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ON THE COST OF NOT KNOWING THE VARIANCE WHEN MAKING
A FIXED-WIDTH CONFIDENCE INTERVAL FOR THE MEAN

1
By GorpoN SiMonNs

Stanford University

1. Summary. It is shown that the mean of a normal distribution with unknown
variance ¢° may be estimated to lie within an interval of given fixed width at a
prescrlbed confidence level using a procedure which overcomes ignorance about
¢® with no more than a finite number of observations. That is, the expected
sample size exceeds the (fixed) sample size one would use if ¢° were known by a
finite amount, the difference depending on the confidence level a but not de-
pending on the values of the mean u, the variance ¢ and the interval width 2d.
A number of unpublished results on the moments of the sample size are presented.
Some do not depend on an assumption of normality.

2. Introduction. Let X, X;, X, --- be iid random variables with unknown
mean u and unknown variance ¢° < «.let X, = n* > T X;. We desire to
find a confidence interval for u of width 2d (d > 0) for Whlch the probability of
coverage is at least as large as a(0 < o < 1) for all values u and ¢°. N. Starr
[6] and Chow-Robbins [4] have proposed using the interval (Xy — d, Xy + d)
where sample size N is to be sequentlally determined. Let a be defined by 2&(a) —
1 = « where &(z) = (27)° f_w 2 Ju. With X normally distributed, if o
were known, one could use a fixed sample sme N = C = d’"/d". They reason
that when ¢ is unknown one might estimate o ? by some good estimator s,? and
use a sequential procedure of the basic form

(1) N = smallest index n = ny = 2 for which =n = an2s,,2/d2,

where 7, is an integer constant and where the a, are chosen to be eithgr identical
to a or such that 0 < @, — a. With s, = (n — 1)™* D27 (X; — X.)% Chow
and Robbins showed that no matter what continuous distribution X might have,

(2) limg-o P{|Xy — u| < d} = a  (“asymptotic consistency”)
and
(3) limg.o EN/C = 1 (“asymptotic efficiency”).

H. Chernoff and the author (unpublished) have shown a stronger efficiency
result which holds when a, = @, namely,

(4) EN =C+n+1 (independent of d, a, and the distribution of X).

One is tempted to claim that the ‘“cost of ignorance” in not knowing o* is at
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most 7o + 1 observations. However, the objective is not to achieve asymptotic
consistency but rather to achieve

(5) P{|Xy —u| <d} Za forall valuesof p and o

One must be able to satisfy (5) before one can properly assess the true cost of
ignorance. Starr conducted a numerical study for normally distributed X using
a particular sequence a,, (of the form @ + O(n™")). It appears he nearly achieves
objective (5). One can show for a, = a + O(n™") that

(6) EN =C+0(1) as d—0.

Thus it seems likely and we shall verify for normally distributed X that there
exist stopping rules N for which (5) holds and for which the cost of ignorance,
EN — C, is uniformly bounded for all u, ¢* and d > 0. Specifically, for some
integer k&, we can achieve these objectives by taking k more observations after
rule (1) says to stop. We shall need n, = 3 (not 2) and we shall be satisfied
with @, = a. Stopping rules of this type are suggested in Starr’s paper but they
were not analyzed mathematically.
A useful random variable related to N (defined by (1)) is the variable

M = last index m = mg for which m < @n s, /d" if such an m exists,
(7) =ny — 1if m = an’sn/d for all m = ny,
= o if m < ap s, /d" infinitely often.

Such a random variable is not a stopping variable but rather a reverse stopping
variable, one that depends on the future and not on the past. If M and N are
usually close we can hope to learn something about N by studying M.

In Section 3, we define and relate reverse stopping variables to (reverse)
martingales. In Section 4, we derive some preliminary results involving moments
of M and N, and in Section 5, we prove the true cost of ignorance concerning ¢
is a finite number of observation.

It may be recalled that C. Stein [7] showed that (5) could be accomplished for
normal X using a two-stage procedure but for his procedure EN — (' is not
bounded.

3. Reverse stopping variables and some martingale lemmas. Let (Q, F, P)
be a probability space and {F; : §, C &, j ¢ J} be a non-increasing sequence of
c-fields where J is a continuous sequence of integers including possibly = co.
We recall that a family Z = {Z;, §,, j ¢ J} is called a reverse martingale if for
all j e J (i) Z; is an F;-measurable random variable, (ii) E|Z;| < «, and (iii)
fA Z; = fA Zyforall keJ, k = j, A ¢F . The appropriateness of the term
“reverse” comes from the observation that if Z is a reverse martingale, then by
“reversing” the usual ordering of the indexing set J, we obtain a martingale.
Extending this terminology, we say that a random variable M with values a.s.
in J is a reverse stopping variable if {M = j} ¢TF; for all j ¢ J. We shall use the
following trivial generalization of a result of Doob ([5], p. 300):
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LemMA 1. Let Z be a reverse martingale and M a reverse stopping variable. If J
has a first element jo (possibly — ), then

(8) E|\Zu| < E|Z;| < ® and EZy = EZ,, .

