form

(22) TDhado(as|es) = FE5079 (1 — o)™ oep g Bheiei(y )23 Gmepe,

We consider two possible loss situations. In the first it costs the player $1 each
time he plays. If the machine pays off, or X = 1, he wins $2. If # = 0, there is no
payoff. There is no terminal loss, and hence no terminal action is necessary.
The sampling cost is the negative net winnings. It is given by

(23) Co,x",e’) =J — 2> 1z;.

"The first term is the cost of playing J times and the second term is the winnings.
The player desires a selection rule v that will, in some sense, maximize his net
earnings.

In another conceivable loss situation, the player’s goal is to estimate the
value of § ¢ ©. It costs him C; > 0 each time he plays machine M ;. An appro-
priate terminal loss for such a problem is

(24) L6, a) = (6 — a0)" + (6 — @)’
where a = (ao, a1) € @, a subset of 2-space. The sampling cost is
(25) C(0,x%,e") = C1 2 1e; + Cod i (1 — e).

2.2. Concepts of sufficiency. A statistic T; based on X’, E’ is defined to be an
F;-measurable function taking %’ x &’ into a Euclidean space. A sequence
{T;}, of statistics with each T; based on X’, E, is said to be parameter sufficient
(PARS) if for each 7, all v ', and all F, ¢ 5;, there exists a version of
Pyyi-1{F;|t;} that is independent of 6. Parameter sufficiency can be charac-
terized according to the factorizability of the joint density fs(x", €*).

TaeoREM 2.1. The sequence {T;} is PARS if and only if, for all n, there exists a
non-negative, ®( T')-measurable function go v (t.), and a non-negative F,-measurable
Junction hy(x", €") such that

(26) Jor(x", €") = goy[Tn(x", ")y (x", €") (a.s. Fn).

Proor. The theorem follows directly from Corollary 1, p. 49 of Lehmann
[10]. The preceding condition for PARS can be specialized for use in the sequen-
tial selection problem by the use of (17).

CororrLaRy. The sequence {T';} is PARS if, and only if, for each n, there is a
non-negative & (1, )-measurable function go(t.) and a non-negative, F,-measurable
Sfunction h(x", e") such that

(27) IL50 fo(mia [ ) = go(t)h(x", &) (ass. ).
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ExampLE. Two armed bandit. Let the sequence {T';} be defined by
(28) T = (24X:, 2AE:, 2AXE) = (Tuj, Te, Tsi).
Using this definition of {7;} to substitute in (22), we see that
(29) ITi=fo(mile) = G m"ome (1 — )" tonfenttom. g fom. (1 — gy)tem~tom,

which is of the form go(¢,). It follows from the Corollary of Theorem 2.1 that
the sequence {7';} is PARS.

An additional concept of sufficiency is required. The sequence {T’;} is said to
be policy sufficient (POLS) if, for each n, for all # € ©, and for all Byy1 € &(Thi1),
there is a version of Pgyn{Bni1|ts, €nt1} that is independent of 4". The next
theorem provides sufficient conditions for POLS.

Turorem 2.2. If, for each 6 and n, Tny1 18 ®(Tw , Xut1 , Eui1)-measurable and,
for all Cry1 & ®(Xp11), there is a version of Poxn{Cni1|tn, €ny1} that is independent
of ¥ (up to G equivalence), then {T;} 7s POLS. :

Proor. We must show that

(30) By, tn,e0419( Tnia)

is independent of ¥", for all B(7',+1)-measurable g and all 6. However, since Tni4
is a measurable function of T, Xn41, Eny1, it is sufficient to show that, for all
® (X »31)-measurable functions ¢,

(31) Eo.‘\’"- tnseny1 g’(X"H-l)
is independent of y". This follows from the assumption that there is a version

Of Pyyn{Crni1|ts, €nt1} which is independent of ¥". The above argument holds
for all n.

CoroLLARY. If, for alln, Tri11sa B( Ty , Xnt1, Enya)-measurable function and the
conditional population density fo(x..1|x", ") is of the form fo(Tnss |tn, €ns1),
then {T;} 7s POLS.

ExampLe. Two armed bandit. It has already been shown that the statistic

T, = (21 Xi, 20 Es, 228 XEy)
is PARS. The Corollary of the last theorem can be utilized to prove that {7}
is POLS. First, it is clear that 7';4; is a function of T';, X;11, Ejy1. Moreover, the
population distributions are of the form f;(z;e;). Hence fy(x;|ti—1, €;) = fo(zjle;)
and the hypotheses of the Corollary are satisfied.
ExamprLe. Exponential famaly. Suppose the population distributions
fa(z; |x"", e’) are of the form

(32)  folwile) = C(6, &) exp [2oi1 Qu(6, €)Su(ws, e)lh(x;, €5)
and that § = {&, &, -+, &}. Then,
(33) It folwile) = [[I5= €6, €5)]
-exp (251 Doier Qu(0, €9)Sk(wy, €)] T3 h(ay, €).
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Letting I.(e) equal 1if ¢ = ¢ and 0 otherwise, (83) can be written
(34) [ILiw €6, &) %im"7]
-exp 21 D i=1 Qu(8, &) (D F-1l;(e)) Sz 5 €))] TTi=1 b2y, €5).

Let

(35) To(2) = 231 (es),

and

(36) To(i, k) = 2251 Iei(e;)8i(ns, &),

fori=1,---,land k = 1, - - - , m; then it is clear, by the Corollary of Theorem
2.1, that the statistics 7% = (TW(1), -+, Tu(l), Tu(1, 1), ---, TW(l, m))
define a PARS sequence {7',}. The statistic T» has {(m + 1) components. The
Corollary of Theorem 2.2 implies that {7,} is POLS.

