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BAYESIAN MODEL OF DECISION-MAKING AS A RESULT OF LEARNING
FROM EXPERIENCE! 2

By Bruno O. SHUBERT

Stanford University

1. Introduction. A statistical model of decision-making is formally described
as follows: given is a set A of possible decisions or actions and a family ® =
{ve:0 & ®} of probability distributions on a measurable space (Z, ¥). The de-
cision-maker (statistician) observes a random variable X with values in the
space (Z, ¥) and distributed according to some »y ¢ ®, and on the basis of this
observation decides for some action @ ¢ A. The appropriateness of his decision
then depends on the action chosen, and also on an unknown parameter 8 (state
of Nature), which specifies the distribution »y of the random variable observed,
and is measured by a numerical loss function L defined on the product space
® x A. A rational decision-maker is then assumed to use a decision function &,
which assigns to every observed value (sample) z ¢ & an action a ¢ A in such a
manner that the resulting loss is as small as possible. It is clear, however, that
no decision function can minimize the loss itself for all values of 6, since a de-
cision function must not depend on this unknown parameter.

In the Bayesian approach, this problem is resolved by assuming that the pa-
rameter 6 is also a random variable with distribution = (prior distribution)
known to the statistician, and the optimum decision function 8,* (called Bayes
decision function again 7) is then defined as that, for which the expected loss
E{L(6, 5(X))} attains its minimum—the so-called Bayes risk p(7) =
mins E‘I’{L(07 5<X) )} .

To justify this Bayesian model as appropriate for studying decision-making
we face a problem concerning both the adequacy of the assumption of random-
ness of # and knowledge of the prior distribution as well as the question of in-
terpretation of the minimum expected loss as optimum.

Two essentially different approaches have been taken in this respect. In the
first (subjectivistic) approach the loss function is looked upon as a negative
utility associated with all pairs (6, a), 0 £ O, a ¢ A, and satisfying Von Neumann-
Morgenstern’s (or other analogous) axioms. It is then shown that this is tanta-
mount to the existence of a prior distribution, and the optimality of Bayes risk
follows from the expected utility hypothesis.

The second (statistical) approach assumes, on the other hand, that the de-
cision problem in question is a typical member of a large population of identical
decision situations with parameters 6 varying arbitrarily along the population.
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If 7, is the relative frequency distribution of 6 in a population of size n, it follows
from the law of large numbers that the difference of an average loss resulting
from the use of Bayes decision function against 7, and the Bayes risk p(7x)
can be made arbitrarily small (with probability arbitrarily close to one) if n is
large enough. Hence a Bayes decision function can be considered as minimizing
the actual average loss in a large population.

Objections may still be raised against either approach, concerning mainly the
information required for the statistician to be actually able to use the Bayes
decision function. In the first approach, the axioms of utility essentially ask the
statistician to express his preferences among all probability mixtures of pairs
(6, a), which is quite a strong requirement. In the second approach, the nu-
merical loss must be exactly specified for every pair (6, @) and known beforehand,
as well as the relative frequency distribution 7, . Moreover, in both cases the
family ® must be known too. .

In the past decade several papers have appeared, in which some of these re-
quirements were removed, namely those concerning the statistical approach. It
was shown that on facing a large population of identical decision situations the
decision-maker can ‘learn’ either the relative frequence distributions 7, (if
he knows the distributions »s of the family ®—see, e.g., [6]) or even the distri-
butions v (if he is told the past values of 6—see, e.g., [7]), and in some cases
even both ([1]), and still perform asymptotically as well as if he were using the
Bayes decision function. However, knowledge of the loss function and some
fundamental information about the family ® was always necessary.

In this paper we are going to consider the question of justifying the Bayesian
model from a rather different angle. First, we adopt the statistical approach,
thus being able to accept the Bayes risk as the desired optimum. We assume,
however, that the statistician is aware only of the set A of decisions available to
him and of the space (&, ¥) of observations. That is, he has no knowledge of the
set of parameters ©, the family @, or even the loss function L. Moreover, we
assume that the loss may be random, with distribution depending on 6 and a,
but also unknown. This will take into account the possible inconsistency or
uncertainty in the statistician’s judgment of his losses, which was one of the
original objections against both subjectivistic and statistical approaches. Further,
when dealing with a large population the statistician is supposed to face in-
dividual decision situations successively, and after each decision is made he
registers the value of random loss incurred.

Next, we try to describe formally what we feel to be a “natural” decision
procedure employed by an unskilled rational individual under such conditions
(Section 3). Roughly speaking, we assume that the decision-maker guides him-
self by the following three rules.