A well known reverse martingale is n'S, where S, = >.r X, is a sum of n
iid random variables and E|X;| < «. More generally, sequences of U-statistics
form reverse martingales.

LemMma 2. (Berk [2]). Let X1, Xo, -+ be iid and Uj, , Ujp41, - -+ a Sequence
of U-statistics for some j, = 1. If E|U,| < « and &; is the Borel field
®(Uj, Ujyr, --+) forj = jo, then {U;, F;,75 = jo} is a reverse martingale.

Proor. For j = j,, let Y; be the order statistic for the first 7 X’s and let @;
be the Borel field (Y ;, X1, Xjy2, -+ ). Since U; = E%U;, and {Q; is
a non-increasing sequence of o-fields, it follows from [5], pg. 293, that
{Uj, F;,7 = jo} is a reverse martingale.

LemmMa 3. Let Y1, Yy, - -+ be a sequence of independent random variables with a
common (two parameter) gamma distribution (having a density of the form
¢(8,8)z" ¢ 8,0 > 0). For given N > 0,let S, = D7 Vi, Zn= (8.)/E(S:),
and F, be the Borel field ®(Zy y Znga, -+ + ) forn =1,2, -+ . Then{Z, ,F, ;n = 1}
18 a reverse martingale.

The proof is routine if one first derives the conditional distribution of S,
given Sp41 .

4. Some preliminary results involving M and N. Let M/ and N be defined by
(7) and (1), respectively, with a» = a. We proceed with the notation of Section 2.
TareorEM 1. The following results do not depend on X being normally distributed.

(10) EN = C+ 14 (ng—1)PM =n—1 =C+ n;
(11) EM = C —2— 2n, .

Proor. The fact N < M + 1 and (9) imply (10). Now, using indicator
functions,

(12) M < &®sy’/d + (o — 1) {smny-1j -

(Defining s;° = so, sa is well defined for M = 1. This can occur when ny = 2.
The event [M = ] is null.) .

Using Lemma 2 and then Lemma 1, we conclude first that s, 8y o+ is a
reverse martingale and then Es,’ = o’

Since € = d’*/d’, (9) follows. A reverse martingale argument has been used
by Starr and Woodroofe to prove the extremes of (10) in a similar way. Now
define M’ = max (M, no + 1), a reverse stopping variable. If M = no — 1 or
no,then M = ng+ land M + 2 = /M = no+ 1,then M’ = Mand

M4 12 du/d = M2 (X — X))/ 2 M (M — 1)s% 30 /.
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In general,
(13) M = oy /d® — 2 — 204"

from which (11) follows.

We remark that P{M = no — 1} = o(1) asd 0. When X is normally dis-
tributed P{M = no — 1} = o(d") for any k as d 0. These lead to strong asymp-
totic upper bounds for EM and EN.

TueoreM 2. The following results apply to normally distributed X.

(14) EM* 2 C* 4+ 0(C"") as C—> o for N=1,2,--+;

(15) EN*< C* 4+ O(C*™) as C— o for N=1,2+-;

(16) E(M — N) = O(1) forany mo = 3;

(17) EM* = C* + 0(C*™) as C— o for N=1,2,---;

(18) EN* = C* + o) as C— forany mo = 3, for
N=1,2,---

Proor. The fact N < M 4+ 1 and (14) imply (15). Jensen’s inequality and
(11) imply (17). Jensen s inequality, (11) and (16) imply (18). If X is normally
distributed, we can write SrE(X: — X)) = o D% u; where us, us, - -+ are
iid chi-square random variables with one degree of freedom. According to Lemma
3,

7. = (i u)/BE( s u) =T((n—1)/2)( 225 )"/ (2T((n — 1)/24+ X))

\%

8

is a reverse martingale with EZ,Y = 1forn = 2,3, ---, and fixed A\ > 0. It
easily follows (by definition ), for (positive) integer valued A, that
(19) (s = ™Z,V (1 + 0(1/n)).

(12) and (19) combine to give M Y < O Zx® + 0(M7). Using Lemma 1 and
trivial induction we derive (14). Finally (16) follows directly from
LEvma 4. For0 < 0 < 1,

(20) P{N < 6C} = 0,(C""™™"*) as C— o,
where O, denotes exact order;
(21) E(M —N|N=n)=2C+1 forall n=mn;

and forn > 6C, 0 > %,
(22) E(M — N|N =n) £ K(8), ' a constant (independent of C).

Proor. Let wi, us, -+ be a sequence of iid random variables distributed as
xi_ (chi-square with one degree of freedom ) which we will use in various contexts

below.
Proor of (20). Let 0 < 6 < 1.

