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A NOTE ON SEQUENTIAL MULTIPLE DECISION PROCEDURES!

By Isaac MEILIJSON?

Hebrew Unaversity of Jerusalem

0. Introduction. We introduce a family of procedures for choosing one out of
k decisions concerning the (unknown) mean of a normal distribution (with known
variance). Sobel and Wald proposed in [7] a procedure for the case k = 3. Their
procedure can be expressed as a composition of two SPRT’s for testing simple
hypotheses. We followed their way of reasoning, but applied it to Anderson’s
modification of the SPRT [1]. We show that Paulson’s procedure [4] is of the
form of the suggested procedures, but can be improved. More explicitly, the
(sampling) continuation region of some of the suggested procedures are sub-
sets of those of Paulson’s. As a consequence, the number of observations re-
quired by any one of them is never greater than the sample size required by
Paulson.

1. The problem. Let a1 < a; < as < --- < ar1 be real numbers. Denote
ay = — o, q; = 400,

Let X be a rv normally distributed with unit variance and unknown mean
6. We want to choose one of the &k decisions

(1) D110€ (ai—l, H,i], 1 = ]_, 2, BN k’

when the loss function for the decision D; is defined as the indicator of the com-
plement of the interval (a;1 — 3A, a; + 3A), where A is a positive real number
satisfying

(2) A K IniIhéigk_g (ai+1 - ai).

(The interval (a; + %4, a.a — 3A) will be called “nonindifference interval’’).
A “‘solution” to the problem is a sequential procedure § satisfying for a pre-
assigned number a ¢ (0, 1).

(3) supe Epl(8(X), 0) < o

The present work deals with a special kind of solution, that can be described
as a partition ef the (n, s,) plane into k¥ 4+ 1 sets: one sampling continuation
set and & decision sets. The boundaries of these sets are broken lines.

This kind of procedure was treated extensively by Gordon Simons [5], [6].
The procedure presented in the next chapter is in some sense a special case of
his general model.
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2. The procedure. Let A > 0, B = 0 be two numbers. Their value is to be

determined later.
Denote S,, = D7y X;.
Define (forz =1,2,--- , k — 1):

4) to: : The first integer 7 satisfying S; < j(a: + B) — A4;
(5) ti. : The first integer j satisfying S; = j(a; — B) + A.
In (4) or (5), if no such integer exists, put t,; = © (n = 0, 1)
(6) b
(7) t = max (i, b, -, te1).

ReMARK. We shall later use ¢ as the stopping time of a procedure. It is easy to
verify that the ¢; (and hence t), are stopping times, since for B > 0 they are
bounded, and for B = 0, ¢; is actually the stopping time used in SPRT for test-
ing Hy:0 = a; — c against H;:0 = a; + ¢, where c is any positive number.

Let the vector

min (to,‘ , t1i),

(8) S = 8(ti) = (P1, P, -+, Py)
be defined by
(9) P,=0, P,=0 t =ty
(for ¢ = 1,2, ---, k — 1).
=1 ¢ =t

It can be shown that the P/s form a nonincreasing sequence.
We shall use the vector S to define a solution in the following way:

(10) If m 1s the first coordinate j of S at which P; = 0, decide D, .

The Sobel-Wald procedure [7] is a special case of the last, for k¥ = 3. They
require B = 0, and find A to be approximately

(11) A3V = A7 In (1 — a)a™).

They represented their procedure as the composition of two tests of simple
hypotheses: One testing Ho:ay — %A against Hy:0 = a; + 1A, the other testing
Hy':0 = ay — %A against Hy':0 = as + %A. They tested both by means of SPRT’s.
Their final decision is D; if both H, and Hy' are accepted, D, if Hy and H, are
accepted, Ds if Hy and H,'. They prove that the acceptance of both H, and
H,' is impossible. The probability of deciding D can be expressed in terms of
the operating characteristic of the SPRT’s. (3) gives a system of inequalities
that determine the boundaries of both SPRTs. It is intuitively clear that the
same kind of treatment can be applied to k¥ > 3. The possibility of doing it was
pointed out by Lechner and Ginsburg in [2]. We carried it out in [3], where we
also computed upper and lower bounds for the expected number of observations
(as a function of 8). Anderson proposed in [1] a modification of the SPRT for
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testing Ho:0 = 6y against H;:0 = 6; , where 6 is the (unknown) mean of a normal
distribution with unit variance. Instead of a sampling region

C =2 i(zi— 360+ 61) =D,

he replaced C and D by linear functions of n. In Corollary 4.5 he shows that if
the sampling region is

—e(l —aN") £ 20 (@ — 3(6 + 01)) < e(1 — N7,

then the probability of accepting H;, when the expectation of X is 6 is approxi-
mately

(12) o[(6 — 3(60 + 6.))N' (28N> 4+ 1)7]

where 8 = 1.702 and ¢ is the cumulative standard normal distribution.

We repeated the arguments of Sobel-Wald, but applied them to Anderson’s
results rather than those related to SPRT.