The above example can be specialized to the case of geometric population
distributions

(37) fo(zile) = (1 — p(6, ¢;))p(6, €)™,

where 0 < p(6,e) < 1,8 = {0,1},and X = {0, 1, 2, - - -}. The sequence defined
by Tw = (2.7 X:, 21 Ei, D¢ X:E;) is PARS and POLS.

The same sequence {7} is also PARS and POLS if the population distribu-
tions are Poisson with parameter A(6,e;) > Oand & = {0, 1},% = {0, 1,2, ---}.

For the exponential family, there are cases in which a PARS sequence {7}
does not include the components:

T.(3) = D.7u1l.(e;) = number of times experiment e; performed,
fori =1, .-+, That is, there is a PARS sequence {7} such that T,(1), ---,
T.(l) are not elements of T', . For example, let

(38) fo(z;]10) = (1 — 0)6%Ix(x;) (Geometric)
and
(39) fo(z;|1) = e PINO)™ /z; NI (25) (Poisson),

where 0 < 6§ < 1,N(0) = —log (1 — 6),and X = {0, 1,2, ---}. By definition
A(8) > 0. Now, (33) can be written with C(6, 1) = C(6,0) for 0 < 6 < 1,
and hence the sequence {7',} defined by

(40) Tw = (X5 BiXj, 205 (1 — E)X,)

is PARS. However, the random variable ) j— E; is not determined by T, .
It is interesting to compare the concept of fixed stopping POLS with the
transitivity condition of Bahadur [2]. The present discussion is conducted at a
heuristic level, and the notation Dist (-) is used to denote the “distribution”
of the indicated random variable. Bahadur defines a sequence of statistics {7},
in the fixed experiment problem, to be transitive if Disty (Tt [X") =
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Disty (Tny1| Th). In order to compare this definition with fixed stopping POLS,
we specialize the latter concept to the fixed experiment case. The specialization
reduces the definition to: { T} is fixed experiment POLS if Distyy (i1 | Tw) is
independent of y, for all 6. Of course, this always holds; hence, in the fixed
experiment case, all sequences {7';} are fixed stopping POLS.

An alternative method of comparison is to extend the definition of transitivity
to the experiment selection case. A natural generalization is to say that {7}
is experimentally transitive if, for each sequence e , e;, - - - of experiments chosen,
{T';} is transitive in the fixed experiment sense; that is {7} is experimentally
transitive if, for all 8, ~, and n,

(41) Disto'-r (Tn+l I X”, EM—I) = DiSto,Y (Tn+1 I Tn ) En+1).

It is easy to verify that experimental transitivity implies POLS. Since the left
hand side of (41) is clearly independent of +, the right hand side must also be
independent of y. This constitutes the definition of POLS.

It is of interest to note that experimental transitivity is a stronger condition
than POLS. It suffices to give an example in the fixed experiment case. Bahadur
[2] describes a sequence which is not transitive. Since, as mentioned, all sequences
{T,} are POLS in the fixed experiment case, the sequence of Bahadur must be
POLS.

2.3. Essential completeness of rules based on {T;}. In this section the main con-
clusions for the fixed stopping selection problem are established. First, it is shown
that if {7} is PARS, then for any rule there is an equivalent rule for which the
terminal action rule é is based only on T'; . More importantly, if the sampling cost
has the form C(6, x’, €’) = D _j= C/(8, t;), where C is ®(T;)-measurable, and
{T;} is PARS and POLS, then both the selection and terminal action rules can be
based on {7';}.

Formally, a selection rule v is said to be based on {T;} if, for each j,

(42) vilein | ¥, =7vi(ejsa | t5)
is ® (Bj41, T5) - measurable. A terminal action rule & is based on {T;} if
(43) 8(a| x'e’)=b(a|t,)

is ® (4, T,) - measurable.

The next lemma provides an essential tool for defining rules based on sufficient
statistics in terms of given rules based on complete information. This technique
is used repeatedly in the remainder of the paper.

LemMma 2.1. Suppose there is a probability space (X, Bx , P) and a o-finite meas-
ure space (Y, By , p). Relative to a Bx,y-measurable conditional density f(y | x), the
probability measure Py , on the product o-field Bx,y , is defined by

(44) PyB} = [sf(y|x) du(y) dP (),

where B ¢ ®x,y . Then, there ts a version of the conditional density

(45) Pl = Ef(y|X),
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relative to the ®x-measurable statistic T(X), such that
(46) i) f'ly|t) is ®p,y-measurable,
i) [fylt)du(y) =1 (as. P),
and
(47) (ili) forall Be®ry, PAB |t} = Py{B|t}.

Proor. By the Radon-Nikodym theorem there is a unique (up to
(®x,v, 1 % P) equivalence) function f*(y, ¢) which satisfies

(48) [a1(y, ) dP(z) = [3f(y|2) dP(z) (ae. u),

for all B ¢ &,. Hence, by definition, f*(y, ¢t) and f°(y |t) are Bx,y-equivalent
since (48) is exactly the defining relationship for E.f(y | X).

It follows immediately from the definition of f*(y, ¢) that (i) and (iii) are true.
Furthermore, because

(49) Io [y f*(y, ¢) du(y) dP(z) = [5 [y f(y|2) du(y) dP(),

for all B ¢ B, and since the inner integral on the right hand side of (49) is equal
to 1 (a.s. P) by the assumption that f(y | z) is a conditional density, it follows
that

(50) J iy, ) du(y) = 1 (as. P).

