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INADMISSIBILITY OF THE BEST INVARIANT ESTIMATOR OF
EXTREME QUANTILES OF THE NORMAL LAW UNDER
SQUARED ERROR LOSS'

By J. V. ZmbEx
University of British Columbia

0. Summary. Suppose that independent normally distributed random vectors,
X™* and Y*, are observed with E(X) = 0, E(Y) = u, Cov(X) = ¢’I, and
Cov(Y) = ¢I. It is known [2, 5] that the best invariant estimator of u is admis-
sible if £ £ 2 and inadmissible if £ > 2. It is also known [1, 7] that the best
invariant estimator of ¢ is inadmissible. In this paper, these results are extended
to show that the best invariant estimator of 6 = Au <4 750, for a given matrix A
and a given vector 7, is inadmissible if || is sufficiently large (whenk = 1,4 = 1,
6 is a quantile).

1. Introduction. When a statistical decision problem involves a parameter
space which is not that of a single real parameter, the problem of establishing
either the inadmissibility or admissibility of an estimator becomes much more
difficult. Very little is known concerning admissibility in such cases.

When the problem involves an unknown location vector and scale parameter,
it may remain invariant under a group of transformations (a subgroup of the full
affine group) which takes p (the location parameter) and ¢ (the scale) into
cu + b and co, respectively, where b lies in the range of x, ¢ > 0. This group acts
transitively on the parameter space and, consequently, the risk of any invariant
estimator is a constant. Among the class of such estimators there is therefore a
“best”’ one. The effect of imposing the principle of invariance, in this case, is to
reduce the class of all possible estimators to one.

Under reasonable conditions on the loss function, it can be concluded from
Keifer’s theorem [3] that this estimator is minimax. Since it possesses this desir-
able property, it is natural to ask whether it is also admissible. The only known
results in this direction concern the estimation of the location parameter or (see
Stein [7], Brown [1], Zidek [8]) the estimation of the scale.

In this paper we investigate this question for another sort of estimation prob-
lem involving quadratic loss. We are concerned here with the estimation of
quantiles of the one-dimensional normal distribution, that is, functions of the
form p + 5o where 5 is specified. It is shown that for quantiles for which 5 is
sufficiently large in magnitude, the best affine invariant procedure is inadmissible.
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The case of quantiles near the median remains an open question. The result is
proved by demonstrating that there exists a scale invariant procedure which has
a uniformly smaller risk than the estimator in question. How large |n| must be
before the best affine invariant estimator is inadmissible is not known, nor has
attention been devoted here to this question since the only answer we could give
would depend on the choice we have made of the dominating scale invariant
estimator and would therefore have no intrinsic meaning for the problem. Stein
[6] conjectured that the estimator in question was inadmissible as long as 9 = 0.

The result is actually proved in a more general context where the underlying
distribution is multivariate normal with unknown mean u and covariance oI,
and Au + 7o is being estimated, A being a matrix and 5 a vector. However, the
result obtained for dimension greater than one is more formal in its interpreta-
tion, since our definition of quantile is somewhat artificial in higher dimensions.

2. Preliminaries. If Z is a normally distributed real random variable with
mean p and variance o*, the ath quantile of this distribution of Z is that number,
2« , which satisfies P[Z =< z,] = a. It follows that z. = u + 7.0, where 7, denotes
the ath percentile of the standard normal distribution.

Let X;,¢=1,2,---,n,Y;,7 =1,2, .-+, k be independent normally dis-
tributed random variables with Var ¥; = Var X; = ¢’, E(X;) = 0, B(Y;) = u;,
for all 4, j. The definition of quantile given above can be formally extended to this
multivariate case. The extension is achieved by defining 2; < z, to mean each
co-ordinate of x; is less than the corresponding co-ordinate of x, . In higher di-
mensional cases 2, is not unique, of course, but once specified, it has an interpre-
tation similar to that of the one dimensional quantile.

By “quantile”’, we will mean a function of the form u 4 5o (7 specified) where
w=(u, - ,m) andg = (9, ns, -+, m) . By “extreme quantile” we simply
mean a quantile, p + 7o, for which |5 is large, where ||-|| denotes the usual
Euclidean norm.

