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CONTAGION IN STOCHASTIC MODELS FOR EPIDEMICS!

By Grace Lo Yawna
Unawversity of California, Berkeley

1. Introduction. The present paper originated in an effort to build appropriate
stochastic models for the spread of epidemics and in an attempt to study their
properties. The main results consist in the description of the properties of a test
for contagion in an homogeneous population subject to a non-Markovian type of
epidemic.

Owing to mathematical intractability, the models actually studied in the litera-
ture are always oversimplified in many respects. The present work uses also an
oversimplified model. However, we do hope that the method developed in this
restricted situation will be found susceptible of applications in more realistic
cases.

The model considered here assumes that one observes a finite population con-
sisting of susceptibles, infectives and immunes. A susceptible individual may be
changed to infective either through general causes independent of the status of
the disease in the population or through infection transmitted by the infectives
of the population. It is assumed that during the time of observation the same
individual will not recover enough to become infected twice.

The main difference between the model studied here and models used by other
investigators is that the infectiousness of a diseased individual depends not only
on the length of time he has been sick but also on the time at which he was
infected with the disease. Thus to describe the state of the population at time
7 it is necessary to give not only the number of infectives but also the times at
which they became infected.

A precise description of the actual model studied in detail is given in Section 2.
For this particular model we construct an asymptotically optimal test for con-
tagion and investigate its properties, including asymptotic evaluations of its
power. Two different sampling procedures are considered. In Section 3 the sam-
pling method consists of observing the population until a predetermined number
of cases have been observed. For this sampling procedure one obtains an asymp-
totic distribution for the logarithm of the likelihood ratio. This is done both
under the assumption that no contagion is actually present and under the
assumption that the contagion within the population is detectable but not over-
whelmingly obvious.

In Section 4 similar results are obtained but the sampling procedure is different.
It is assumed there that the length of time of observation is predetermined.
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In Section 5 an asymptotic distribution for the logarithm of the likelihood
ratio is obtained under the condition that the rate of incidence of disease coming
from causes other than contagion within the population is regarded as an un-
known nuisance parameter. It is shown that in this case one can obtain asymp-
totically similar optimal tests. We also give an evaluation of the limiting power
of these tests.

It is rather surprising that even under much more severe restrictions very few
results had previously been obtained in this area. The problem was considered
by Greenwood [3] in 1946. He suggested a test based on the sum of squares of
the time interval between successive occurrences of cases of disease. A modified
procedure was proposed by Bartlett [1] in 1949. No information on the efficiency
of the tests proposed is presently available. In 1955 Gaffey [2] considered the
problem of testing the hypothesis of existence of within family contagion. In his
model the contagion rate is assumed to be proportional to the number of infec-
tious individuals present in the population. Furthermore, once infected, an in-
dividual remains in that state forever. For this model which is a very particular
case of the model studied here, precise information on the power of the test
derived there could not be obtained in general.

From a technical point of view it will be seen that the asymptotically optimal
test is based on certain double sums and integrals of functions of pairs of times
of occurrence. Because of the lack of independence and the unusual form of the
test statistics no “central limit theorem’’ seemed directly applicable. In fact we
have used none. In spite of this it will be shown that the test statistics are
asymptotically normal for the hypotheses and for the alternatives considered.
Since the procedure relies almost entirely on the properties of likelihood fune-
tions details of structure of the test criteria are rather unessential, a feature which
holds good promise for possible extensions.

2. Description of the model. Consider a finite population consisting of N + 1
susceptible individuals. It is assumed that at time ¢ = 0 a first event takes
place changing one of the N + 1 individuals from susceptible state S to in-
fectious state I. The process continues from that point on, the basic observable
variables being the times &, < 7) < --- £ T at which the N remaining in-
dividuals change from state S to state I. No returns from I to S are permitted.

Let Qx be the set of all possible outcomes. This is the set of N-tuples Y =
[, 82, -, ty] Witht, < & £ --+ = ty . Thus Qy is a certain cone in the N-di-
mensional Euclidean space. The o-field of Borel sets in Qx will be called Fy .
Assume that a certain parameter set © has been given together with a prob-
ability measure Py on Fx for each 6 ¢ ©.

Two different sampling procedures will be considered. The first one, called
n-procedure for short, consists in fixing an integer # and observing the first n
variables Ty, Ty, -+ , T . The second, called T-procedure, consists in observing
those variables T'; such that T; < T, for a predetermined duration T. These

two experiments induce two sub-o-fields of Fy which will be called @, and &z
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respectively. The o-field @, is generated by 71, Ts, -+, Tn. The o-field ®~
is generated by the variables min (7;, T') forj = 1,2, ---, N.

The probability measures corresponding to the two kinds of experiments will
be denoted Ps™ and P§™ respectively. The measure P§™ is the restriction of
Py to @, and P§™ is the restriction of Py to ®, . In particular, if a set S belongs
to both @, and ®y then P§™(S) = P§"(8) = Po(S).

For the present paper the structural assumptions made for the construction of
the measures Ps are as follows.

(a) The set O is the set of pairs (A, 8) withA > 0and 8 = 0.

(b) There is given a function f defined on R* X R* and taking values in
R* = [0, »). It is assumed that f is bounded by a constant c, jointly measurable
and such that f(¢, 7) = 0 for ¢ > 7.

Suppose that the times of occurrence of the first jeventsare0 = =t = - - -

< ¢ = --- £ tj_1. Then the conditional probability, given 70 = &, ---,
T;-. = t;— that no new event will take place in the interval [{;_., {] where
t > t;_11is equal to

(21) Po{Tj >t | o, b, - ’ti—l} = exp{—(N _.7+ 1) J.:j—l [)\+ BG,(T)] dT}
with
(2.2) Gi(r) = 2= f(ti, 7).

For epidemic models the foregoing mathematical formulation possesses the
following interpretation.

It is assumed that if an individual is infected with the disease at time ¢ he will
henceforth contribute at each time » > ¢ an amount f(¢, ) of pathogenic ma-
terial to the environment.

Thus if j cases of infectives have occurred at times 0 = 6 = & < -+« = i
the total amount of pathogenic material contributed by those cases at time
t > t;_, is given by the G;(¢). The amount of pathogenic material f(¢:, ¢) can
be interpreted in various ways. One possibility is that f(¢;, ) is at time ¢ the
rate of emission of viruses or bacteria by the infective cases started at ¢ .

A main difficulty in the application of this model to actual cases may be the
ascertainment of the times ¢; at which the organisms became infected. In some
diseases, this may be directly possible. In some other diseases the period elapsed
from the time of infection to the time of detection may be considered relatively
constant so that ¢; may be computed by subtracting that constant from the
time of detection.

The parameter A\ represents a rate of influx of infection from sources which
are supposed to be unaffected by the actual state of the population under study.
For instance A may represent a rate of infection by contact with organisms which
are not included in the population under study. Another interpretation could be
that the pathogenic organism is always present in the population but that it
becomes active only occasionally, owing to mutations. The rate A would then
be the mutation rate. Another interpretation is possible. In some cases, such as
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leukemia, the disease might be initiated by exposure to the normal background
of radiation. The parameter AN would then give the average number of cases.
initiated per unit time in a population size N by this background radiation.
Keeping these interpretations in mind, it will be convenient to label A the “mu-
tation” rate and reserve to the parameter 8 the name of contagion parameter.

The formula (2.1) which provides the conditional distribution of T'; given
Ty, Ty, -+, Tj is the simplest mathematical expression of the following
statement. Accepting the interpretation given above, at any time ¢ which follows.
the occurrence t,_, of the jth case of infection, each of the individuals in the
population is subject to a risk of infection X 4 B8G;(¢) proportional to the total
amount of pathogenic material present at time ¢, including material of outside
origin represented by A. It is then assumed that the expected number of new
infectious cases to occur in a short interval (¢, ¢ 4 &) is given by

(2.3) (N —j+ DA+ BG;(@)h + o(h).