This establishes the truth of (ii) and completes the proof of the lemma.
TuEoREM 2.3. If { T;} ©s PARS, then the class of policies {~, 8°}, where &° is based
on T, is essentially complete.
Proor. Take any policy ¥, 6. Let

(51) 8(alt;) = Eys,,6(a|X’, E’).

Since {7';] is PARS, the definition does not depend on .
By Lemma 2.1, 8° is a terminal action rule based on 7'; and, for all B ¢ ®(4),

(52) Pypo{B |t} = Pys{Blt;} (a5 ®(T)).

Now, by (52),

(53) Bonsol(0, A) = EyyEys,,L(0, A).

It follows that ’

(54) RO, v, 8") = HoysL(8, A) + Ey,C(0, X', E”)
= R(4, v, 5).

and hence the policy (v, 8°) is equivalent to (v, 8).
ExampLe. Two armed bandit. Consider the problem of estimating 6. Recall that

(55) ]/(0, (L) = (00 - a0)2 + (01 - a1)2
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and
C(,x’,e’) = 0.

We have shown that { 7';} is PARS in the earlier discussion of the example. There-
fore, Theorem 2.3 applies, and we know that 6 can be based on T, =
(D1 X:, D 1E:, 21X ;) without impairing the risk.

We next derive two lemmas that will aid in the proof that both 6 and y can be
based on {7}.

Lemma 2.2. If the sequence {T';} s PARS and POLS and f, for the given selection
rule v, a new rule v° based on {T,} is defined by

(56) vi' (e | t)) = By viein | X%, B,
forj =0,1,2,---,J — 1, then, for all B, ¢ ®(T),
(57) Poyo{Ba} = Poy{Bn},

forn=12-.-,J.

Proor. By Lemma 2.1, ¥° is a selection rule based on {77;}. We employ in-
duction on 7 to verify (57). Since v,” = 70, the statement holds for n = 1. Sup-
pose it is true for 7, and consider its validity for n -+ 1.

Using I5(¢) to denote the indicator function, which is 1 if ¢ ¢ B and 0 otherwise,
we have that

(58) PG,"({Bn+I} = E0,'YnE’O,'Y",tnEﬂ,t,,,en+IIB,,+1(71’n+l>;

since {T';} is POLS.
By Lemma 2.1 and the definition of 7., this is equal to

<59> Eo rYnEO-’YnO:tnIBn-).l ( Tﬂ+l) )
which, by the induction hypothesis, can be written.
(60) EO:V"—I’OEo»'YnO-tnIBn+1 ( TTI-"H) = PG,YO{Bn_H_} .

This completes the proof.
Lemma 2.3. If {T;} is PARS and POLS, then, for the selection rule v° and terminal
action rule 8°, defined by (56) and (51) respectively,

(61) Py yos0{B} = Py s{B},

Jor all Be ®(4A).
Proor. The probability (61) can be written

By s 5(A) = Hopollso iy I5(A)  (PARS and POLS)
(62) = By yoEs,,15(A) (Lemma 2.1)
By Bs 1, I5(A) (Lemma 2.2)
— Py B}

I



1964 K. B. GRAY, JR.

Note that, in the second line of (62), Lemma 2.1 is employed as in Theorem 2.3.

We are now prepared to state the principal theorem for the fixed stopping
selection problem.

Turorem 2.4. If {T;} is PARS and POLS and C(0, x’, €’) is of the form
721 C; (6, t;), where for all 6, each C; is ®(T;)-measurable, then the class of
policies {°, 8°}, where both v° and 6° are based on {T;}, is essentially complete.

Proor. For any policy v, 8, define new rules ¥’, 8’ as in (51) and (56). We

know, by Theorem 2.3, that
(63) R(6,v,8) = R(6, v, )
= EyupoL(8, A) + 2 7=1 Es1C;' (6, T)).
By Lemmas 2.3 and 2.2, this equals
(64) Eoo0L(8, A) + 271 EonoCi (6, T;) = R(8, ¥, 8").

Thus, the policy ¥°, 8° is at least as good as v, § and the class of policies based on
{T,} is essentially complete.

The preceding theorem is untrue if the assumption of policy sufficiency is re-
moved. The following example demonstrates this. The concept of the example is
similar to that of a counterexample given in Bahadur [2].

ExampLE. Let X = & = {0,1}, 0 = [0, 1], and J = 2. We define the population
distributions

(65) fo(@|e) = 31x(21)
and
Py{Xe = 1|21,e,6} = 0 if =0, e = 0,
(66) = 3 if =0, e =1,
= 1 if ©=1, e =0,
=0/2 if o =1, e = 1.

Note that fo(22 | 71, €1, €;) is independent of e; . There is no terminal action space
and the total loss is given by the sampling cost

(67) C(0, %", €") = zm.

Hence, the risk of employing a selection r1'11e v = (v0,v1) 18
(68) R(0, v) = Poy[X: = 1].

If we let

(69) g(x1) = P{E = 1| X1 = @},

for z; = 0, 1,then (68) reduces to
(70) 3[6(1 — g(0)) + 39(0) + (1 — ¢g(1)) + 269(1)].
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The risk can then be written

(71) R(6,v) = [29(0)(3 — 0) + 29(1)(6/2 — %) + 26 + 1].

Clearly, ¢(0) and ¢(1) do not uniquely define a selection rule y. However, the
risk depends on v only through 0 < ¢(0) < 1,0 < ¢(1) = 1.