In this paper we shall be concerned with the estimation of quantiles of the
distribution of (X, -+, X,, Y1, - -+, Y%), or rather, more generally, with the
estimation of the function Au + no, where n = (41, -++ , nm), Aisanm X k
matrix, and both 4 and % are specified. The loss incurred in estimating Au + 7o,
say, 0 is assumed given by [|§ — Au — nq|*/c".

Suppose g = (0, -+-,0) e R*. Ifk = 3, m = k, A = I the well-known result
of James and Stein [2] implies the inadmissibility of the best affine invariant
estimator, Y, of u. If k = 1 or 2, m = k, A = I, it is known that Y is an ad-
missible estimator of u. In fact, this can be concluded from the work of Stein [5],
and James and Stein [2], which pertains to the case where ¢ is known. Since the
form of the best invariant estimator, Y, is independent of the value of the
nuisance parameter o, if it were known, we can use the results, just quoted,
together with the necessary and sufficient condition given in [4] to obtain the
asserted conclusion.

In the case where A is the matrix each of whose elements are 0, the best affine
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invariant estimator of the resulting quantity, no (||9]] # 0) is inadmissible. This
result follows from an argument given by Stein [7] in obtaining the corresponding
result in the estimation of ¢”. Since this result is fundamental to the result of this
paper, the argument, adapted to the present case, is given below, where without
loss of generality we have assumed 4 = 1. Brown [1] generalized Stein’s result
to apply to more general loss functions where the underlying distribution either
has compact support or is the univariate normal (actually, a slightly more
general family including the normal is considered). These remarks summarize all
that appears to be known concerning the admissibility of the best affine invariant
estimator of Au + no. In the next section we deduce that for fixed A and all » for
which ||| is sufficiently large, the estimator in question is inadmissible.

We turn now to the proof of the counterpart of Stein’s result, for the esti-
mation of o. A sufficient statistic in this problem is: (S, Y1, - --, Y3) where
S = D>, X7 and we can assume any estimator is a function of this statistic.
The problem remains invariant under the transformations:

(s, y) — (a’s, aoy + b

(2.1) p— aou + b
o — d'e’
¢ — ad,
where 0 < a < »,beR, y = (41, -+, t)’, ais a k X k orthogonal matrix,

and ¢ is an estimator of ¢. It follows that any invariant estimator of ¢ is of the
form CS* and the optimal choice for the constant, C, is C' = C, 4 where Cpiy =
2T (4(n + 1))/(nT'(3n)). However, the resulting estimator is inadmissible.
To see this, consider the class of estimators invariant under the subgroup of
transformations which is obtained from that just described by setting b = 0
wherever it appears in (2.1). Such an estimator, ¢, must be a function of (S, T")
alone, where T = Y, Y? and, in addition, satisfy ¢(a’S, a’T) = a¢(S, T),a > 0
sothat (S, T) = (S + T)e((1 +T/8)™"1 — (1 + T/8)™"). Thus (S, T) =
¥(S/(S + T)) X (8 + T)} where ¥(t) = ¢(t, 1 — ), t > 0. Define ¢* by
o*(S, T) = ¥*(8/(8 + T))(S + T)*, where ¥*(t) = min {¥(t), Cryzya}. It
will now be shown that

(2:2) E($*(8, T) — 0)’/d" = E($(8, T) — 0)*/o",

for all o, unless ¢* # ¢ when strict inequality holds.