The explicit formula (2.1) could be derived from this if one adds the assumption
that in (¢, ¢ + h) the conditional probability of multiple cases is of order o(h).

Concerning the assumptions made on the function f, one could have assumed
that f(¢, 7) is in fact a function of the difference r — t. This would mean that
the effect and evolution of each case of disease is independent of the time of
infection. However one may conceive of cases in which there are definite sea-
sonal effects due to seasonal variations in the population densities or climatic
differences. Since this is a possibility, it seems preferable to let f depend on the
pair (¢, 7). Another reason for keeping this general form of f is the following.
Suppose that one would want to test for contagion in a disease which is known
to be induced by radiation exposure. Suppose that one would also have a time
record of the actual amount of radiation exposure. One can then introduce a
fictitious time scale in which radiation exposure occurs at the uniform rate A.
The contagion function f which may have been invariant under shift in the origi-
nal time scale is no longer invariant in the new scale.

A structural assumption which certainly needs modification in practical ap-
plications is the assumption made here that the history of each infectious case
does not involve any random element except for the time ¢; of inception. Natural
incubation periods are random, durations of illnesses are random and the rate
of emission of pathogenic material is also random. These supplementary random
features could be introduced; however they were not considered in this paper.

To terminate this section let us mention some of the formulae which can easily
be derived from the assumptions (a) and (b).

It follows immediately from assumption (b) and formula (2.1) that the joint
probability distribution of the times T, T2, - -+, T'y possesses a density with
respect to the Lebesgue measure on set Qy . This density is given by the formula

(2.4) dPys = N\[]5= I» + 8G(t)]
exp (=20 (N — j + 1) Ji_ N + BGi(r)]dr}dt - dix,
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for 0 = ¢ < & < -+ < ty. This can be obtained by repeated application of
formula (2.1). It follows also that

(2.5) dP{E = [N)/(N — n) 1= A + 8G(t5)]
exp {— 2= (N — 7 + 1) [V I\ + BGi(r)]dr}dty -+ dtn,

for 0 = h<bh < - <tin.

When no contagion takes place within the population, that is, when 8 = 0
the preceding formulae take simple forms as follows. The joint density of the
N times of occurrence of infection is given by

(2.6) NI exp {— 2 0= (N — j 4+ DAt — Lo},

for0 <t < <lw.

From this expression one can easily derive the following statements.

(i) The T; have the same distribution as the ordered observations from a
sample of size N taken from the distribution with cumulative distribution
function 1 — exp (—A7), 7 = 0.

(ii) The T'; may be represented as sums

(2.7) Tij=2Z/N+ Z;/(N—1)+ -+ Z;/(N —j+ 1)

where Z:, Z,, - -+, Zy are independently and identically distributed variables
having the cumulative distribution function 1 — exp (—Xz),z = 0.
(iii) One has

(2.8) ET; = 20NN — k 4+ D™ < .

‘Therefore, if 8 = 0 every T is almost surely finite and

(2.9) —log (1 — (j — 1)/N) S \ET; < —log (1 — j/N).
(iv) The variance of 7'; is given by the formula

(2.10) Var T; = 21 V(N — &+ 1)

(v) Let M be the number of occurrences of infectious cases in the interval
(0, T). If no contagion takes place then M is a binomial random var-
iable B[N, (1 — exp (—AT))].

In the model described by assumptions (a) and (b) the hypothesis Hy that
no contagion takes place is equivalent to the hypothesis that 8 = 0. The alterna-
tive H, of existence of contagion is the hypothesis that 8 > 0.

For fixed values of A and 8 the Neyman-Pearson fundamental lemma shows
that the optimal tests of the simple hypothesis (A, 0) against the simple alterna-
tive (A, 8) should be derived from the logarithm of the likelihood ratio which
can be written

A, = log (AP /dPSY),
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for the n-procedure and
AP = log (dPS% /dPE),

for the T-procedure. However the actual distribution of A, or A is extremely
complicated. Thus we shall look for limiting distributions for A, or A‘™ as either
nor N(1 — exp (—AT)) and N tend to infinity.

Under these passages to the limit A, computed for fixed values of 8 will not
usually have a limiting distribution on the line. To insure that the limiting
distribution exists, we shall let 8 approach zero as n increases and take instead
of fixed values for 8 numbers of the type 6,0 where v > 0 and §, is a certain
sequence such that lim,-« 8, = 0. It will be shown in the next section that an
appropriate choice of 8, is the value

(2.11) 8, = 1/nn’.
This choice insures that under assumptions (a) and (b) the logarithm
A (N, 80); (A, 0} = log (dP53./dP5Y)

has a non-degenerate limiting distribution under Hy as well as under the sequence
of alternatives 8, = 8,0 taken in H, .

It will also be shown that a similar result is correct for the T-procedure, for a
rate of convergence (»)~* where » is approximately the expected number of
cases of infection occurring in (0, 7).

This method will reduce our testing problem to a local one in which normal

approximations will be usable.

3. Limiting distributions under n-procedure. In this section, we consider the
first sampling system in which we predetermine the number of cases, say n, to
be observed and then record the times of occurrence of these n cases, say Ty, -+,
T,,whereT, < --+ < T, < «.Weassume that X is known; hence ® = [(\, 8);
B=0] = HuH’ where H = (), 0), H = [()\, 8); 8 > 0]. We will proceed
to show that £{A.[(A, d.2); (A, 0)]} converges to a normal distribution as n
(and therefore N) tends to infinity.

The existence of a limiting distribution relies on the following conditions:

(A:) Existence of a sequence A, of @, measurable functions and a numerical
function A such that

A(A, 80)5 (N, 0)] — vA, + (V/207)4

converges to zero in P{% probability.

(As) The sequences {P\3y} and {P{3).} are contiguous.

The definition of contiguity [5] used here is the following.

DeriniTioN 3.1. Let {P,} and {Q.} be two sequences of probability measures
on the o-fields {®,}. The sequences are called contiguous if the sequences {S.}
of {@,} measurable functions which tend to zero in probability are the same for
{P.} and {Q.}.
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Equivalently, if A, = log (dQ./dP,) , the sequences {P,} and {Q,} are con-
tiguous if and only if both £{A, | P.} and £{A,|Q.} are relatively compact
sequences.

The contiguity condition (Az) will play an important role. The proof that it is
satisfied here is one of the main parts of the present section.

Since the logarithm of the likelihood ratio A, will oceur repeatedly in the
sequel we shall first record here its explicit expression.

(3.1) AL(\, 80); (\, 0)] = log (dP{%),/dPyY)
= 2 log [L+ (8a0/N)Gi(t;)] — 23 (N —j+ 1) [li_, 6:0G;(7) dr.
Applying a Taylor expansion to the logarithmic term gives
Aal(N, 8a0) 5 (X, 0)]

(3.2) = (8u0/N) 13- [Gi(T;) — NN — j + 1) [7_Gy(r) dr]
— (80%/20%) 203 GE(TH /1L + (8umi/N)GH(THT,
with0 = 9, S vforj =1,2,---,n
This will also be written

(3.3) AN, 8a0)5 (N, 0)] = vA(N) — *R.(N),
with

An(N)

= (I/h) 225 2T, T5) — (N — 5 4+ DN [5i_, f(Ts, 1) dil,

(3.4) R.(\)

= ()7 X [ 2R S (T, THF
AL+ (n/Wn) I (s, T
We proceed to show that conditions (A;) and (A.) are satisfied. First we will
establish the contiguity condition (A;). The following lemma is used.