We first show that there is a uniformly best rule based on a particular sufficient
statistic. Then we exhibit a rule, based on complete information, which is superior
for some values of 6.

Consider the sequence of statistics Ty = constant, T> = (X, E®). Clearly, the
sequence is parameter sufficient. Selection rules v; based on T must be constant
in 21, e , since T} is constant. Thus, for any rule v; based on T;, we must have
that g(0) = ¢(1) = b, say, where 0 = b < 1. The risk of such a policy is

(72) R(0,v) =1(2—0b)0+ 1.
Therefore, any policy v:°(ez | 21, &), corresponding to b = 1, with
(73) 21’z e)vo(a) = 1,

for z; = 0, 1, is uniformly best among the policies based on 7. The risk for any
such uniformly best policy is
(74) R(6, ") = 30 + %.

Next we exhibit a rule v, based on ; , ¢; , which is better than v,’, for some 6.
Define v1" by letting ¢’ (0) = 0 and ¢’(1) = 1. The risk of this policy is
(75) R(6,v") = %6.

For0 <6< % R(6,¥) < R(6,4°) and hence the selection rules based on T3 do
not form an essentially complete class. The relationship between the risks of
and ¥° is shown in Figure 1.

ExampLe. Two armed bandit. For the estimation problem, where

(76) L(6,a) = (6o — @)’ + (66 — &)’

and the sampling cost is of the form (25), we show that the preceding theorem
applies. Clearly the sampling cost is of the required form. In Section 2.2 it was
shown that {77}, where T; = (2_{ X., 2.1 E:, 2 i X:E.), is both PARS and
POLS. Hence, by Theorem 2.4, both v and § can be based on {7}.

3/4

R(6,y')
/2 R(8,7%)
1/4
0 1 1

172 |

Fia. 1
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For the other version of the problem, where L(6, a) = 0 and C(9, x’, e’) =
J — 2 2°{ X;, the net gambling loss, it is desired to minimize the average net
loss. The sampling cost is a function of Ty, = 2.1 X, and, therefore, of the
form of Theorem 2.4. It follows that v and & can be based on {T;}.

ExampLe. Discrete control process. To illustrate the application of the present
theory to control problems, we consider a model that is a discrete approximation
to many real world situations. Because of its suggestive value the terminology of
control theory is used. However, the initial reference to a control theoretic term
is followed, parenthetically, by its sequential selection equivalent.

The process starts at j = 0 with the process variable (observation) X, = 0.
The process dynamics (population distributions) are defined by

(77) X; =X+ E;j + Z;,
forj = 1,2, ---,J, where the “noise’”’ process Z; , - - - , Z, is a sequence of inde-
pendent, identically distributed, random variables with density
(78) fol2) = 60921 — )" §f = 41
=0 otherwise,

determined by 6e® = [0, 1]. The process variables X; take values in
X = {0, &1, =2, - --} and the control variables (experiment selections) E; take
the valuesin & = { —1, 0, 4+1}. There is no terminal loss, and the terminal action
rule is not considered. We are interested in the determination of optimal control
policies (selection rules) v. The performance criterion (sampling cost) is defined
to be

(79) C(ﬂ, ny eJ) = ‘{xi? + C Z‘; ej27

where €' > 0 relates the cost ¢, of control corrections to the cost z;” of the process
variable deviating from its desired setting of zero.

The control model just described is an approximation to the performance of a
heat exchanger with hot or cold ‘“coolant.” Temperatures are measured from a
reference value so that the desired temperature is zero. The process variable X is
the outgoing temperature of the fluid whose temperature is to be controlled. The
control variable E; corresponds to a valve that admits hot “coolant” if E; = + 1,
is closed if £; = 0, and admits cold “coolant” if E; = —1. The system is dia-
grammed in Figure 2. The “noise” represents random variations in the incoming
temperature of the fluid to be cooled.

The relationship (77), defining the process dynamies, can also be expressed
by letting

fo(z; |77, &)
(80) = fo(zj| 21, €5)

i—2j _1—ej+1)/2 —wjtuj _1tej+1)/2
glei—ri—1—e ] (1— 0)( zjtaj 1 tei+1)] T2, — 20 — €5).
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HOT

:

CoLD

v

Fic. 2
It follows that
H?=1 fo(z; XH, ej)
(81) = = fo(zi| @i, €)

= gL — )T 0 T (25 — @ — €),

since Xy = 0. Consider the statistic

From (81) it is clear that [ [ 7= fo(z; | ™7, %) is of the form go(t,)h(x", €"). The
Corollary of Theorem 2.1 implies, then, that {T,} is PARS. Also, 741 is a fune-
tion of T , Xni1 , Enya and fo(x; | -1 , €;) is of the form fo(z; | t;—1 , €;). Hence, by
the Corollary of Theorem 2.2, {T,} is POLS. In order to conclude, by Theorem
2.4, that the control policy v can be based on {7.}, we need to have that the
performance criterion C(6, x”, e”) is of the form 1 C; (6, T;). Now (79) can be
written

(83) 2.1 (af + Cef).

It is clear that while z; is a function of T';, e/ is not; moreover, )1 ¢ cannot be
written in the form 2 j= C,;(T,). Therefore, Theorem 2.4 does not apply using
{T,;} and this performance criterion. However, if we consider the expanded
statistic T,,* = (X, 217" E;, E,), then {T,*} is still PARS and POLS. More-
over, z; + Ce;’ is a function of T;*; hence Theorem 2.4 implies that the control
policy v can be based on {T,*}.