(1) For randomly selected test stages of the decision process take any de-
cision @ € A equally likely, regardless of the observed sample , but remember
the sample and the loss thus incurred.

» (2) Make these tests infinitely often but with ever-decreasing frequency,
putting at the same time increasing weights on the losses registered.
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(3) In active stages (i.e., those that are not the test ones) take the decision
for which the sum of weighted losses registered through those past test stages,
where the observed samples were close to that one observed at present, to be the
smallest one.

The last of these rules states what might be called a conservative principle of
learning from experience: “Do what turned out to be the best in the past.”
The first one expresses a progressive principle: “Perpetually try all possibilities to
keep up with a changing situation.” The second rule then requires that a suit-
able compromise should be made between these two contradictory principles.

Finally (Section 4), we show that if a decision procedure based on these rules
is used it yields asymptotically the same average loss as would the Bayes de-
cision function. More precisely, if {6,} is a sequence of parameters and {a,} is
a sequence of decisions determined by the rules above, then the average random
loss N7 D% 4 L.(6., a,) minus the corresponding Bayes risk p(7,) approaches
zero in probability as N, the size of the population, tends to infinity, and the
convergence is uniform over certain regular sequences or parameters. This result,
in our opinion, indicates that the Bayesian model of decision-making, together
with its components and assumptions, can be considered a result of experience
gathered by the decision-maker through a process of learning expressed in a
condensed form.

2. Prerequisites.

2.1. Notation. Throughout this paper the triplet (Q, 8, P) will always denote
the basic probability space. Random variables will be designated by capital
letters with the argument w ¢ @ omitted unless necessary. Sets of elements for
which a statement U is true will be denoted by {0}. The indicator function of a
set E will be denoted by Iz or by I(E), the complement of E by E° as long as
the universal set is understood from the context. The expectation of a random
variable X will be denoted by E{X}, the conditional expectation given a o—field
¥ C 8 by E{X | §}. A function f will sometimes be written as f( - ) and the same
symbol will be used to denote the Euclidean vector with components f(a) in
case f is defined on a finite ordered set 4. The symbol R™ will stand for m-di-
mensional Euclidean space; components of vectors will be distinguished by
superscripts in parentheses. The inner product of vectors ¢ R™ and e R™
will be denoted by £- 4.

2.2, The decision problem. Let ® = {vs:0 ¢ ®} be a one-parameter family of
probability measures on a measurable space (E, ¥)—the sample space, and let
A = {a®, .-+, a"™} be a finite set of all possible decisions. Further, let @ be
the (m — 1)-dimensional probability simplex

Q = {OlSRm:a(l) = 0; 7= ]_, <o, m; Z'{;la(l) — 1}’

let 3 be the o-field of all subsets of the set of parameters ©, and let T’ bethe class
of finite signed measures on (©, 3) with the property that for each ¢ T there
is a finite subset ®, C ® such that the total variation ||7||(®,°) = 0. In other
words, each 7 ¢ T is discrete with finite number of atoms. Let T be the subclass
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of all probability measures in 7. If 7 & Ty or @ ¢ @ is such that r({8}) = 1 for
some 6 ¢ ©, or o = 1forsomei =1, ---,mwe may sometimes write simply
6 or a” instead of 7 and a, respectively.

Next, let £—the random loss function—be a two-parameter family of real-
valued random variables with finite expectations: £ = {L(6, a):60¢ ®, a ¢ 4},
and let us denote I(8, @) = E{L(0, a)}. As 7 ¢ Ty plays the role of prior distribu-
tion of Bayesian theory we define the Bayes risk p by

(2.1) p(r) = min [o [z 1(8, 8(x)) dve(x) dr(9),

where the minimum is taken over all measurable mappings § from & into A.

As mentioned in the introduction we will study sequences of independent
copies of the decision problem described above with the parameter § varying
along the sequence. More precisely, let ® be the set of‘ all sequences

(22) 0 = {en:n = 07 17 27 * "}’
and let
(2.3) {Xn:n =012 "'}

be a sequence of independent random variables with values in (E, ¥) such that
PX,™ = »y, . Further, for any sequence {a, e d:n = 0, 1,2, ---} let

(2.4) {La(bn,an):m = 0,1,2, -}

be a sequence of independent real-valued random variables, where L,(0,, @.)
is distributed as L(6, , a.) € £, and let the sequences (2.3) and (2.4) be also
mutually independent. Here, the value of X, represents the sample at the nth
stage of the decision process and the value of L,(6,, a,) is the loss if the de-
cision a, had been taken. The decision process starts with » = 1. The parameter
6o is only a dummy parameter introduced for notational convenience, and it will
be assumed that L(6,, -) = 0.