LeMMma 3.1. Assume that the conditions (a) and (b) are satisfied. Let A.(\) be
given by equatzon (3.4) and let E, denote expectations taken for the probability

-3

measures P4, for 8, = n”%.
Then

EoAn(N) = 0.
Furthermore there is a constant ¢, such that
0 £ E,A(\) = coc?/N
Proor. Consider first the conditional expectation of the term
(N —j+ DN[T7 ft:, 7)dr
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given the values &, &, -- -, t;— . This may be written as
(35) Ev{(N - ] + ]-))‘ Z;j_xf(ti ) T) dr | loybi, -+, tf—l}
= (N — j + DNGLpiOU o f (6, 1) dr) dt

where p;(¢) is the density of 7'; given &y, &, -+ -, t;_1, for the measure P{,’;f,,, .
By application of Fubini’s theorem, this can also be written in the form

(3.6) (N —j 4+ DNG_ f(t, 1)Qs(r) dr
with
(3.7) Qi(r) = [7pi(t) dt.
In addition p,;(7) = (N — j 4+ 1)\ + 8.0G;(7)]1Q;(7). It follows that
(38> E”{f(ti7 TJ) - (N - j + l)xfz;:’-lf(tly 7') dr | lfo, 21 )y " ti—l}
= (N — 5+ Dowf4_, f(t:, 7)Gi(7)Qi() dr.
When v = 0 this conditional expectation is equal to zero. It follows that
EoAn(T) = 0.

For arbitrary values of v > 0 the conditional expectation expressed by the
integral in (3.8) is obviously non-negative. Furthermore, since 0 < f < ¢ one
han(ti y T)Gj(T) § jcz.

Hence
(3.9) [T S, )Gi(1)Q(1) dr = jdu/[(N — j + D],

It follows by addition that
(3.10) 0 = E.A(N) = [(d)/(Nn")] 2 7= 20105,

Hence the result, since 3 Y 1w 7’ < (n + 1)%

THEOREM 3.1. For the sequence 8, = n™* the sequences of measures {P\%} and
{Py3).) are contiguous.

Proor. Denote the logarithm of the likelihood ratio A,[(A, 8.2); (A, 0)] by
A, for short.

Let E, be defined as in Lemma 3.1. It will be sufficient to prove that for given
numbers a, b such that 0 < @ < b < « there is a constant c:(a, b) such that

(3.11) Ey A = @(a,b) and E, |As| = ca, b)

whenever a = XA and 0 £ v = b, the desired contiguity property follows then
from Markov’s inequality. Note then that EoA," < Ejexp (A,") < 2, and
EA," £ E,exp (A7) = E,exp {[—A.]7} < 2 with A,* = max (0, A,) and

A~ = min (0, A,). Thus, if EcA, > —c we have
(3.12)  Eo A = BoA™ + EoA” = —EoA, + 2EA,T < ¢ + 4.

A similar inequality applies to E, |Ax|. It is therefore sufficient to show that there
exists a constant ¢ such that EoA, > —c¢ and E,A, < ¢'. For the expectation
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taken under the hypothesis we can write

(3.13) Eodn = vEsAn(N) — v'EoRa(M).

Since by Lemma 3.1 we have EyA,(\) = 0 and since
R.(\) = /2N,

it follows that EoA, = —v’c’/2)%
Similarly, the second statement of Lemma 3.1 implies

(3.14) EAy £ ct’é/N — VER.(N) £ en’d/A

This implies the desired result.

Note that the bounds obtained here depend only on the ratio (cv/A) of the
contagion effect to the mutation rate \.

The next lemma is essential for the establishment of the fact that there exists
a numerical function 4 such that condition (Al) is satisfied. More explicitly,
the lemma is used to prove the convergence in Px 5 measure of 2\°R, (see (3.4))
to 4.

Let us recall that for the measure P57 , the times T, T,, ---, T, have the
same joint distribution as the first n order statistics from a sample of size N
extracted from a negative exponential dlstrlbutlon with density A exp (—A7),
7 > 0. Since the o-fields @, and the measures Py change if » and N vary, almost
sure convergence statements for » (and hence N) tending to infinity, can be
made only by introduction of other probability spaces. It is clear that one could
introduce a sequence { T';*} of independently and identically distributed variables,
having densﬂ;y Nexp (—A7) and let Ty,; be the jth order statistic for {7.%;
1 =1,2 , N}.

For such a space the following lemma is essentially a statement to the effect
that the empirical cumulative distribution of the T, , - -, T, converges almost
surely. However, it is stated here in such a way that the result need not be at-
tached to any specific probability space.

Let

Fu.(7) = (1/n){number of Ts suchthat 7, <r+j=1,2 - -, n}.
The inequalities AT; < A7 and [1I — exp (=AT;)][1 — exp (=ATpu]™ =

1 — exp (=A7)][1 — exp (—ATws1)] " are equivalent.
It can be shown easily that conditionally given the value of T, the variables

Ui= (1 —exp (=\T;))(1 —exp (—ATws)) ™, j =1, --,m,

have the same joint distribution as the order statistics of a sample of size n from
a uniform distribution (0, 1). Therefore given T, the process F,(7) behaves
exactly in the same way as the empirical cumulative F,*(r) defined by

F.*(v) = (1/n){number of U,’s such that U; £ (1 — ™)1 — ¢yl

in a sample of size n from a uniform distribution (0, 1).



1872 GRACE LO YANG

Let &, be the function defined by
®,(7) = [1 — exp (=A)]1 — exp (=ATwy)]" for 0< 7 < Ty

Let ‘I)(f) = 1for r = Tn+1 .
According to a theorem of Kiefer and Wolfowitz [4] there are absolute con-
stants K; and K, > 0 such that

P{sup, |[F,*(r) — &(7)| > €| Ty} £ Kiexp (—Kmé).
LemMma 3.2. Let <I>;;,,,(r) be the cumulative distribution function defined by
By a(r) = (N + 1)/(n + 1)](1 — exp (—Ar))

on the range of values of  where this is less than unaity.
There exist absolute constants K, and K, such that

P{sup, |Fa(7) — &5 a(7)| > 2¢ < Ki{l/né + exp (—Kmé)}

for every n = 1 and every e > 0.

Proor. The variable (1 — exp (—AT,41)) has the same distribution as the
(n 4+ 1)st order statistic U,41 in a sample of size N from a uniform distribution
on (0, 1). If follows that EU,1. = (n + 1)/(N + 1) and variance of U,y =
(n+ 1)(N —n)/(N + 1)"(N + 2).

The maximum difference between ®y, and &, occurs at the minimum of
Upiiand (n + 1)/(N + 1). It is equal to

[Uni = (n+ 1)/(N + D] {max [Unsa, (n + 1)/(N + DY
SN+ 1)/(n+ D)Uppn — (n 4+ 1)/(N + 1)].
This last expression has a second moment equal to
(N =n)/[(n+ 1)(N +2)] = 1/(n+ 1).

Therefore, by Markov’s inequality

P{sup, [®y.(r) — ®u(7)| > d < ¢/(n + 1).
Since, according to the previous argument,

P{sup, |Fu(7) — ®.(7)| > ¢ < Ki exp (—Kmé),

the result is completely proved.

Before going further it is convenient to describe in more detail the possible
limiting behavior of the distributions ®y , . Note first that ®y » depends not only
on the ratio (N + 1)/(n + 1) but also on the parameter \ itself. Further, if n
(and therefore N) tends to infinity, we can replace (N 4+ 1)/(n + 1) by (N/n)
without any essential changes. Thus, it is convenient to introduce the distribu-

tion function

By nn(z) = min {1, BN~ (1 — exp (—\z))}
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for = 0. The ratio (n/AN) may be interpreted as the ratio of the observed
number of cases to the expected number of occurences per unit of time. Let
N, n and A vary in an arbitrary way subject to the sole restriction that n — oo
andn < N.

One can interpret the situation where (n/AN) tends to zero as a situation
where the total number of observations made is negligible but the disease is very
common. Similarly convergence of n/AN to infinity means that the disease is
relatively rare but that the observations are taken for a very long period. Under
these circumstances, ®x » » tends to the distribution which is degenerate at zero
or infinity respectively.

In practical cases, one is more likely to observe a small, but nonnegligible
fraction of the possible cases. This could correspond to the case where (n/AN)
stays bounded away from zero and infinity.