ExampLE. Continuous control process. We provide an example of a control
process in which the control and process variables are continuous. The model
described here is proposed in [9]. Suppose the process is started by letting Xy = 0.
The process obeys the dynamical law

(84:) Xj = 01X]~_1 + 021’]]‘ + 03 + Zj,
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fory=1,2,---,J, whered = (6, 6,,0;) is a point in a parameter space ©, and
the random variables Z; , Z, , - - - , Z; are independent and 91(0, 1). Suppose
that the sampling cost is defined to be

(85) 0(07 XJ7 eJ) = Z‘J"=l (13]‘ - X0)2:

where X° is the desired setting, or set point, for the process. We do not consider
the possibility of a terminal action. Thus, the risk of employing the control policy
v is

(86) - R(6,v) = 225 Box(X; — X°)".

Consider the problem of finding a sequence of statistics {T,} which constitute a
reduction of data and upon which the control policy y can be based without ad-

versely affecting the risk.
We employ Theorem 2.4. The process dynamics (84) can be stated in the form

(87) fo(z; | X, &) = fo(zi| i, ;)
= (2n)7¢ exp [—3(x; — Our;q — Ohe; — 65)7).
Since
(88) Il folaslair, ;) = (2m) ™ exp [—% 271 (2 — Oy — Ooe; — 05)7]
and
27— (@5 — Oia — Oue; — 65)°
(89) =D "af — 2, 0" zam; — 26, D e — 203 2" a;
+ 67 2wl + 200, D" zie; + 26165 D" 2y
+ 6, 2" e + 20,0, D " e; + nbs’,
we have, by the Corollary of Theorem 2.1, that the sequence { T}, defined by
(90) To= (7= Xjm,Xn, 251 By 20 XiXia, 20 X4,
2 Xl i X5y, 23 B

is PARS. Applying the Corollary of Theorem 2.2 we note that { T} is also POLS.
It happens that the sampling cost is of the required form since (X; — X°)?is a
function of X; , which is a component of T'; . Thus, the hypotheses of Theorem 2.4
are satisfied. Any search for optimal control policies, then, can be begun by re-
stricting attention to policies based on {T}.

3. Selection with optional stopping.

3.1. Problem. If the structure of the preceding section is expanded to allow the
experimenter to choose, at each instant, between stopping and continuing, then
it is clear that such increased discretion will not enlarge the risk. That is, the best
optional stopping rule is at least as good as any fixed sample rule. In this section
the problem of sequential selection of experiments with optional stopping is
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considered as a generalization of the sequential selection problem. Frequently,
instead of repeating a slightly modified version of a discussion given in the fixed
stopping time case, we will simply indicate the changes that make the earlier
comment valid for the optional stopping situation.

As before, it is assumed that 0, @, &, and & are Euclidean. The notation x’ e
etc. is retained. In addition infinite sequences of the form x = (zy, 2, -+ ) are
considered. It is necessary to introduce a new random variable N, the stopping
time, which takes valuesin {0, 1, 2, - - - }. If N takes the value n, the procedure is
terminated at time n and the experimenter incurs a total loss

(91) L(6, a) + Ca(6, %", "),

where L is the terminal loss of taking action a ¢ @ when 6 ¢ © is the true state of
nature and C,(8, x*, e") is the sampling cost of stopping at 7, given 6, observa-
tions X" = x", and selections E" = €".

We proceed to the formal probability structure for the optional stopping prob-
lem. As in the fixed stopping situation, there are o-finite measure spaces

(92) (xy G‘)’(X)7 ,U,x), (87 (B(E)7 /J'E)

and

(93) (@) (B(A)y F‘A)7

corresponding to the indicated random variables. The observation and experi-
ment spaces (92) are defined for times j = 1, 2, 3, --- . Moreover, a o-finite
measure space

(94) (917 (B(N)y /J'N)y

where py is a counting measure on the non-negative integers U = {0, 1,2, - - -},

is assumed for the optional stopping variable N.
The basic sample space for the optional stopping situation, with a terminal
decision rule, is

(95) Q=% x & x N x Q.

If the convenient notation

(96) Go1 = BX",E"), 7, =&X",E"),
forn = 1,2, 3, ---, is employed, then the nesting relationship
(97) G CFC  CGuy CFpC -

is satisfied. The notational conventions (96) are illustrated by observing that
F. = ®(X", E") is an abbreviation for the Borel field generated by sets of the
form

Bl x Cl X -+ X Bn X Cn(H?=n+1%)(H?=n+18) X @ X €N,
where B; e ®(X) and C; e ®(E) forj = 1,2, -+, n.
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Define
F=®X,E)

to be the minimal o-field containing the sequence (97). Finally, we introduce the
o-fields

(98) $=®ZX,E,N) and 3= BX,E, N, 4)
which, of course, satisfy
FC8Ca.

The various probability measures on the above o-fields are given in terms of the
conditional probability densities describing the probability structure and decision
rules of the stopping version of the problem. These densities are given next.