P{N = 6C} = P, + P, + Ps,
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where
Py = Ping = N = 2n4f,
P, = P{2ny < N = C%,
P; = P{C* < N < 6C}.
Now forn = ny,
P{N = n} < P{n = d’,’/d"} = P{n(n — 1)
= Cxoa) = 0,(C7" ") a5 C— w.

lIA

(The last equality may be easily verified.) Thus for large C,
P{N £ 6C} > P{N = no} = 0,(C~ ™™/
and
Py = 0,(C™" ),

Using a fairly well-known result concerning the probability of a random walk
crossing a linear boundary (e.g., Section 2.1 Bartlett [1]), we find fory < 0 <
B < 1, that

(23) P{> " u: £ B8 m + v for some (positive) m} = ¢ ",

where ¢ *" = 1 — 2} defines negative valued h.
Now for 0 < 8 < 1,

(24) (a) h<B—1; (b) h < (28)7" log 8.

The first inequality is immediate upon an expansion of log (1 — 24) about
h = 0. By substituting (28)™" log 8 for 2 in ¢ *" = 1 — 2h one can easily verify
(24b). Hence (for large C)

Py = P{2ny < N = C% < P{> T us £ C"'m(m + 1) for some m, 2ny < m
<CY = PV wi £ C'(2n + € 4 1)m — 207, for some m = 1],

By (23) and (24b),
P, < O(C—no/2) < Oe(C_(nO_l)/2)~

P3 is shown to be of a sufficiently small order in the same manner if we use (24a)
instead of (24b).

Proor or (21). If N = n, the point (n, > ul) is below the parab-
ola C'z(x — 1) and either M — n = —1 or M — n = last time k = 1 such
that (k, Y ni% u;) is above the parabola Cl e +n)ax+n—1)— Zz Ui .
In either case, M — n =< M* where M* = last k = 1 such that (k, > rt% u;) is
above the parabola C'z(z — 1). But E’M* = C 41 (cf. (9)) and (21) follows.

Proor or (22). Letn > 0C, 0 > 1
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PIM=n+k|N=mn} £Pn+k<dshud|N=n}
S P{tn+k)n +k—1) < C 23 ui|n(n — 1) = € 228 ug
PICY > n+k)n+k—1) —n(n — 1)}
P{C D% ui > 2nk}
P{> % u; > 20k}

Since 260 > EU; = 1, we know from (for instance) H. Chernoff [3] that there
exists a constant b = b(8) > 0 for which the latter probability is bounded above
by ¢ . Then

(25) E(M —N|N=n)< > eakPiM=n+k|N=n} £ D guke ™ <b™
and hence (22) holds.

{
{

A 1A

[IA

5. The cost of ignorance is a finite number of observations. Here we assume
that X, Xy, Xz, - -+ are normal iid random variables with mean n and variance
o* and as before d > 0. Let r = d/o, so C = d*/r.

MaiNn TueEOrREM. If the value of any stopping variable N s determined by
822, 832, tety then

(26) P{|Xy — u| < d} = 2B®(rN*) — 1 forall p,d"

For N defined by (1) with a, = a and no = 3, we have for some finite integer k = 0,
(27) E®(r(N + k)!) = ®(a) = (1 + a)/2 for all u, ", and d.

Then

(28) P{| Xy — ul < d = a fordl pu, o and d,
and
(29) E(IN+Ek)SC+mn+k foral u o and d.
Proor. The random variables X, and ¥, = (s, -+, 8,°) are independent

forn = 2, 3, --- when X is normal. (See for instance N. Starr [6].) Thus, if the
events [N = n] e ®(sy, -++, s, ), then

P{ Xy —u| < d} = 2 neny P{|Xu — u| < dand N = n}
= 3% PUX, — 4| < d}P{N = n} = 2EB(rN*) — 1.
Forg(z) = @(rx%),g'(x) = rcp(rx%)/(%%) and ¢"(z) = —r(rz + 1)<p(rx§)/

(4x%), where ¢(y) = (2r Y %' Expand g(z) in a Taylor series about z = C
with a second degree remainder term. We find for arbitrary 6, 0 < 6 < 1, that

Bo(r(N + k)*) = Be(r(N + k) )M pvsrerc
> &(a)P{N + k = 6°C} + ap(a)(2C)"E(N + k — C)iyiiso2c)
—a(a’® + 1)o(ad)(86°C*) 'E(N + k — C)lyyisncy



1952 GORDON SIMONS

= #(a) + ap(a)(2C)"E(N + k — C)
— a(d’0® + 1)p(ad)(86°C*)'E(N + k — C)*
+ {—®(a) + ap(a)(1 — 6°)/2 + a(a®6® + 1)e(ab)(1 — 6°)*/(86%)}
-P{N + k < 6°C}.
For small § > 0 the coefficient of P{N + k < 6°C} is positive and for such 6,
Bo(r(N + k)') = ®(a) + ap(a)(2C){k + E(N — C))
— a(d’6® + 1)p(ab)(86°C*) (K’ + 2kE(N — C) + E(N — C)3.
By (15) and (18),
Ed(r(N + k)') — ®(a) = O(CT)E + {ap(a)(20)™" + O(C*)k + 0(C™)
= {ap(a)(2C7") + O(CHHO(CTHE + k + O(1)}.

Thus for some large k and for all large C' (say C = C,) (27) holds and clearly
for some large k (27) holds for all C < Co. Thus (27) holds for some integer
k = 0. (28) follows from (26) and (27), and (29) from (10).
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