If (n/AN) tends to a finite non-zero limit @ but A — 0 then &, » tends to the
distribution

&,(z) = min (1, z/a).

This is the cumulative of the uniform distribution on the interval (0, a). If
(n/AN) tends to a but A tends to Ag > 0 then &y, converges to the distribution
funetion min (1, b(1 — ¢7°%)) for Ab = a.

Since if n < N, the conditional distribution of T, -, T given T4 is the
same as the distribution of order statistics from a sample of size n taken from
the cumulative distribution

®,(t) = min {1, (1 — exp (—=At))(1 — exp (—=AT»ni1)) ).

It follows that for any arbitrary non-negative measurable function ¢ defined
on R X R* one can write

B{(1/n*) 20— 2oimo(Tiy T5) | Tasi}
(3.15) = (1/n) [ o(t, t) d®a(t)
+ [n(n — 1)/2%]f [ o(s, t) dBa(s) dBa(t).
Let Up = 1 — e7™"+1, This variable has expectation (n + 1)/(N + 1) and
variance [(n + 1)/(N + 1)J*(N — n)/[(N + 2)(n + 1)], therefore
PEl(n+1)/(N+D]S1 - =2(n+ 1)/(N+ 1} 21—4/(n+ 1)

except for cases having probability at most 4/(n + 1) the conditional distribu-
tion ®, has a density bounded by 2A\[(N + 1)/(n + 1)] exp (—At) for ¢ <
—(1/x) log[1 — 2(n + 1)/(N + 1)]. The density is zero for larger values of .

Suppose then that n/AN converges to a finite non-zero limit @ and that either
A—0orX— X > 0asn — «. Assuming this there is some number K < «
and some number \; such that

dd,(t)/dt = K exp (—Mit)
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for every ¢ except possibly for a set of values 7,41 which has probability at most

4/(n + 1).

Thus we have
(3.16) P{E[(1/n") 251 2im@(Ts, T) | Tap] SC(e)} 21— 4/(n + 1)
with
(3.17) C(e) = (K/n)[ ¢(t, 1) exp (—)\it) dt
+ K*(1 — 1/n) [ [ ¢(s, t) exp [—Ai(s + t)] ds dt.

ConprrioNn C. Let f be a measurable function defined on the set Rt X R*.
Assume that 0 < f < ¢ and that f(z, y) = 0 whenever > y. Furthermore if
n/AN is allowed to tend to infinity it is assumed that f(z, y) tends to a limit
f(o, ©) > 0forx — o and ¢ =< y. If n/AN is allowed to tend to zero it is
assumed that as (z, ¥) — 0 in the set 0 = 2 =< y the values f(z, y) tend to a
limit f(0, 0) > 0.

TureoreM 3.2. Let f satisfy Condition C. Let

A(n/N,N) = [|[ f(z,y) Ay ar(@)] dBynr(y).
Ifn— o but0 <y = n/AN < 1/v then
P {l(1/n?) 25| 205 f(Ts, TP —A(n/N, )| > ¢

lends to zero for every € > 0.

Proor. For the two special cases assuming continuity restrictions on f the
result is almost immediate. For the case where n/AN stays bounded away from
infinity and zero one can assume that n/AN converges to a limit and that either
A=X>0o0rx—0.

In both cases the terms of the sum having indices 2 = 0 contribute a total at
most equal to ¢’/n. Thus they may be neglected. Let B,(f) be defined by

Bu(f) = (1/0") 205w | 220 f(Ts, T

The proof of the theorem consists of two parts. They are:

(i) Approximation of B,(f) by Ba( 1*) where f* is obtained in the following
way.

If f is an arbitrary bounded measurable function on R* X R™ there exists a
function f* such that

(1) f* is continuous,

(2) f* has compact support and |f*| < ¢,

(3) if ¢ = |f — /| then C(p) < €/2c,
for the value C(¢) given by equation (3.17).

Select such a function f*. Clearly

B.(f) = Ba(f*) = (1/n) 2251 [(1/n) 229 (Ts, THI(1/n) 2im 0*(Ts, T,
fory = f+ ffand o* = f — f*.
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It follows that if [f| £ ¢ and |f*| < ¢, then
(3.18) Bu(f) — Ba(f)| £ 2007 25 2 o(Ti, T3),

forp = |<p*|
Then according to (3.16), (3.18) and Markov’s inequality

P{B.(f) — Ba(f")| > & S 4/(n+ 1) 4+ 2¢C(p)/e < 4/(n + 1) + e

(ii) Proof of the theorem for f*.

Since the values A(n/N, \) behave similarly it will be sufficient to prove the
theorem for f* instead of f. However since f* is a continuous function with com-
pact support, it is uniformly continuous. Therefore the averagesn ™ e (T )
are equicontinuous in y.

Lemma 3.2 and an application of the Helly-Bray theorem shows that for each

value of y the difference
n_lZ;;lf*(Ti ) y) - ff*(x, _7/) dq)N.nJ\(x)
= [z, y) dFu(z) — [ f (2, y) dynn(z)

tends to zero in probability. Since f* is zero for large values of z and y and since
the sums are equicontinuous we conclude that

Supﬂ In_l Z;;lf*(Ti ) y) - ff*(x, 1/) d(bN.n,)\(x)l - O

in probability. This implies immediately the desired result.

LeMMa 3.3. Assume that n/AN — a and that X — Ao = 0. Assume also that f
satisfies the Condition C. Then the triple integrals A(n/N, \) converge to a limit
D(a, o) which is continuous on the set {0 < a < ©,0 = A < oo}.

Proor. The cumulative distribution ®y . possesses a density p(z, n/AN, A)
equal to

(AN/n)e™ for 0 <z < —A""log (1 —n/N).

If n/AN — a and A — )\ > 0 these densities converge pointwise to the density

p(z, a, Ao) equal to
ae™ for 0=z =< —\ 'log (1 — Na).
This remains true if Ay = 0 provided —\, ' log (1 — Xoa) is replaced by its

limit namely a.
According to Scheffé’s theorem this implies that

5" = [ Ip(z, n/A\N,\) — p(z, a, \o)| dz — 0.
Let D(a, \o) = [ |[ f(z, ¥)p(, @, No) dz’p(y, @, \o) dy. This gives
|f f(z, v)p(z, @, No) dz — [ f(z, y)p(x, n/AN, \) dz| < cb,".

Hence
|A(n/N,\) — D(a, \o)| < 3¢%,* —0

the continuity of the limit D(a, \o) follows by the same argument.
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ReMark. Note that D(a, N\y) > 0 unless the function f is almost everywhere
equal to zero on the set

{(xy Z/), 0 é X é Yy é _>\0_1 lOg [1 — )\oa]}.

TraEOREM 3.3. Suppose that assumptions (a), (b) and Condition C are satisfied.
Assume that n — « in such a way that n/AN — a and A — \¢ > 0. Let

Ad N 8a0); (A, 0)) = vA, — R, asin  (3.4)

then
(i) R, tends in probability to i\o"D(a, o),
(ii) the distributions L[A, | P converge to the mormal distribution 9]0,
D (a, No)/M\] and
(iii) the distributions L[A, | P{,'é,),,,] converge to the normal distribution v
D (a, )\0)/)\02, D(a, )\0)/)\02].

Proor. According to Theorem 3.1 the sequences {P\3} and {P{3.,} are con-
tiguous. It follows then from a lemma of L. LeCam [5] that if F is a cluster
point of the sequence of distributions £[A, | P {+'] one must have f e"F(dA) =
Let {m} < {n} be a subsequence such that L[A,|Pys] — F for A, =
An{ (X, 8,0); (N, 0)} and for a fixed value of v > 0. Slnce by Lemma 3.3 2\’'R, —
D(a, N\o) in probability, the random variables vA,, have a limiting distribution.
Therefore £[A, | P%'] converges to a limit G. Hence £{A,, | Py} tends to a
limit for every v > 0. The equation f e"F(dA) = 1 can be written as

[ exp pA — 2"\ "D(a, N)]G(dA) = 1,
that is:
Ee™ = exp {2\ "D (a, \o)}.