As in the fixed stopping case, we assume that for each 8 ¢ ©, there is a sequence
{fo(zia | X%, €)} of population densities. Each conditional density fo(z1 | %,
e™) is non-negative, ¥;1-measurable, and satisfies

[ fo(@ia | %, &) dux(zia) = 1 (as. G;)

forj = 0,1,2, .- . The class of population densities is determined in advance.
It is the statistician’s task to choose the selection, stopping, and terminal
action rules according to a given criterion of optimality. The selection rule
v = (Y0, 71,2, ---) is composed of G;-measurable, non-negative, conditional
densities v;(e;1 | X°, €’), each of which satisfies

S vilesa | X, €7) dus(esn) = 1 (as. ;)

forj =0,1,2,---. The stopping rule & = (¢o, ¢1, ¢z, -+ - ) consists of F;-meas-
urable functions ¢;(x’, '), which satisfy 0 < ¢; < 1. The non-negative, 5-meas-
urable densities §;(a | x’, €’) satisfying

[oi(a|x’, ) dus(a) =1 (as. F;)

forj = 0, 1,2, -+, constitute the terminal action rule & = (89, 61, 8, - - ).
Forn = 1,2, ... | the probability spaces
(99) (Q, 971«—1 y Pe,-rn—l), (Q, gn 5 Po,-rn—l)

are defined analogously to the fixed stopping case (14), (15). By the Kolmogorov
extension theorem (an application similar to the present one is discussed by
Doob [8] in Example 2.6 of the Supplement) there is a unique probability measure
space

(100) (Q,F, Poy)

which is induced by the spaces (99).

By a similar application of the technique described in Doob, a probability
measure Py, ¢, on 8 can be determined by the stopping rule ¢ and probability
Py~ on . If the function
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(101) Yn(x", ") = ou(x", ") JIi20 (1 — (%7, &%)

is used to denote the conditional stoppng probability P{N = n|x, e, N = m},
then the probability measure space

(102) (2,8, Pyoy)
is defined by
dPa,d},Y(X: e7 n) = 1lbﬂ(xni e") dPe"‘((x7 e) d:uN(n))

forn = 0,1, 2, - - - . Utilizing this probability measure and the terminal action
rule 8, the probability measure space
(103) (2,3, Pog.r.5)

is defined by
dPﬂ'fl)"Yﬁ(x: e, n, a) = 5n<a ixn’ en) dPﬁ,(I),Y(X‘y e, n) d/*"A(a)'

The definition of the last probability measure allows computation of the risk,
given 6, of employing the policy ¢, v, 8. We assume that the terminal loss L(6, a)
is B(A)-measurable for all § and that the sampling cost C, (6, ", €") is F,-meas-
urable for each n and all 4. It follows that the total loss

(104) L9, 4) + Cy(6, X", EV)

is 3-measurable. If it is assumed that both L(6, a) and C,(6, x*, ") are simul-
taneously bounded, either above or below, for all #, then the risk

(105) R(07 ((I)) he) 5)) = Eo,d),Y,ﬁL(o: A) + E0,¢7 ‘YCN(07 XN) EN)

is well defined for all 8 and all policies ¢, v, 8.

3.2. Extension of sufficiency concepts. As in the fixed stopping case, a statistic
T; is defined to be an F;measurable function taking %’ x &’ into a Euclidean
space. The fixed stopping definition of PARS is extended directly to the case of
infinite sequences. A sequence {T';} is said to be PARS if, forj = 0,1,2, -- - , all
selection rules vy and all F/; e &;, there is a version of Pyy{F;|¢;} that isinde-
pendent of 6.

Since the present definition of PARS is identical, except for the range of n,
with that given in Section 2, the Corollary of Theorem 2.1 still applies. It provides
a sufficient condition for PARS. The condition is stated in terms of the conditional
population densities. .

In the present situation, we have defined the concept PARS solely in terms of
the probability Py, on §. In fact, PARS implies that { T} is sequentially PARS,
i.e., that Dists,¢,y (X", E¥ | Ty , N) is independent of 6 for all ¢, v. We state this
fact formally.

TurorEM 3.1. If {T,} s PARS, then for all &, v and all F, ¢ F, , there exist
verstons of Pogy{Fn|tn, N = n} and Psgy5{Fn|ts, N = n} that are inde-
pendent of 6.
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Proor. We consider only the first conclusion. The second conclusion is estab-
lished by a similar argument. The probability

PogylFults, N = n}
(106) = PoyniFu, N = 0|t} [PogfN = n[ts}]™
= Eo.got,n a (X" B In(N) [Eo 1l ()]
= Es .l (X", E" (X", E")[Eoy, e (X", EM] 7

The assumption that {T;} is PARS implies that both the numerator and de-
nominator are independent of 6.

We introduce a concept of policy sufficiency for the optional stopping case. A
sequence {7} is said to be POLS if, for n = 0, 1, 2, ---, for all 4, and all
Bii1 € B(Thia) there is a version of Py,g v{Bni1|tn , €ny1, N = n + 1} that is inde-
pendent of ¢, v. Although the same abbreviation is used for fixed and optional
stopping policy sufficiency, the intended meaning should be obvious from the
context.

The following sufficient condition for POLS is similar to that given in Theorem
2.2 for the fixed stopping case.

TaEOREM 3.2. If, forn = 0, 1, 2, -+ -, and for all Cri1 &€ ®(Xp1a), there is a
version of Pogy{Cni1|tn, €nt1, N = n + 1} which is independent of ¢, v, for all 6,
and Tri12sa ®(Ty , Xuy1 , Enya)-measurable function, then { T;} s POLS.

Proor. Since Typi1 is ®(T, Xny1, Fri1)-measurable, it suffices to show that
for all ®(X,+1)-measurable functions g, there is a version of Eo,¢v{g(Xnt1)| &,
w11, N = n + 1} which is independent of ¢, v. This follows immediately from
the first hypothesis of the theorem.

CoROLLARY. If, for each n and all 0, Typ11 28 ®(Tr , Xut1 , Eny1)-measurable and
the conditional probability density foy(Zai1 | X", €*) is @ B(Tw, Xni1, Bny1)-meas-
urable function, say of the form fo(Tni1 | ta , €ns1), then {T;} is POLS.