One more notational convention will be useful. With every sequence of pa-
rameters (2.2) we associate a sequence {r,:n = 0, 1, 2, - --} of “empirical dis-
tributions of 6”’ defined by 7o(-) = 0 and

m(E) = 0 Yty I5(6,), Ee3, n=12 -,

so that 7, ¢ To forn = 1,2, --- . We will use the symbols 7, exclusively in this
sense.

2.3. Assumptions. The sample space (&, X), the family ®, the set 4, and the
random loss function £ constitute a formal description of the decision problem.
We will now impose conditions on these concepts.

First, we require the sample space to be such that:

(C1) the o-field X has a countable number of generators. Thus, (E, ¥) may be,
for example, a separable metric space with Borel o-field.

Next, let M > 1 be an integer and let

(2.5) (Geik = 1,2, -}



BAYESIAN MODELS AND EXPERIENCE 2131

be a sequence of countable measurable partitions

(2.6) ® = {Bepik=1,2,---}

of the space (&, ¥) such that

(2.72) each set Beye®, 1is a union of at most M sets from ®Byy1,

and
(2.7b) % 1s the minimum o-field over the sequence (2.5).

It is easy to see that such a sequence of partitions exists as long as (C1) is satis-
fied.

Let € > 0 and let u be a measure on (E, X). A set E ¢ X is called an e-carrier of
wif u(E°) < e Let 7 & Ty and let us denote

vi(+) = fev(-)dr(6).

We now introduce the following definition.

DeriniTION. A sequence 0 = {6,} ¢ ® will be called regular if for every ¢ > 0
there is an integer K () such that every »,, ,» = 1,2, --- | possesses an e-carrier
that can be covered by at most K(e) sets from the partition ®; .

A set of regular sequences 0 for which these integers K(e¢) are uniformly
bounded for every fixed ¢ > 0 will be called a regular subset of @.

Clearly, these concepts depend also on the family ®. If, for example, @ is
the family of all distributions on the real line with zero means and uniformly
bounded variances then the set of all sequences @ is regular itself.

Finally, we need a condition on the random loss function:

3(02) there is a finite constant Cy such that for every 6 & ©, a e A, E|L(8, a)|* <
Co.

3. Decision procedure. The statistician chooses his decisions a ¢ 4 using a
decision procedure D, which tells him at each stage n = 1, 2, - - - of the decision
process the probability «'® with which to make the decision a®. Thus, a par-
ticular decision procedure D is specified by defining a sequence {D,:n = 1,2, - -}
of, in general, random vectors with values in @. Such a sequence then determines
a sequence of random decisions {¥,:n = 1, 2, - - -}, to be referred to as generated
by the decision procedure D.

According to what was said in the introduction the distribution of D, may
depend on the past decisions a1, +++, @1, on the past losses, i.e. values of
Li(61, @1), - -+ y Lp1(0n-1, @g—1), on the values of the past and present samples
X1, , Xpa,X,, and also on the structure of the set A and the space (=, X).
It must not, however, depend on the family @, the loss function £ or any other
characteristic related to them. Besides satisfying these requirements our particu-
lar decision procedure should obey the three rules from Section. 1. We will now
define such a procedure D* formally.

Let

(3.1) {Unin =0,1,2, -}
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be a sequence of independent random variables taking values 0 and 1 with

and let
(3.3) {(Vain =0,1,2, -}

be a sequence of independent identically distributed random vectors with values
in @ such that for every ¢ = 1, .-+, m, P({V, = 69, o, 8™ = m™,
where 8;'” is the Kronecker delta. The sequences (3.1) and (3.3) are also mutually
independent.
Next, let

(3.4) {(Yain=0,1,2,---}
be a sequence of random vectors with values in R™ and defined for every 6 ¢ ®
by
(3.5) Y,? = mp, U1 + Lu(6s, a®NV?,  i=1,---,m.
Further, let s* = (s*, ..+, s*™) be a mapping from R™ into @ defined for
every £ R™ by
(3.6) SO =a i Y = minga,.m (£7),