This must be true for every » = 0 and therefore the distribution G is
[0, D(a, \)/Ao), since this does not depend on the choice of the subsequence
{m} C {n} the sequence {A,} itself must have the same limjtmg distribution.
To obtain the limiting distribution under the alternatives Py} b it is sufficient
to note that dP{,'éiv = ¢t "dP(") and that this relation remains true for the
limiting distributions because of the contiguity of the sequences {Py5..}, {Pi4}.
Therefore, the limiting distribution of A, under the alternative must be a dis-

tribution @, such that
dG, = e*dG = exp pA — (v*/2\0')D(a, \o)] dG.

The result follows by simple algebra.

For the case where n/AN — a ¢ (0, © ) but A — 0 Theorem 3.1 can still be
used to prove contiguity but the sequence of alternatives must be different. This
is stated in the following theorem whose proof parallels exactly that of Theorem
3.3.

TurorEM 3.4. Let assumptions (a) and (b) be satisfied. Assume that n — ©

and that n/AN — a ¢ (0, ©) but A — 0. Consider the sequences P and Pi%,
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with 6, = 1/n nt as before. Write the logarithm of likelihood ratio in the form
A[ON 800); (N, 0)] = 0A,* — 0°R,*. Then, for every fized value v the sequences

LA [P = 90, D(a)],  €[A.T | Piih.] — 9D (a), D(a)],
with
D(a) = o’ [3|[5f(z, y) dal" dy.

The proof which is the same as that of Theorem 3.3 will be omitted.

To terminate this section, let us apply Theorem 3.3 to the derivation of an
asymptotically optimal test of the hypothesis v = 0 against alternatives v > 0
for the case where the parameters (n/N) and A are known.

Under the prescribed conditions the hypothesis v = 0 is a simple hypothesis
H, . For a fixed value of v we have a simple alternative H, . According to the
Neyman-Pearson fundamental lemma an optimal test w.(v) of size « is obtained
by rejecting Ho if An = A[(N, 8,0); (N, 0)] = vA, — v'Ry = ko(a) where k,(a)
is such that P{%'[A ,, = ky(a)] = a. Let b denote the number defined by the
equality a = (27r) f ¥ ¢ qu. Let w,* be the test which rejects Hy if A,
A'0(D(a, \) )’ Since A, is asymptotlcally normal as stated in Theorem 3.3 the
probability that the tests w.(v) and w,” lead to different decisions tends to zero
under the hypothesis H, as well as under the alternatives. It follows that the
test w,” is asymptotically optimal of size « and that its limiting power is given by

1Mo PiAa[An 2 N7B(D(a, M) = (20)7F [ilopnt e du.

4. Relations between two sampling procedures. In this section we are going
to investigate the second sampling procedure, called “7T-procedure” for short.
Using the first procedure the total time needed to complete the experiment is
random. This may sometimes be inconvenient in practice. It would be desirable
to use the “T-procedure’” in which the amount of time which we are willing to
spend is under our control. However, in this case, the total number of infectious
cases M occurring in the interval (0, 7') will become a random variable which

takes values 0, - -+, N. The joint density of T\, ---, T is easily seen to be
dP\5 = INY(N — M)12255 N + 8G5(1)]
(4.1) cexp {— 205 (N — 5+ 1) [, I\ + 8Gi(r)]dr)
cexp {—(N — M) [{, IN + BGu(7)]dr} dt -« - dty
forO0=ty<t - <tw<TandM =0, ---, N.

Here again, because of the intractability of the exact formulas, we shall have
an asymptotic test criterion for local alternatives. It would appear at first sight
that an appropriate passage to the limit consists in letting the period of observa-
tion T increase indefinitely. However, it turns out that 7' itself is not the con-
trolling parameter.

Under the hypothesis H, that no contagion takes place, the number of infective
cases occurring during the interval (0, T is a binomial random variable M such
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that EM = N[1 — "], Variance M = N[l — ¢ "]¢"". We shall obtain
the limiting behavior of the system when N[1 — ¢ ] tends to infinity.

For convenience we introduce an integer » related to N and T as follows.
Let v = »[V, AT be the smallest integer larger than or equal to

(4.2) min (N, N[1 — ] + [N(1 — ) ™.

Consider alternatives corresponding to parameter values (A, 8) of the form
(N, 8,v) where » is the function of N and AT just defined and §, is the value
3, = » ¥ as in Section 3.

Formula (4.1) gives

AP = log [dP\3),/dPS%))
= 2 ilog[1 + o) GH(T))]
— 2N =G+ 1) [7 ()T G() dr

with Ty = T and » = »[N, AT defined by formula (4.2).
Expanding the logarithm by Taylor’s formula one obtains

(4.3) AP =08, — PRy(N)

with

(44) AP = )L GATy) — 23 (N — 5+ DA77, Gi(7) dr}
and

(45) Ru(\) = %) 205 {GH(THIL + 0,000 7G(THI7Y

for values ; such that 0 = »; < v. To obtain results of the same nature as in
Section 3 we should have that {P{3.,} and {P55} are contiguous and that Ry
tends to a constant as N[1 — ¢™"] tends to infinity.

The desired propertles are obtained by maklng two comparlsons First we will
compare the pairs of measures {P\3,, , Py4} with the pairs { P53’ b (T)} Then,
we will compare the coefficients R, (\) and Ra()) of the term in »* in the expres-
sion of the logarithm of the likelihood ratio. The value v is so chosen that P[T, <
T | H,) — 0 as v tends to infinity. Thus in the limit the “»”’-procedure will be
more informative than that of 7-procedure. Throughout this section we assume
that 0 = f = ¢ and f(z, y) = O for £ > y. Furthermore we assume that f is
measurable in (z, y).

TaEOREM 4.1. Let \, N, T' and v vary. arbitrarily subject to the restriction that
N1 — "”] — o and that 0 = v = K\ for some number K < . Then the se-
quences {P{5,} and {P\%} are contiguous.

Proor. According to Theorem 3.1 there exists a function 5(8) tending to zero
as § — 0 such that under the conditions of the theorem for 4 ¢ @, ,

PR, (A) < 6= PR(A) < () and PR(A) < 8= PR, (A) < 5(8).
The statement of the theorem is that a similar result holds for the o-field Gy .
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More precisely, we shall show that for every ¢ > 0 there is a »(¢) and a § > 0
such that if » = v(e) and B ¢ ®; then

P5(B) < 5= P{5,(B) < 2¢ and P%.,(B) < 6= P& (B) < 2

For this purpose note the following relations. Let S, = {1, = T}. Then S, ¢ G, ,
but also S, & ®r . If B¢ ®7 then B n 8, ¢ @, since if T, = T the »-procedure is
more informative than the 7-procedure. This could be proved formally using
the description of ®r as the o-field generated by {min (7, T;);j = 1,2, --- , N}.
However it is clear that if we know the process up to 7, and 7, = T, we know
what happened before T'.

Select 6 so small that 7(8) < e and then select »(€) so large that » = »(e)
implies Py 0(8,°) < 7(8) < e Let B ¢ ®rbe such that Py (B) < 4. This implies
Pro[B n S,] <4, hence since Bn S, e @®,, Pys,.[BnS,] < n6). It follows that

Pi50(B) £ Pr5,o[BnS)] + Prs,o(S°) < n(8) + e Similarly, if P3.(B) < 6
one can write Py ;,, [Bn S,] < 6 hence P{4[Bn 8,] < 7(5) and therefore P{%(B)
< (8) + Pro(SS°) = 1(8) + € < 2e

This concludes the proof of the theorem.

The next result concerns the coefficient R, of »* in the expression (4.3) of

A,”. We shall show that under the same assumption as in Section 3, this coeffi-
ment converges to a nonrandom limit.