Proor. Using the last theorem, it is sufficient to show that, for each n and all
Chi1 € B(Xny1), there is a version of Py,¢x{Cns1|tn, €at1, N = n 4 1} which is
independent of ¢, v. Now,

Pypi{Cosi | tay lnp1, N Z n + 1}
(107) = Eipenis 1170 (1 —65(X’, B”))Eoon,el ¢y (Xni)
Brpenss ITi=0 (1 — 65X, E)I
= fcu“ Jo(Znt1 | tn s np1) dux(Znsa),

which clearly is independent of ¢, v.

We compare optional stopping POLS with Bahadur’s [2] notion of transitivity.
The latter condition is sufficient to allow stopping policies to be based on sufficient
sequences of statistics in the fixed experiment, optional stopping, problem con-
sidered by Bahadur. In the present situation we generalize transitivity, as in the
fixed stopping case, by defining a sequence {T';} to be experimentally transitive if,
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for all Boi1 € ®(Tny1), Ponl Tos1 & Baya | X", "'} is ®(Tw , Eny1)-measurable, for
each n and all 6, v. This statement implies that for every set E;, E, - - - of ex-
periment choices, the sequence { T';} is transitive in the Bahadur sense. The follow-
ing theorem shows that, for the optional stopping problem, POLS and experi-
mental transitivity are equivalent.

It can be concluded from this theorem that optional stopping POLS is a
stronger condition than fixed stopping POLS. Recall that, in Section 2.2, an
example was given showing that fixed stopping POLS does not imply experi-
mental transitivity. Since optional stopping POLS is equivalent to experimental
transitivity, it is clear that optional stopping POLS is not implied by fixed
stopping POLS.

TureoreM 3.3. For the optional stopping problem, a sequence of statistics {T;} s
POLS if and only if it vs experimentally transitive.

Proor. Suppose {T';} is experimentally transitive. Let Buy1 € ®(Tn1). Now,

PyoyiTnra e Brja|tn, a1, N Z n + 1}
(108) = Eopotmensy 1m0 (1 — ;X E)) g, (Tas)
[Eonpotmenss 1m0 (1 — (X%, EDI7.

The numerator equals

(109) EG,Y,t,,,e,,+1 H;;O (1 - ¢j(ij E]) )Ee.tn.8n+1IBn+1<Tn+l)7
by the assumption of experimental transitivity. The expression can be written
(110) [Eﬁ,t,.,e,,+IIB,,+1 ( T"+1)]E617Jmen+l H};O (1 - ¢f(ij E]) )'

It follows that (108) is
(111) Po,q),y{ Tn+l & Bn+1 l tn ) ny1, Nzn-+ 1} = Eo,t,,,e,.+lIB,,+1(Tn+1),

which is independent of both ¢ and y. Hence {7';} is POLS.

Now, consider the converse. Take any j. Let ¢(°f’) be the stopping rule that
never stops. Forany 1, - -+ , &, e, - -+ , €5, let $* *” be the stopping rule that
stops at j if at least oneof X1 = @1, -+ , X; =2 2;, E1 Z €1, -+ , E; = ¢; holds
and otherwise never stops. If By € ®(T;41), then since {T;} is POLS, we know
that

(112) Poger yf{Ti1e B |t;, 641, N Z j + 1}
= Pyouied y{ Ty e B [ 4, 60, N 2 j + 1},

for all x’, e’. Utilizing the definitions of the policies ¢ and ¢<xj'°j), (112) is
equivalent to

(113)  Poy{Tis1 € Biya | 4y, €11}
= Poy{Ti1e B | t;, €11,

X1<$1,"',Xj<.’IZj,E1<61,--',Ej<ej},
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for all x’, e’. Since the sets of the form {X; < j, -+, X;< 2, Ei < e, -,
E; < e;} generate the Borel field 3(X’, E’), we have that

(114) Py{Tjs1 & Bia | X7, ™)

is ®(T;, E;.1)-measurable and, hence, that {7';} is experimentally transitive.

3.3. Essential completeness of rules based on {T;}. In this section we exhibit
conditions which are sufficient for basing stopping, selection, and terminal action
rules on sequences of statistics {7';}. The addition of optional stopping to the
selection problem complicates the development. The main result (Theorem 3.5)
is valid for a narrower class of sampling costs than the analogous result (Theorem
2.4) in the fixed stopping case.

A stopping rule ¢ s said to be based on { T} if, for each n,

(115) #n (X", €") = ¢n(tn)
is ®(T,)-measurable, a selection rule v is said to be based on { T;} if, for each n,
(116) Vn(€nt1| X", €") = Yn(€ns1|tn)

is ®(T» , E.u1)-measurable, and a terminal action rule & s said to be based on
{T,} if, for each n,

(117) 6u(a|x", ") = du(alts)

is (4, T.)-measurable.

The hypotheses that allow the terminal action rule & to be based on a sufficient
sequence are somewhat weaker than those required for basing the complete
policy ¢, v, d on {T;}. For this reason we state separately the next result.

THEOREM 3.4. If the sequence {T';} is PARS, then the class of policies {$, v, 8°},
where 8° based on {T,}, s essentially complete.

Proor. Given a policy (&, v, 8), define a new terminal action rule by letting

(118) 8.(a|t) = Epn5{6n(a| X", E")|tn, N = n}

forn = 0,1,2, --- . Since {T,} is PARS, the definition is indeed independent of
6. We can apply Lemma 2.1 and conclude that 8° is a terminal action rule. Now,

(119) Eo,pamL(0, A) = By xIn(N)Es,0,,5-L(0, 4),

the last step holding true by the definition of 3°. Hence, the risk

(120)  R(6, (¢, 7,3)) = Eo@xo0L(8, 4) + Eop+Cx(6, X", EV),
= R(6, (¢, 1,8"),

and the conclusion of the theorem is established.