An advantage of using Anderson’s tests is that they lead to bounded stopping
times. Furthermore, we can fix a bound N and find values A, B defining a pro-
cedure that requires at most N observations, and for which

(13) sups Bl (8(X), 0) ~ a.

Note. We must require N > 4A7°Z%_., . This number is the sample size n
required by a nonsequential procedure that decides D; if &, € [ai1, a:).
The values A and B are

(14) Ay = 1702 Za_o[N(NA® — 4 Z% )],
BN = ANN*l.

As in Sobel-Wald, these values are approximations to the true ones, and (3)
need not be satisfied. E. Paulson [4] proposed a solution of an apparently dif-
ferent kind, that satisfies (3). We shall see in the next section that his solution
is of the form we are dealing with.

3. Paulson’s procedure. Paulson defines two rv
(15) U, = maxi<i<r {Xi — 2A — 2 (log 2a71) (A0) 7Y,
V, = min ci<, {Xi + 24 + 2 (log 2a7) (a0) 7.

He stops the sampling the first time that either U, = V, (and then he decides
the interval containing &), or the interval (U,, V,) does not intersect two non-
indifference regions (in which case he decides the interval whose nonindifference
part is intersected by (U,, V,). If (U,, V,) turns out to be a subset of some in-
difference region, he chooses one of the adjacent intervals by throwing a coin).

Actually, he got a family of procedures, but he required the bound of the
stopping time to be minimal. This requirement led to (15). If this restriction is
not necessary, we may multiply A (in (15)) by any R £ [1, 2) in both the nu-
merators and denominators. The bound for the stopping time will then be
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(16) N =8log2a R (2 — R)™'a™%

As we easily see, the minimum of N is attained at R = 1. We shall work with
the modified U,, V,, maintaining the same notation.

TueoREM. Let
(17) A" = 207'R ' log 2«7,  Bx" = 1A(2 — R),
(where N and R are related by (16)). t defined in (7) with A, B replaced by A e
By" stops at the first 7 satisfying (for some %)

(18) ming, <; {&n + AR + 247'R7'm ™ In 207"} < a; + 34,
MaXn<; {&n — AR — 247'R7'm ' In 207"} 2 @iy — 3A.

Proor. Denote fo = ti,0 = 1, = tox = 1.t1s the first j satisfying (for some 2)
ti = to,i; tia = b,e1; Max (tl,i—l; to,i) = ] That iS, if t = j, there exist an
i( =1,2, ---, k) and two integers 71, j» with max (j1, j») = Jj such that:
71 is the first integer satisfying

(19) Siy < ji(a: + 3A(2 — R)) — 247'R™" log 2o ;
Jj» 1s the first integer satisfying
(20) S, = ja(aia — 2A(2 — R)) + 247'R™" log 24"
(19) and (20) can be written as
(21) &, + AR 4+ 2a7'R7Y1  log 207 < a: + 34,
&, — 2AR — 2A7'R7Y, " log 207" 2 ai1 — 3A.

Hence ¢ is the first integer 7 for which there exists an ¢ satisfying (18). Q.E.D-

The decisions made by (10) applied to Ay, Bx" and by Paulson are almost
the same. The only situation in which the decision may be different is the case
when (U,, V,) is a subset of an indifference region. (10) tells exactly what to
do, and Paulson randomizes the solution. The difference is immaterial.

TABLE
A comparison between ASVW-, A, and AT as defined in (22) for different values of o

a

1 .05 .04 .03 .02 .01 .001
AASV- =1n (1 — a)a™* 2.1972 2.9444 3.1780 3.4758 3.8918 4.5951 6.9067
AA, = 1.702Z - 2.18 2.8 2.98 3.2 3.49 3.9656 5.26

AAF = In 2077 2.9957 3.6889 3.9120 4.195 4.6052 5.2983 7.5998
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The preceding table gives a comparison between
(22) A" = liMysw A",  Aw = lilmy.e Ay and 4570

Ay" — Ay can be shown to exceed A, — A, in the range of o’s of the table.
Furthermore, it can also be shown that for each R there exists an N such that
the sampling continuation region of the procedure defined by Ay, By is a sub-
set of the sampling continuation region of the Paulson procedure defined by E.
This shows that the family of procedures determined by Ay, By is uniformly
(in 9) better than the family of Paulson procedures, in the sense that it requires
the same or fewer observations and hence decreases the expected sample size.
Naturally, we pay in probability of error for this gain, but if (13) is a good ap-
proximation, it doesn’t matter very much, because we don’t require the prob-
ability of error to be small, we just require the satisfaction (or quasi-satisfac-
tion) of (3).

As pointed out in Section 2, the Sobel-Wald procedure can be easily generalized
to any k& > 3. The values of A% shown in the table are not restricted to k = 3.
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* We would expect A, and 45" to be equal, since Anderson’s procedure becomes an
SPRT as the truncation point N — «. But both are only approximations of the true value,
obtained in different ways. Anderson obtains (12) via a function that approximates the
normal cumulative distribution. This element is extraneous to Wald’s work.