LeEMMA 4.1. Let v be related to N and T by the formula (4.2). Let N\, N and T

vary in such a way that N[1 — ¢ "] — . Let g ; be variables such that 0 < 7; < v.
Let

= [ XIS /(T , THFL 4 ni(wdd) ™ 25 4T, THT
Then

VIRV ES ¢

tends to zero in Py o probability as N[—e "] —w.

Proor. The proof follows from the fact that Y,’s are bounded and that M
converges in probability to the expected value EM which is of the order of mag-
nitude of ».

This leads to the following theorem.

THEOREM 4.2. Let®y ) be the distribution function defined for x = 0 by 5 (x) =

min {1, [I — e ™1 — e™]7Y}. Let D*(T, \) be defined by D*(T, \)
S oo f(2, y) d®pa(z)]* d®ra(y). Let Y ; be as in Lemma 4.2. We assume that f
satisfies the continuity restrictions. If (1/\)[1 — e stays bounded away from
zero and infinity or if (1/N)[1 — € "] tends to zero and f s continuous at zero on
the set {(z,y);0 < = < y} or if (1/N)[1 — & "] tends to infinity and f tends to a
limit as x < y tends to infinity, the difference (1/+°) D 1L, Y; — D*(T, \) tends
to zero in Py o probability.

Proor. We omit the proof, since it is similar to that of Theorem 3.2 and
Lemma 3.3.

Theorem 4.2 enables us to write the logarithm of likelihood ratio A(" as
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follows
(4.6) A = oA — DT, N) /2N + en

where
e — 0 in Py probability.

Under the conditions of (i) contiguity of {Pxo’} and {Py3%} and (ii) the ex-
pansion of AP in (4.6), Theorem 3.3 and Theorem 3.4 are applicable. The
same argument as in Section 3 if A is known an optimal asymptotic test of size
o of testing Ho : v = 0 against H, : v > 0 is defined by the test w(A™) where
the critical region is defined by rejecting H, if A = (1/N)b(D*(T, \))%

Notice that the asymptotic distribution for A, and A{" are the same. This
means that if we observe a large number of cases under the n-procedure the
information collected would be about the same as that under the T-procedure
provided that expected number N(1 — ¢") of cases in (0, T') is also large
and close to n. ’

5. Asymptotic expressions for variable values of \. In Sections 3 and 4, we
have assumed that A is known and obtained an optimal asymptotic test for
testing Ho : B = 0 against H, : 8 > 0. However, in general \ is not known. The
test statistic A,(A) (or AS”(N)) derived from the log of likelihood ratio
AR[PSalnnty 3 PXB] (or AS™) depends on the nuisance parameter A\, hence the
test criterion A,(\) is not computable. Under this circumstance, we would
like to substitute for X in A,(\) an estimate A, . The question arises, whether,
after the substitution, A,(),) still tends to a normal distribution with appropriate
mean and covariance matrix. Investigation (see LeCam [5]) shows that if A,
is such that e{n*(A, — \) /P5%} forms a relatively compact sequence, then
A.(A.) will have a limiting normal distribution. Let & = n'(A. — \). Then
“relatively compact’ means that &, is bounded in probability. The procedure of
deriving the limiting distribution for A,(A\,) = A.(\ + £./n') is carried out in
two stages. First, we obtain the limiting distribution for A,(A + u/n%) where
u is non-random and belongs to a bounded set (0, « ). Second, we replace
u by &, and show that the substitution does not affect the asymptotic distribution.
This provides an asymptotically similar test to test H, against H, in the presence
of the nuisance parameter.

Requirements analogous to those of Section 3 are needed for the existence of
limiting normal distribution of log likelihood ratio. We repeat them briefly as
follows: .

(i) {P\fynusts, and (PR} are contiguous with ¢, = 1/n! and 6, = 1/nnl;

(ii) for each 6 = (A, B) there exists a sequence {X,(8)} of 2-dimensional @,
measurable variables and a non-random function H (¢, §) where t = (u, v) ¢ R
X R such that A.[P\Ty,upssnm ; PAR] = tXa(0)— H(t, 0) + e where e, — 0
in Py and H(t, 0) = u(0) + (3)T(9)¢.

(iii) Let ta = (Un, va), ta — t a5 0 — ©. Ag[P\thousissn, ; Piy] —
APy nusrsn 3 Prg’] converges to zero in P{% as t, — t.
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Notice that the rates of convergence for A and 8 are different. This choice of
rates is made so that the limiting distribution does exist and is not degenerate.
As we can see from (ii) the test criterion is derived on the basis of X.(8) =
Xn(>\7 B) . n

Regarding the substitution of A by A» in X»(\, 8) we shall need the following
properties:

(iv) the existence of consistent estimate A, of A such that £f ' (Aa — N)/A}
is relatively compact, and

(v) the convergence of X,(\ + w/n}, B) — X.(\, B) to —I“()\)[g] in P¥

probability.
The reason for this will become evident in the proof of asymptotic normality.
To obtain manageable formulas we shall denote the logarithm of the likelihood
ratio of P{Eh/mt gy4o/nnt t0 Prgy by Aul(N + u/n}, Bo + v/nn’); (A, Bo)]. The num-
ber B will be taken equal to zero. However, the symbol 8, will be kept in the
formula to avoid possible confusion.

It is easily seen that

AalOh + w/n, Bo + v/mnls (N, Bo)] = Aal(N + u/nd, Bo); (A, Bo)]
+ AN+ w/nd, Bo + v/nnt); (A 4 u/nd, Bo)l.

For simplicity, the first term in the right hand side will often be called A,".
The second term will then be called A,®. It is more convenient to establish the
properties (1), (ii), (iii) described above for A.® and A,® separately and then
combine the results to obtain the same properties for A, itself.

LemMA 5.1. The log likelihood ratio An[(N + u/nd, Bo); (N, Bo)] satisfies the re-
quirements (i), (i), and (iii) provided only that w/\ stays bounded.

Proor. Simple calculations and Taylor’s expansion show that the log likeli-
hood ratio A, is equal to

(5.1) AP =@M\ — i (N — j+ DNT; — Ti)] — w/20 + e
with
e = n {log (1 + w/nt) + (42/2N°n) — u/wnl).

It follows that (ii) is satisfied.

To show that {P§Hh/as 5.} and {Pyk} are contiguous it is sufficient to proceed as
in Theorem 3.1 and show that E[A,®.| P{}th/mt 5,] and E[A," | PA%)] are both
bounded.

For this purpose, let 7, be the coefficient of « in the expansion of A so that

o= ()7 — 2 (N = § + DNT; — Ty
We have

Elna | N + u/nd, 8] = (w/M)[1 — M (N + u/nh)] = w/A(A + w/n').
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It follows that
E[A% |\, 80) = n[log (1 + u/Mn®) — /M) 2= (u/2\7) {min (1, 1 + u/M!) 7
Also

EIAS [N+ u/nd, 8] < Elnau | N + u/nd, 8] = u*/A(\ + w/nb).

Therefore, if there is a number K such that |u| = KA, the two sequences
{P\Ph/nt 8} and {P{%)} are contiguous. This and the Taylor expression (5.1)
immediately imply the validity of the lemma.

LemMa 5.2. Assume that the contagion function f is bounded 0 < f < ¢ and
that there is a number K < oo such that |u| < KX and |v] £ K. Then the sequences
{PX2hnt o ronnt} and {PSB)} are contiguous.

REMARK. The parameters \, u and v are allowed to vary arbitrarily with n and
N.

Proor. Let n be so large that 2K < n'. Then \-+ u/n% = N\/2. It follows
that [o] < 2K(\ + u/n'). According to Theorem 3.1 this implies that the se-
quences {P5iu/nt ggromns} and {Piiums 5] are contiguous By Lemma 5.1 that
{P\¥h/ni.8,) and {P§})} are contiguous. Since contiguity is a transitive property,
the result follows.