=0 it £ > minjoge . (£7,
where « is any vector from @ such that D m s*?(£) = 1.
Let
(3.7) {ga(z,2")in = 0,1, 2, -}
be a sequence of measurable functions on (=, ¥) x (&, ¥) defined for n = 1,
2’ e by
(3.8) gu(m, @) = Doret Iper(x)per(z’) whenever N,y < n < N,,

where _
(39) {NK:K = 0, 17 27 “'}

is an increasing sequence of nonnegative integers, B, € &, and go(+, +) = 0.
Finally, foreveryz ¢ E,n = 1,2, --- , let

(3.10) 8u(z) = UaVa + (1 — Un)s* (2205 Yaga(z, X,)),

where {X,} is the sequence (2.3). Clearly, S.(z) is a random vector for every
2z &2 and an ¥-measurable vector-valued function for every w ¢ . The decision
procedure ®* = {D,*:n = 1,2, - --} is now defined by D, = 8.(X,).

The interpretation of this rather lengthy definition is as follows: random var-
iables U, determine whether the nth stage of the decision process is a test one
(U, = 1) or an active one (U, = 0). Thus at a test stage D, = V., that is
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a decision a ¢ 4 is selected uniformly at random. The 7th component of the vector
Y, can be nonzero only in test stages, where the decision a” has been taken and
is then proportional to one plus the loss incurred. The proportionality constant
(weight) depends on n through p,. The ith component of the sum

70 Y,ga(X, , X,) thus represents a weighted sum of losses (each increased by
1) in those past test stages prior to the present nth one, where the samples X,
were equal to X, modulo the corresponding partition &, . These partitions may
be considered as slowly increasing refinements of observed data. Finally, the
mapping s* determines the component, that is the decision, for which this sum
is minimum. The procedure ©* thus satisfies all the requirements discussed in
the introduction and at the beginning of this section.

4. Convergence theorem. We will prove now that for the decision procedure
D* the average loss approaches asymptotically the .corresponding Bayes risk.
We will do this first for the special case when the sample space is discrete, and
then for the general case.

4.1. The discrete case. Let the sample space be discrete, that is, let & be a
countable set and ¥ be the o-field of all subsets of E. The condition (C1) of
Section 2 is then automatically satisfied and the partitions (2.6) can be chosen
identical and consisting of all one-element subsets of &:

The functions (3.7) then become

(4.1) gn(z,2') = 1 if xr =2,
=0 if =z=4d,

forallm = 1,2, ..., and the Bayes risk (2.1) is given by

(4.2) p(7) = 2 eem minges [0 1(6, a)vo({z}) dr(0).

We refer to this choice of partitions ®, as the discrete case.

TurworEM 1. Let, in the discrete case, {V,:m = 1, 2, ---} be the sequence of de-
cisions generated by the decision procedure D* of Section 3., and let the condition
(C2) be satisfied.

If the probabilities (3.2) are such that as n — «

(4.3) Pl 0 and np, T «
then for any regular sequence 6 = {0,}
N i La(6n,%,) — p(ry) — 0 in probability as N — =

and the convergence is uniform over any regular subset of ®.

Proor. Let 0 = {6,} ¢ @, , where @, is a regular subset of ®, and let
%, be the o-field induced by the family {Xo, -+, Xn ; Lo(60, - ), -+ , Ln(6a, *);
Uc, Ty Un+1;V0, Ty, Vn+1} so that

(44) B{Lu(0n , Wa) | Fuct) = D zer U(Bn 5 Sa(2))ws,({2}) a.s.
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Since, by the Extended Bienaymé equality ([3], page 386) and (C2),
EINT 30 [La(0n , W) — B{Ln(6,, %) | Fai}]] S CN 7,

the statement will follow by the Markov inequality ([3], page 158), (4.2) and
(4.4) if we prove that

(4.5) E|Y ez Wy(z)| — 0 uniformly in 8 & @, ,
where we denoted

(4.6) Waz) = N7 N wa(0a, Su(®)) — @e(7a),
(4.7) wa(r, @) = [o 21 U8, a®)aPni({a}) dr(6),
(4.8) @2(7) = mingea {ws(r, a)}.

Let ¢ > 0 and let B(e, ) denote an e—carrier of »,..Since 0 ¢ @, is regular,
B(e, 7x) can be found for every 7y such that it contains at most K (e) elements
of E. Since by (C2) |[Wx(z)| £ 2Cow:y({2}), we have then

> E|Wx(z)| £ K(e) sup, E|Wa(z)| + 2Coe,
whence we conclude that (4.5) will follow if we prove
(4.9) E|Wy(z)| — 0 uniformly in both 6e® and ue¢kE.