Observe that S/¢” has the central x* distribution with n degrees of freedom,
while T'/o* has a noncentral x* distribution with & degrees of freedom and non-
centrality parameter ||u||’/o”. Alternatively, T/¢" has the same distribution as
the random variable W = xj4sz, where L has a Poisson distribution with
parameter ||u||®/(2¢%), and given L, W has a central x* distribution with & + 2L
degrees of freedom. As we shall see, we may without loss of generality let ¢ = 1.
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Then
E($(8, T) — 1)" = B(¥[S/(T + 8§)I(S + T)} — 1)°
= E(Y[8/(T + S)IE(8 + T | L)
—2¥[8/(T + $)IE((S + 1) | L) + 1)
= E(¥18/(8 + D(n + k + 2L)
— (2(n + k + 2L)¥[S/(S + T)]Cutitor+1 + 1).
From this calculation, it follows that
E@(S, T) — 1)* = E((n + k + 2L){¥[S/(T + 8)] — Cutisarsa}®
— (n+ k4 20)Cripiszia + 1),
A similar result holds for ¢* and inequality (2.2) is obtained since
{W[S/(8 + T)] — Cosryert}” Z {¥[S/(S + T)] — Cotisarss}’,
for all values of L. Since
ConS = Conal8/(S + TYF(S + T)* = ¥[8/(8 + DS + 1),

the required result follows from inequality (2.2).

Observe that the estimator which dominates C,,1S* essentially modifies that
estimator when 7 is small. Brown [1] also improves on the corresponding estimate
for the variance in his model by making a modification under similar circum-
stances, but his estimator and proof are different.

3. Inadmissibility of the best invariant estimator. Now consider the problem
of estimating Au + no. It remains invariant under the following transformations

(s, y) — (a’s, ay + b)

p—au+b

2 2 2

g —>ao

Ap + no — a(Au + no) + Ad

6 — ab + Ab,
where 0 < a < ©,beR',y = (41, -+, ¥), and 0 is an invariant estimator of
Ap + no.

The best invariant estimator is, as is easily shown,

(3.1) AY + 4C, 18

Given A4, it is inadmissible for all sufficiently large values of ||9||, and, in fact, a
uniformly better estimate, in that case, is

(8.2) AY 4+ 961(8, Y),
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where
$1(8, ¥) = min {CrpsS, CopiralS + 711

This will be proved with the help of inequality (2.2) and the following rather
technical lemma. For convenience let ¢o(S, ¥) = CniiSE.

Lemma 3.1. The quantity, E,J(Y: — w)($:(S, Y) — 1)1/{Eu(¢ — 1)* —
Eu(¢1 — 1)%, is bounded as a function of u for eachi = 1,2, -+ , k (and ¢ = 1).

Proor. Suppose 7 = 1. Let K = Ch 141/ (Chs — Chiiy). Observe that
Crii41 is decreasing in k¥ = 1 and hence K > 0. Define functions ¢ and ¢; by
g(w) = E(Y1 — m)($1(S, ¥) — 1) and gi(u) = Eu(¢s — 1)* — Eu(¢r — 1)
Then
(3.3) g(w) = (27")—%1c Ze f:,o aliad 2(yl - Ml)f*(yl, ey Yk) dys - dy,
where

@) = 2"TEn)]7 R €™ [Corisa(s + [y} — Cuyas’] ds.
For simplicity, we write
h(s) = e*%™* /2T (3n)], s> 0.

Define a function f by

0 = P = [ B ot/ G + [yl .
By integrating the innermost integral in equation (3.3) by parts, we obtain
g(p) = Pl J‘fw f°—°w (ZW)—%ken’ve—%ﬂuﬂ 2f(y) dyy, -+, dye .
At the same time,
guw) = N [0[RI ) dy, o di,
where
A@) =[R2 h(&){(Cups’ = D* = (Cosisa(s + 9l — 1} ds.
Thus,
9)/qu(w) = [Za oo [Zae VYY) dy -+ d
+ 2 [2 () dys - - - dys

Observe that ¢ is an odd function of u; and an even function of each of its
other arguments and g¢; is an even function of each of its arguments. Thus, in
considering |g9/¢1|, as we must in proving the boundedness of g/g;, we can as-
sume, without loss of generality, that u; = 0,¢ = 1, 2, --- , k. Another useful
observation is that f; is positive when ||y||® > 1/{Ch1r11(1 + K)}.