To proceed further it will be necessary to expand A,[(A + w/nt, Bo + v/n%);
(A, Bo)] in terms of u and ». For this purpose let us introduce the following nota-
tions. The integral A (n/N, \) of Section 3 takes the form

A(n/N,\) = [|f f(z, y)p(z; n/AN, A) dz[’p(y; /AN, \) dy,

where p(z; n/AN, \) is the density of ®x . (z). We shall need in addition the
integral

B(n/N,\) = [[ f(z, y)p(z; n/AN, \)p(y; n/AN, \) dz dy.
Furthermore we shall use the random expressions
m(\) = (1) — Zje (N = j + DNT5 = Ti)]
and
An(N) = (1/m?) 25 2 {A(T, Ts) — (N — § 4 DN 75, f(T, 7) dr}.

Also, let X,(\) be the two dimensional random vector

| m(N)
X.(\) = [An()\)] .
Let T'(n/N, \) be the covariance matrix

B 1 B(n/N,\)
I'(n/N,\) = [B(n/N,)\) A(n/N, )\)]

and ¢ be a row vector ¢ = (u, v).
To simplify the statements of the results, let us introduce the following Con-
dition C™.
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Conprion C*. The function f satisfies Condition C. In addition to this we
assume that if n/AN tends to a limit a, the integral f‘é f'(’, f(z, y) dx dy is posi-
tive.

The following two Lemmas 5.3 and 5.4 are needed to prove that the require-
ments (ii) and (v) are satisfied.

Lemma 5.3. Assume that Condition C* is satisfied then even if \ is allowed to
vary arbitrarily with n and N both

(1/n%) 25— 2= f(T:, T;) — B(n/N,\)
and

Sup|ul <z MA(N + u/n?) — Au(A) + (w/N)B(n/N, )|

tend to zero in P\ probability.

Proor. The argument for the first part of the lemma being the same as that
of Theorem 3.2 will be omitted.
For the second part, note that

MAn(N 4 u/n*) — Au(N)] = —[uw/(\ + u/n)n’1 D 7t 2S5 f(Ts , T).

Since |(1/2%) 2 j= 2 im0 f(Ts, T;)| < [(n + 1)/n]c the desired result follows
from the first part of the lemma.
LeMMA 5.4. Assume that Condition C* is satisfied. Then

SUpA>0 SUP|u <&r |4 (n/N, N + u/n?) — A(n/N, \)|

tends to zero as n — .

Proor. Cases where n/AN tends to zero or infinity can be handled trivially,
using the appropriate continuity assumption made in Condition C*. Otherwise,
suppose that a ¢ (0, « ). Then, the density p(x;n/AN, \) tends to a limit equal
to

p() = (/o)™ 0=z = — (1/\) log (1 — Nea),
=0, otherwise.
When )\ itself is zero the limit p(z) is simply the uniform density
p(x) = 1/a, 0 =2z = a,
=0, otherwise.

Note that p(x; n/AN, X + w/nt) also converges to the llimit p(z). Hence,
according to Scheffé’s theorem both f |p(z; n/AN, X + u/n’) — p(x)|dz and
[ Ip(xz;n/AN,\) — p(z)| dz converge to zero. Let g(y; n/AN, \) be the integral

g(y; n/AN, N) = [ f(=z, y)p(z; /AN, \) da.
One can write
lg(y; n/AN, N) — [ f(z, y)p(2) de| < ¢ [ |p(z; n/AN, \) — p()| da.
Therefore g(y; n/AN, \) converges uniformly in y to the limit f flz, y)p(zx) da.
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It follows that A(n/N, \) converges to [ |[ f(z, y)p(x) dz|’p(y) dy. Since
the same result holds for A (n/N, A + u/n%) the lemma is entirely proved.
The matrix I'(n/N, \) is essentially the covariance matrix of the random
vector X, (X\). The following lemma is to show that I' (n/N, \) is not degenerate
in the limit as n(N) tends to infinity.
LemMA 5.5. Assume that Condition C* is satisfied. Let N vary arbitrarily with
n and N subject to the restriction X\ > 0. Then

lim infusw 4 (n/N, \) — B*(n/N,\) > 0.
Proor. We rewrite A (n/N, \) as
A(n/N,\) = [ ¢'(y;n/AN, N)p(y; n/AN, \) dy.
Similarly
B(n/N,\) = [ g(y; n/AN, N)p(y; n/AN, \) dy.

This shows that A (n/N, \) — B*(n/N, \) is the variance of the bounded random
variable g(Y, ; n/AN, \) for a random variable Y, distributed according to
p(y; n/AN, ).

Consider first that n/AN — a ¢ (0, ) and X — Ao = 0. Then p(x; n/AN, \)
converges to the density p(z) = (1/a) exp (—Xoz) for 0 = z = —(1/)) log (1
—Xoa). The function g(y; n/AN, A) converges to the integral

9(y) = [f(z, y)p(x) dz = [§ (=, y)p(z) da.

Asy — 0 the value g(y) tends to zero. Thus if g(y) is almost everywhere constant
in the range 0 < z < q, its value must be zero almost everywhere in 0 < z < a.
This contradicts the assumption that [§ [§ f(z,y) dx dy > 0. Thus the variance
of g(Y) is not zero.

Assume now that n/AN — 0. Then, according to C* for every ¢ > 0 there
isadsuchthat 0 S x =y = 6.

(1 — €)f(0,0) = f(z,y) = (1 + €f(0,0).
Letting (0, 0) = b this gives
(1 = b®wan(y) = g(y;n/AN,N) = (1 + €)bPyan(y).

The variable ®y » »(Y) has a uniform distribution on (0, 1) if ¥ has distribu-
tion ®y »» . Thus

A(n/N,\) — B (n/N,\) 2 V[(1 — % — (1+ &%l

This is strictly positive for 8(1 — ¢)* = 7(1 + ¢)®. The case where n/AN — «
can be treated similarly, hence the result.

From the above lemmas we obtain

THEOREM 5.1. Assume that Condition C* is satisfied. Assume that X and t = (u,v)
are allowed to vary arbitrarily with n and N subject to the sole restriction that |u| < KX
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and |v| < KX for some K < «. Then
(i) the distributions { P\iumt,om nt} and { P52} are contiguous.
(i) the difference

AL A+ u/mdy o/nt); (N, 0)] — tX.(N) + BN (n/N, V)Y

n)

tends to zero in P\ probability asn — .
(iii) the difference

supiizmn N X8 /) = Xa0) + AT/, N [ 1]

n)

tends to zero in Py probability.
Proor. Statement (i) is a restatement of Lemma 5.2. For statement (ii)
note that, according to Lemma 5.1 and Theorem 3.2

AN+ w/nt; Bo + v/mnt); (N, Bo)]
= A\ + w/nt) — (F/200 + w/n'))A(n/N, X + u/n)]
— [um(N\) — u2/2>\2] + e

where ¢, tends to zero in probability. The result is then obtainable by applying
Lemma 5.3 to replace A,(A + u/n') by an expression in terms of A,(A\) and
applying Lemma 5.4 to replace 4 (n/N, A + u/n%) by A(n/N, \).

Concerning statement (iii) note first that

A + wmt) — ) = 2/ + wnt) — 1A = —u/A( + und).

Since

T'(n/N,\) [K] = [uB(n7N, x)] ’

the result follows immediately from Lemma 5.3.

THEOREM 5.2. Assume that Condition C is satisfied and that \, u and v are
allowed to vary arbitrarily subject to the conditions \ € (0, ), |u| < K\ and 0 <
v < KM\, for some K < . Let Z,(\) be the random vector

Z,(\) = AX.(\) =\ [Z&;]

Let Q[B; \, t, n, N be the probability
QIB; A, t,n, N1 = P™{Za(\y e B| (A + u/n’, v/nn)}.