Let Y., = Y. gn(z, X,), where ¥, and g, are defined by (3.5) and (4.1) re-
spectively; let
(4.10) Sne = 8" (200 Yra),
qnd let us denote the right-hand side of (4.6) with S,(z) replaced by S,z and
8,1, by Wx'(z) and Wx"(x), respectively. Since by (3.7), (3.10) and (4.10),
U, =0= Su(2z) = Sn-1.2 = Snz, we have by (C2) and (4.3)
(4.11) max {E|Wx(z) — Wa'(2)|, E[Wx(z) — Wy" ()]}

S 20 N2 0ap. | 0.
We are now going to prove that the random variables W' () are bounded from
above and the random variables Wy" (z) are bounded from below by random
variables that converge to zero in the mean uniformly in 6 and z. This, in view

of (4.11), will prove (4.9).
Let us begin with Wy” (x). This can be written as

(4.12) WN”(x) = N_IZiLl n[w:c('rn y Sn—l,z) - 'wz('rn ) Sn,a:)]

-+ [wx( TN, SN.x) - QOZ(TN)]-
Next, noticing that

(4.13) E{Yaod = (1 + Uba, -))ve,({2}),
and denoting
(4.14) Voo = Yoo — E{Yas},
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(4.15) Zne =0 0 Vis,n=1,2 -3  Zy, =0,
we have by (3.6) and (4.10)
(4.16) Snz = s (a7, -) + 0 *Znz).

Here we need the following simple lemma. Let 7 T, £ e R, a1 = s™(wa(r, +)
+ £), az € @. Then

(4.17) We(7, 1) — Wo(7, a2) = & (a2 — ).
To prove this we write
wo(7, 1) — wa(7, ar) = Domq (o U8, a?)ve({z}) dr(6)(a® — o)
= w7, ) (1 — )
(war, -) + &) (en = a2) — £ (a1 — a2)
= —& (a1 — ),

where the last inequality follows from the definition of «; .
Now applying this lemma to the summands in (4.12), and using the fact that
the last bracket in (4.12) is nonnegative, we obtain

Wy (z) 2 N7 200 Ze (Sne — Sucie)
(4.18) =N D2V ln— 1)Zp s — 0202 Socre
+ N""Zy oS
= — N 1 Yn,z'Sn—l,z — MaXi,...,m IN_lZlZ=l er,‘z l,

where the last inequality follows from (4.15) and Sy, ¢ @. Next, from (4.13),
(4.14), (C2) and C,-inequality ([3], page 155) we have for alln = 0,1, 2, --- ;
zeEB,ande =1, -+ ,m,

(4.19) BTSN £ (200 7 pa e, (fa]), A=123
where C; depends only on the constant Cyp from (C2). Hence
(4.20) NTPIILETE P < (261)'m(Npy) ™,

and since the random variables (4.14) are independent and centered at expec-
tations, the last term in (4.18) goes to zero by (4.20) and (4.3). Further, de-
noting by Yn. the o—field induced by {Yos, -+, Yus} and realizing that, by
(4.10),

E{ Yn,z'sn—l,z | tyn—l,z} = E{ Yn,z} 'Sn—l,z = 0 a.s.,

we conclude by (4.20) that the next to the last term in (4.18) goes to zero as
well. Hence

lim infy.o E|Wy"(z)] = 0 uniformlyin 6 and z,
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and it remains to prove that also
(4.21) lim supy.e B|Wy'(z)] = 0 uniformlyin 6 and z.

Writing  again Wy(z) = N2 Ninw.(rm, Sue) — wolrn,Snire)l
+ [w,(‘rN , Syz) — o-(7x)], and applying (4.17) to the summands with
o = Sny1. and also to the last bracket with s = s*(w.(7y, -)), we obtain,
similarly as in (4.18), the inequality

’ —1\\WV 2 & -1\ WV TG
Wx'(x) £ =N DN 1 Vs Sue + maxiy,...n [N DN T

Let Y9 = 74 — YO i=1,---,mj= 1,---,m. Since S, ¢ @ we have
the identity
N_l Z?{:l Yn,a; * Sn,a; = m_l :In=l y—l ]V—1 Y(”) S(i)

+ o I N L T,
and similarly as before we conclude that (4.21) will follow if for any 7 # j,
(4.22) EINT N A BT SR8 | Yurad| — 0
uniformly in 6 and z. Let
HS) = {ZLO v < DDA, N Zrn=o YQ;)}

and
G = {2 om0 V8 < minncg,om D2oreo Y.