A straightforward computation yields the asymptotic equalities,

(34) TGnf(Y) ~ Crirsa(2Caia) "yr exp (—3K |lyl"GK ]y "™
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and
(3.5) TG)f(y) ~ 2(Chis — Cinsr) exp (— 3K [yI") GKllylH*" ™,

as ||ly||> — . They are obtained in the following manner. It is easy to show
that, as p — o,

(3.6) [5esds~e(p + ™)
(37 [3(s+ ep)le”s ds ~ "l (1 4 o)}
+ 70+ ¢ + L+ D)
and
(3.8) [367 (s + ep) P ds ~ep (1 + )7,
where ¢ is any positive constant and » > —1. Using equation (3.8),
T(3n)f(y) = —2 4pCrssss Jicrnr ¢ '8/l + 3Kyl*/KT ds
~ = PYCrsn/ (1 + K} X GRy|) 21,
as ||y||* — «, and this yields (3.4). To obtain 63.5) observe that
r'(3n)fi(y)
= 2(C2 — Chin)l [iximres™ ds — Kyl [z e™s™ ™ ds)
— 2(2)*Cnr [Terurr € sE ™ ds + 2V Coiasa [Trrar 8T
[s + 3K]yll*/ K} ds.
On applying (3.6) and (3.7), we obtain (3.5).

Let M be chosen subject to M > 1/[Ch4x11(1 + K)]. Suppose p; = 0, ¢ =
1,2, -+, k. Then |g(u)| is bounded by ¢*(u) which is obtained from g(u) by
replacing f with |f| in the integrand of g. We shall now show g (w)/|gr(w)] is
bounded.

From

ffw ffw 9“1”9_%““|f(y)| dys -+ Ay
([ T R [Ea ) g d
< exp (— M4 [Y - [Rea V) dy - de
- f;cM ffue_””’lf(y)ldyl e Ay,

we conclude
(39) (@YW ~{[%%  [2e = [He oo [EJe Vi) dys -

as |ui| — oo for at least one 7. Since these results hold for all values of M satisfying
M > 1/{Ciu(1 + K)}, it follows from asymptotic equalities (3.4), (3.5),
(3.6), and an expression for g; similar to (3.9) for ¢* (with |f(y)| replaced by

#
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A1),
17" (8) /()| ~ % e [R0 = [Xo e [2a} exp (W'Y — 3ul)
(3.10) X O i41(28C10) Ml WV GER |y dys - - - dye
[T [P = [Re e [Rdexp(uy — $lylY)
X 2{Chi1 — Crprale WV GK|yH ! dys - - - dys
as |w| — o for some <. The quantity on the right of asymptotic equality (3.10)
is bounded, for all u, by
Crtirr/[2Cn11(Cris — Crgin) ¥].
Since, on any finite rectangle, g(u)/¢g1(r) is bounded, the required conclusion
follows. .

It will now be shown that the estimator given in (3.2) is uniformly better,
with A fixed, for all sufficiently large values of ||9||, than the estimator given in
(3.1). We continue to assume ¢ = 1. Consider the difference of the risks of the
two estimators, namely E,|AY + ngs — Au — 9> — EJJ|AY + n¢1 — Ap — 1|
This is just
Inll{ Bu(g2 — 1)* — Eu(gr — 1)} ][n]

—2B,(Y — w)'(A"n/|nl) (61 — 1) /{Bu(¢s — 1)* — Eu(¢n — 1]
By inequality (2.2), the second factor in this expression is positive for all p.
Furthermore,

E (Y — ) (A'n/|lnl) (61 — 1) /{Eu(¢s — 1)* — Bu(er — 1)}
(8.11) = 2% [t aii(ni)/lnlD]
(Bu(Ys = w) (61 — D/{Bu(do — 1)* = Bu(dr — 1)%]
where A = (a;;) and 9 = (m, -+, 7m) . Since,
| 2 ais(n)/lInlll < (225 ai)’,

by Lemma 3.1, the quantity appearing in equation (3.11) is uniformly bounded
in u and 7. Provided ||n|| exceeds the upper bound for this expression, the differ-
ence in the risks of the two estimators will be positive for all values of . It
follows that the best invariant estimator is inadmissible for all sufficiently large
values of ||9|| when A is fixed.

Acknowledgment. The author is indebted to Professor Charles Stein who sug-
gested the problem to which this paper is addressed.
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