We provide two lemmas which aid in the development of sufficient condi-
tions for basing the entire policy on {T,}.

Lemma 3.1. If {T;} vs PARS and POLS and f, for every policy &, v, we define
new policies ¢°, ¥, based on {T;}, by letting
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(121) ¢’ =0, ' (t) = Bory,nwanda(X", E"),
and

(122) 7' =, ¥ (easr|tr) = Boymnzntalenn | X" E),
Jorn =0,1,2,---, then for all B, ¢ ®(T,),

(123) Py, 4{Bn, N Z n} = Pypgoyo{B,, N = n},
forn =0,1,2, -

Proor. Since {T } is PARS, we know by Theorem 3.1 that ¢°, 4° are defined
lndependently of 6, and, by Lemma 2.1, they are rules. Mathematical induction
is employed to establish (123) forn = 1, 2, 3, . It is clear that (123) holds
forn = 1.

Suppose now that (123) is true for n — 1. For B, ¢ ®(T,), the probability
(124) Poo{Br, N 2 n} = Eopl20(N)Eo,tn_yenvznl5,(Tn),
where “Z= n” denotes {N = n}, since {7} is POLS. Expanding (124) we have

( 125) Eo,(b,TI;n(N)Ey?,_, e N gnEo,tn_l ,e,.,NgnIB,.( Tn) s

by the definition of yn_; and Lemma 2.1. Changing the form again, the expres-
sion

(126)  Eool2n1(N)Eopxtney w201l sn(N)Eo 8y 0y wvznls,(Tn)
results. By the definition of ¢%_; and Lemma 2.1, this reduces to

(127)  Eoonl2na(N)Ey31 s ta1vsn-1l 5a(N)Eond_, iy vzl 5,(Tn),
which, by the induction hypothesis, equals

(128)  Epgo,40 20 1(N)E43 10y v2n1l 2n(N)Eon8_y tn_y w2nl5,(Th),

and the lemma is established.
LemMma 3.2. If the sequence {Tj} is PARS and POLS, then for every policy
(¢, v, 8), there is a policy (o', %", 3°), based on { T3}, such that for all Cp e ®(T, , 4),

(129) Po,@am{Cn, N = n} = Pygo,0,50{Cn, N = n}.

Proor. Let 8°, ¢, ¥° be defined by (118), (121) and (122) respectively.
Then

(130)  Pops{Ca, N = n} = EogpxIn(N)Epy5.tav=nlcy(tn, 4),

since {T;} is PARS. By the definition of 6,” and applying Lemma 2.1, we can
write the expression in the form

(131) E@,(l),YIn(N)EBno.tmN=”ICn(t" y4).

This equals
(132) E’g,q,”[;n(N)dmo( To)Esp,th5=nlc,(tn, A),
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by the definition of ¢,’. Finally, we employ Lemma 3.1 and get
(133) Eo.40 740 50 (N) 6 (T0) Es0,0, v nl c,(ta , Ao).

The final theorem is an immediate result of this lemma.

THEOREM 3.5. If {T;} is PARS and POLS and if, for each n, C,(6, x" e ") =
C.' (0, tn) s ®(Tw)-measurable for all 9, then the class of policies {cI)O, ¥, 8,
based on {T;}, is essentially complete.

Proor. The risk of using the policy (¢, v, 3) is

(134)  R(6, (¢, 7,8)) = EpgrnlL(0, 4) + C'(6, Ty)].
By Lemma 3.2, this risk equals
(135) Ee,((I)o,‘Yo.ﬁo)[L(e: A) + CN,(07 TN)]:

and, hence, the policy (¢’, ¥°, 8°) is at least as good as (¢, v, 3).

A further version of the two armed bandit problem is provided in order to
illustrate the theorem.

ExampLE. Two armed bandit. Suppose the player is confronted by a pair
Mo, M, of slot machines, with unknown payoff probabilities 6,, 6; . The space
O of states of nature and the action space @ are both assumed to be the unit
square [0, 1]°. As in the version of this problem discussed earlier, ¢ = & = {0, 1}.
The machines have positive payoffs Py, P; and positive costs Cy, C; of playing.

It is assumed that the sampling cost, or net loss, is

(136) Cj(9, x ’ e]) —POZ ;a1 Ti(1 — e;) — PIZ'—I T
+ COZ e =1 (]- - ez) + Clz'uulez,

if the player elects to stop at j. Now, the population distribution at J, if 6 is
the state of nature, is

(137)  fo(xi|e;) = 6" (1 — 60) ™ Io(e;) + 6.7 (1 — 6,)* "I, (ey),

and

(138)  ITi<fo(zile;) = 8"n(1 — go)" tmtamttung tam(y _ 6y) ‘= tom,
where

(139)  Tw= (Thn, Tom, Trn) = (21 Xs, 220 Bi, 21 XiEo).

Hence {T';} is PARS by the Corollary of Theorem 2.1 and POLS by the Corollary
of Theorem 3.2. Moreover, the sampling tost C;(6, x’, ') can be written in the
form

(140)  C/(8,t;) = —Po(t; — ts,;) — Pits; + Co(j — b.i) + Cit;,

which is the form required by Theorem 3.5. Thus, Theorem 3.5 applies for this
example and we have that the stopping, selection, and terminal action rules can
be based on {T;}.
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