By (4.10) and (3.61) we have for every 7 = 1, -+, m, In() < S < IFIOR
so that (4.22) is implied by

(4.23) EINT' NG B{T S0 i) | Yoo} — 0
and
(4.24) EINT' 20 B{Y 0169 | Ynora| — 0,

both uniformly in 8 ¢ ® and z ¢ E.
To prove (4.23) letforA = 1, - -+, m,

I‘(i)\) — |I7(i)\)| S 20 nl/ﬁp—ﬁ/ﬁl and I‘(nz; r])\_1 I‘(z)\)
Clearly HY — I‘ﬁfi cC (I‘ﬁ,’z) and foranyj =1, ---,m,j # 1,
(T22) € (TSR] > Con'™p™" |Y“” = 20 )n{Us = 1.

The latter inclusion follows from the fact that if |Fia| > 2C,n"*p™° = 2C,
for some N = 1, ---, m then by the definition of Yff}‘ ) and by (C2) either
Y$) % 0 or YO # 0, so that U, = 1 and either V., = 1 or V,® = 1. If
V. or if A = j then

PG = 79N and |Y5)| = E|PE)|  otherwise.

Hence from the fact that |¥%|T r¢e is independent of Yn—1,. we have almost
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surely
|B{Y G213 | Ynord — B{Y SR Ianrd | Ynor s}l
< f{lfzgf{;] > con116p75) (V62| AP 4+ 2Copa .

The last term in this inequality tends to zero by (4.3) and the integral is bounded
by Co*n*p,*E| V%)%, which again tends to zero by (4.20) and (4.3). Thus
it remains to prove that for every 7 # j,

(4.25) EINT 3 B{Y G2 Tanr) | Yn-rd|l — 0
uniformly in 6 and z. For this let

HOY = {2030 750 < =700 — 2200 0™, ({a})},

A = {22050 750 < 200n™ ™" — 2000 A v (fa)},
and

W = (T TR < 200w, = Tl 4™ (),
where A(m = BV, — V,%); and let HS = NP_ xS, HY =
NP _ i HX. Tt is easily seen that also H{) = Nieia<H Y and

H.,C HlaT,,C H,
so that we have the inequality
(4.26) —|TSRII(AS), — BLS) + YS2I(HLD) < YOLRI(HL) aT33)
< |PORIIUL — HO) + TR2IH).
By definition, both H%) and HY) are Y,_; ,-measurable sets so that
B{YCRI(HD) | Yordd = BITDM(ES) = 0 as,

and (4.25) reduces to showing that for ¢ j,
(4.27) NSV BT 1A — HO)D)Y — 0

uniformly in 6 and z. Let us denote the expectations in (4.27) by ¢ By (4.19),
and since YY) — HY) < Ursinsi (H G — H Efi), we have

¢l < 40 2R P(HGY — HGY).
Next, the set-theoretical differences in (4.28) can be written as
A — HOY) = {—2Cn"*(n — 1)7p, """ — 220 A, ({a})
< ZN, < 200n" (n — 1) — Dom AN, ({2},

where Z(%) = n7t D 1 TV and since the random variables are independent
and centered at expectations the Berry-Esseen normal approx1mat10n theorem
(I3], page 288), together with the well-known property |¢(8) — ¢(£)] < |¢ — &

__1.
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of the normal distribution function, ¢(¢) yields
(_129) P(H(;Z\z) H(l)\)) < 400n pn —5/6 Zn——1 E IY(z)\)l )—%
+28 2 BT PSS BTGP ™,

where 8 is an absolute constant.
To find an upper bound to (4.29) we need first a lower bound to E |¥4%[".
Direct computation gives

E|YG2r
= mpa (B 1 + La(0a , @) 4+ E 1 + La(6n, a?)") = |8 lvs, ({})
2 (2mp. — 1)wo,({a}),
since
(mpn™ — 1)(B(8a,0”) + B(6n,a?)) + 2mp, " (1(6n,a?) + U(8,,0”))
+ 20(6,,a)(6,,a") = —1
and since mp, " — 1 = 0 we obtain for ¢ > j:
(4.30) E|YGR = mpa v, ({2}).