Let Q[B; \, t, n, N be the probability of the set B for the normal distribution which
has expectation (1/MN)T (n/N, M)t and covariance matriz T'(n/N,\). Then

sups {|Q[B; \, t, n, N] — Q[B; \, t, n, N]|; B convex}

tends to zero as n — .
Proor. The introduction of Z,(A\) = AX,(\) is intended to prevent disap-
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pearance of the probability measures at infinity. Since the covariance matrix
I'(n/N, \) cannot tend to a singular matrix (Lemma 5.5), the normal measures
Q do not degenerate. Thus, it will be sufficient to show that if the values (A, ¢)
are made dependent on (n, N) in such a way that the normal measures Q have
a weak limit then the corresponding measures @ also tend to the same limit.

For this purpose, assume that for Pi3’ the distribution of A, converges (in
the usual sense) to a limit F on the line augmented by a point at infinity. The
contiguity statement of Theorem 5.1 implies that f exp (A)F(dA) = 1. There-
fore, if the measures @ = Q[-; \, 0, n, N] converge in the usual sense on the
plane augmented by points at infinity to a limit @, and if I'(n/N, A\) — T then

J exp (t2)Qs (d2) = exp [(1/2)Tf]

for every t = [u, v] with» = 0.

It follows that Qo is the normal distribution 7(0, I'). For the measures
Q[-; N\, t, n, N], the contiguity property implies that their limit has density
exp [(tz/A) — (GNT)T¢'] with respect to Q, . The general statement is then a
consequence of a simple computation.

6. Asymptotically similar tests. If the observable variables T'; ,j = 1, 2, - - -, n,
are obtained from the distribution P53’ then the joint density of the 7' is given
by INN"/(N — n)!] exp {_Z;‘;l (N -y -|j DAt — tj)) for 0 < 6 < &y
< +++ <ty < . One can obtain an estimate A, of A by the maximum likelihood
method. This gives

1A = (1/n) 25< (N — j + 1)(T; — Ti).
Let x3» be the random variable
Xon = 2N 5= (N — j + 1)(T; — T,).

It is well known that x3, has in fact the standard chi-square distribution with 2n
degrees of freedom. In particular

E(1/x3) = ¥(n — 1) and o*(1/x3.) = 2(n — 1)7*(n — 2)7.

This gives E(Aa/A) = n/(n — 1) and *(\s/A) = n*/(n — 1)*(n — 2). An
application of Chebyshev’s inequality gives the following result.
LemMma 6.1. For every b > 0 and every A € (0, ) one has

PRAYN) e — A 2 b + #li(n — 1)} £ 2Y/[(n — 2)%].

In particular the family of distributions £f (n%/)\) e = N) [ ALAe (0, 0),n > 2,
is relatively compact.

After these preliminaries, we are in a position to use a procedure partially
suggested in [5] for the construction of asymptotically similar test. Let I'(n/N, \)
= I',(M) for short.

TueoreM 6.1. Let Condition C* be satisfied. Let S, be the two dimensional
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statistic
n'A 14 N
Sn = [ ﬂ:I + >\n I(An)Xn(kn)

Assume that X € (0, ) and that o] < K\ for some K < oo.Otherwise allow \
and v to vary arbitrarily with n and N. Let p denote either Prohorov’s distance or
the supremum of the difference of probabilities of convex sets. Then

p{£{<1/x> [sn - [";“]] }Pi,’;}m} — =, r,:‘m]}

tends to zero as n tends to infinity.
Furthermore S, is “differentially asymptotically sufficient’ in the sense that
there are families of measures Q\% for which Sy, is sufficient such that

sup {4 — Piimnll; n'A — Nl £ Ko, 0 = 0 < Ko

tends to zero as n — «.
Proor. Taking first v = 0 consider the difference

am s =[] = am [*F Y]+ amrerraox.n.

It has been shown (Theorem 5.1) that
NX.O + u/) = X00) and = a0 [ 2]

differ little, uniformly in w, for |u| < KA. Using Lemma 6.1 and Lemma 5.4 this
implies that

MlXa () — XaOV)] + (1/A) Tu(h) [g]

tends to zero in probability. Since by Lemma 5.5 I',(),) cannot tend to a de-
generate limit it follows that

AT () Xa(Ma) = R NHETOONXL(N) — (1/0) [8‘] + e,

with e, tending to zero in probability. According to Theorem 5.2 and Lemma, 6.1
one can also replace A./\ by unity in the right hand side of the preceding ex-
pression. Therefore

am [s. =[] - am [0 M+ ooz

—am ]+ e =m0 + o

with e, tending in probability to zero as n — . Therefore, for » = 0, the re-
sult follows from Theorem 5.2.
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We have just shown that for the measures P{% the difference

am [s =[] - ooz

tends to zero in probability. Therefore, because of the contiguity properties
stated in Lemma 5.2, this same difference also tends in probability to zero for
the measures Py\%)unt .

For every value of v, Theorem 5.2 can be applied again to Z,(\). This implies
the convergence to normality stated here.

The asymptotic sufficiency property can be proved as in [5] using the fact
that around a fixed A the vector X,(\) is “approximately sufficient.”

If the statistic S, of Theorem 6.1 was exactly normally distributed there would
be no difficulty in constructing a uniformly most powerful similar test of the
hypothesis Hy : v = 0 against H, : v > 0. Such a test would be defined by re-
jecting H, if the second coordinate of S, is too large. Explicitly, let o be a given
number « ¢ (0, 1), and let b represent the solution of the equation

(2r)7F [7 exp (—u’/2) du = a.
The second coordinate S,® of 8, is given by
8.2 = AAn(A) — B(n/N, A\)m(A)[A(n/N, \,) — B*(n/N, A)]T

The variance of this coordinate in the normal distribution would be approxi-
mately equal to \,’[A (n/N, \.) — B*(n/N, \.)]™". Therefore, the test suggested
by the normal theory is the test having for critical region the region

6.1) W.* = {(\fAa.(An) — B(n/N, \)na(Aa)]
[A(n/N, \2) — B*n/N, \)I7 = b}

To describe the limiting properties of this test in our present case, let us in-
troduce the following definitions.

DerNiTION 6.1. A sequence {W,} of ®. measurable tests is called differ-
entially asymptotically similar of size « on Hy if for every K < « and every
>\0 & (07 ®© )

limaw sups {|PS5 (Wa) — al; [ni(X — Ao)| < K\ = 0.

DeriniTION 6.2. A sequence {W,} of G,-measurable tests will be called uni-
formly asymptotically similar of size o on H, if

limpow {sup |PS5 (W.) — al; A e (0, ©)} = 0.
Let
®(z) = (1/20%) [2 7" du.
THEOREM 6.2. Let W,* be the region defined by formula (6.1). Then wW.* is
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uniformly asymptotically similar of size o on Ho . Furthermore
Pant(Wo*) — @b — o\ '[4(n/N, \) — B'(n/N, V]|

tends to zero uniformly for N e (0, ©) and 0 = v = K\, K < «©,asn — .
Proor. This follows immediately from Theorem 6.1 and Theorem 5.2.
TueoreM 6.3. Let {W.,} be a differentially asymptotically similar test of size a.

Then, for every A € (0, ) and K < o

lim infp-w info <o <x [Pt (W F) — Pt (W] = 0.

Proor. The “asymptotic sufficiency’ of the statistic S, implies that it is
enough to consider tests W, which depend on S, only. Consider a range of values
of (A, v) of the type {n'A — No| £ KXo, 0 = v £ K\o}. Let S,* be normal with
mean nv)\o and covariance matrix I', '(\o). An argument sketched in [5]
shows that there are functions &, such that, for this range of values of (A, v),
the actual distribution of S, and the distribution of &,(S,.*) differ #n norm by
a quantity which tends to zero asn — oo.

This implies that the limiting power obtained from W, cannot be larger than
the power obtainable in an actual normal situation. However, for the normal
situation, the test W,* is uniformly most powerful among similar tests. Hence
the result.

Results on the numerical study of the present model have been obtained which
will appear as a separate paper. Extension of the model to include the informa-
tion of the location of each individual has also been investigated. The introduc-
tion of the space coordinates into the model brought no additional difficulties in
proving the theory.
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