Substituting now from (4.19) and (4.30) into (4.29) we have by (4.28) and
since 7§ = 0:

(4.31) ¢ < 16C, o, mi( D15 p ve, ({2} )7
+ 3280,'m™( 1 p e, ({2}) ) (2orat o v, (f}) ™

By (4.3), pr < pa'pr “forr = 1, -+, n — 1, so that the last term in (4.31)
becomes 328C:'m* 2p{‘(Z,:1 o ve,({2})) % Next, let F1,, -, Fa1,; be ran-
dom variables taking values 0 and 1 with P({F,. = 1}) = s, ({ }). By (4.3)

St o e () 2 mpa 200 e (f2))
= np. E{n? D215 rF, .
and denoting ®,, = > r it F,, we have
W S tF e 2 0T N 1 2 B (T s) = (0T 2005 Fra)
The Schwarz inequality yields
(B{n™" 2205 Pt 2 w7 2005 v, ({a)).
Hence
(i o7, ({2)))7F < (20 7pa) (0™ 2205 ve,((23)) 7

so that (4.31) becomes
2q42 < [16Co Ca(2m)} (npa) ™ + 166C1" (2m)" (npa) (™ 2005 v, ({)))7
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However, by (4.19) we have also ¢\2) < 4Covs,({z}), so that there is a finite
constant C; such that for alln = 2,3, ---,

¢ £ Colnpa) H(n™ 2075 ve,({2}))7
and
§5 < Con™ 2or v ({2}),

—(i7 —1 —1 L7 . (i
where §¥2) = n "1 m = 2,3, --- . Hence, setting 35> = 0 we have

forn = 1,2, --- ¢42¢%) < CF(npa)™* so that

(@) = N E0S () + N e ng iRl
< Co(N — 1N + N7 2202 (npa) ™4,

which goes to zero by (4.3). Hence (4.27), and consequently (4.23), is proved.
Finally, it is easy to see that exactly the same reasoning applies if the sets H{)
and other sets related to them are replaced by the sets G, and similarly re-
lated analogs. Therefore, (4.24) holds as well, and the theorem is proved.

4.2. The general case. In the general case, the sample space (&, ¥) may be any
abstract measurable space satisfying condition (C1).

TurOREM 2. Let {¥,in = 1, 2, ---} b the sequence of decisions generated by
the decision procedure D* of Section 3 with the probabilities (3.2) defined by:

(4.32) pn = N7, 0<y<l1,
and the sequence (3.9) defined by
(4.33) N.= ((x+ 1)1)

and let the conditions (C1), (C2) be satisfied. Then the conclusion of Theorem 1

s true.
Proor. By the same reasoning as in the proof of Theorem 1 it is enough to
prove that as N — «

EIN7' a1 B{La(6n %) | Fact} — p(74)| — 0

uniformly in 0 &€ @, . As before we have almost surely

(4.34) E{L.(6n , ¥2) | Fat} = [21(0n, Su(z)) dug ().
With a slight abuse of notation let us denote

(4.35) Sun(x) = UaVa + (1 — Un)s*( 22730 Ve gu(, X,)),
(4.36) pe(r) = Doe1 Mines [ (8, @)vo(Ber) dr(6),
and

(4.37) Wn,x = n_IZLlfz L(6n s Snx(z)) dve,(x) — pu(7a),
.and let the integers N and « be such that N, < N £ N,,;. Then by (4.34),
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(4.35) and (4.37) we have
N7 2Nt B{La(0n, Y1) | Faet) — p(7x))
(438) = D TINNTINT N (2 [1(0n, Su ()
— U6n, Snra(@))fo,(x) du(@)] + W + Wl + (Wi
+ |P(TN) - Pz-l—l(Tn)l + IPx(TN.‘) - Px+1(TN,¢)l'

Now, by (C2) and (4.33), the first term on the right-hand side is bounded by
2C(k — 1)(x + 1) and thus tends to zero as N — «. Further, by (4.35)
and (3.8), S..(-) is a constant S,.(x) = S..x whenever z ¢ B, , so that by
(4.37) we have

Woe = 2 Wa(k), where
Wo(k) = 07 20 wer(0 , Sraw) — @es(7a),
wea(r,@) = [o 271108, aP)aVre(Bur) dr(0),
and
ei(T) = minges {wer(r, a)}.

By (C2) we have
(439) an,x(k)l = 2COVrn(Bx,k),

and following the proof of Theorem 1, from the expression (4.12) and with p,
defined by (4.32) we conclude that there is a finite constant C and a number
7,0 < 7 < 1such that

(4.40) E|Wau(k)| < On7".

Let 0 &£ @, and € > 0 and let again B(e, v,,) be an e-carrier of »,, from our defini-
tion of regularity. Then by (2.7a) there is a subset of positive integers A(e, «)
such that B(e, v,,) © Ukeace o) Ber and such that A(e «) does not contain
more than M*K(e¢) elements. Hence by (4.39) and (4.40) D E|W..(k)| <
CK(e)M™n™" 4 2Coe, and since for N, given by (4.33), N — © = ¢ — « =
M*N,”™ — 0, we have |Wy,..] — 0 uniformly in 6 ¢ ©,, , and similarly for the
next two terms in (4.38).

To show that the last two terms in (4.38) also converge to zero, let 8 = {6,}
be an arbitrary sequence of 6 ¢ ® and let u be a (o-finite) measure dominating
the countable family {vs,}. We define for every ¢ &, 00, x = 1, 2, --- the
elementary function

fo(lc)(x‘) - Zk Vo(BK’k)[,LL(Bx,k)]_IIBK,k(x)7

the summation being over those k’s for which u(B,x) > 0. We have now for
every r, of the sequence 0

pe(ma) = [z minges [0 U6, a)fe™ (x) dra(0) du(z),
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and denoting by fo(6 ¢ 6) the Radon-Nikodym derivative of », with respect to
the measure u, we have also

p(ma) = [z mine. [0 1(6, a)fs(x) dra(0) du(),

where p, and p are, of course, the functionals defined by (4.36) and (2.1) re-
spectively. Next let ¥, be the minimum o-field over the partition ®,. Since by
(2.7a, b)

hCHhC¥C---CH, foPi =1,2, -}

is for every 6 ¢ 6 a martingale sequence on the measure space (E, ¥, u) closed
on the right by f, . Moreover it is easily seen that fs is the nearest ¥-measurable
and w-integrable function closing the sequence on the right. Hence, by the Mar-
tingale closure theorem ([3], page 394), we have for every 0 ¢ 8 limy e fo'™ = fo
a.e. u. Finally, since p, and p are uniformly bounded, we have for every , of the
sequence 0, p,(7.) — p(7,) a8 k — =, and since the sequence 6 was arbitrary
we conclude that

(4.41) limy,o pu(7) = p(7)

for every = ¢ Ty . However, p, p1, p2, -+ - are continuous functionals on the com-
pact Ty so that the convergence in (4.41) is uniform in 7 & T, . Hence the last
two terms in (4.38) both converge to zero uniformly in 6 ¢ ® and the theorem
is proved.

6. Concluding remarks. To the end, let us add a few remarks. First, the proof
of Theorem 2 indicates that this theorem could have been proved under more
general assumptions about the sequences {p,} and {NJ. In particular, we could
have assumed that the sequence {p.} satisfies (4.3) of Theorem 1, and require
the sequence {N,} to increase fast enough so that the terms in (4.38) influenced
by this sequence vanish. We have not done so mainly because the condition
on this sequence would be rather involved.

Second, a question arises as to what happens if the sequence of parameters is
not regular according to our definition. The following simple example illustrates
that in this case the decision procedure ®* may yield an arbitrary sequence of
decisions and thus lose completely the desired property. lLet ® = E =
{nim =1,2,---} and »e({x}) = 1if § = 2. Then (discrete case) the argument
of s* in (3.9) is always zero so that D, = U,V, + (1 — U,)a,, where an ¢ @
is arbitrary. On the other hand, if also 4 = {a(l), a(2)}, L(8,a") = 1 for 0 even,
L(6,a®) = 1 for 6 odd, and L(6, a) = 0 otherwise, we have at the same time
p(-) = 0.

Next, let us mention that apart from rather different assumptions on the
statistician’s information, this paper is related to other works in the area (see
[5], [6] and [7] for extensive references) so far as the result and basic principle of
the proof are concerned. The main difference, however, consists in the interpre-
“ tation as discussed in Section 1. In this, we attempted to carry on the idea of
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“experience theory viewpoint” originated by A. Spaéek [8] rather than to
consider a population of decision problems as a compound problem—the idea
brought about by H. Robbins [4]. A corresponding result for a game situation
under assumptions similar to ours has been obtained recently by A. Bafios [2]
and may be interpreted in the same spirit. A special case of the problem studied
in this paper, namely when there are no samples (‘“‘games against Nature’),
has been investigated by the author [9], and a previous attempt has been made
in [10] to generalize it; the result obtained in the latter is, however, incorrect.

Finally, it is evident that the decision procedure of Section 3 is not the only
one for which the convergence can be established. More sophisticated and prob-
ably more efficient procedures (as for the rate of convergence) may be designed,
which may be useful in possible applications. The purpose of this paper was to
show that even a procedure based on the basic rules of learning from experience
yields the desired result, and thus to justify the attitude toward the Bayesian
model that has been discussed in Section 1.
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