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CONSISTENT ESTIMATES OF THE PARAMETERS OF A
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1. Introduction. We will be concerned with the following dynamic linear
system which finds application in both economics and engineering, for example
Aoki [3] and Griliches [6] have used this model.

(11) Try1 = A:I?k -+ Uk, k =0

In (1.1), the state equation, ; is a p-dimensional column vector which repre-
sents the state of some system at time k; A is a p X p transition matrix; and vy
represents a random disturbance, or noise.

In (1.2), the observation equation, y; represents an observation made on the
system at time %, and w; represents noise. We will assume that vy, v1, + -+ and
wy, We, - -+ are independent sequences of zero mean, independent and identically
distributed random vectors with covariance matrices V and W respectively and
that z, is independent of the »;’s and w;’s and has finite covariance matrix. We
remark, in passing, that the superficially more general model in which (1.2) is
replaced by

Yo = Mz, + w, k=1,

where M is nonsingular, may be reduced to (1.2) by an appropriate change of
bases.

When 4, V, W, and the distribution of z, are known, linear least squares pre-
diction and filtering may be done with the Kalman Filter [10], which provides a
method for computing the projections, ;| and y: |, of 2, and y. on the Hilbert
subspace spanned by 1, « - -, yx . Specifically,

oo = (I — Ap)AZi—1 |11 + Arys, k=1,
(1.3) Tow = Am g,
‘ Yelxw = Ttik, t>k)

where I denotes the p X p identity matrix and oo = E[zo]. The matrix A; ap-
pearing in (1.3) is determined by
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(143') Sk = APk_lA, + V
(1.4b) Ax = Sp(S, + W)t

where * denotes pseudo-inverse, ' denotes transpose, and P, is the convariance
matrix of zo.

In practice, however, 4, V, and W will often be unknown, so that two prob-
lems arise in connection with the Kalman Filter. First, the parameters 4, V, and
W must be estimated from the yi’s; and second, the effects of replacing 4, V,
and W by estimates in (1.4) should be considered. In this paper we will present
estimates of A, V, and W, and show that they are strongly consistent when the
system (1.1) is stable, that is when p(4 ), the spectral radius of 4, is less than
one. We will then determine the asymptotic behavior as ¥ — « of (1.4) and show
that it is unchanged if A, V, and W are replaced by strongly consistent estimates.
Our results are stated precisely in Section 2 and proved in Sections 3, 4 and 5.
Theorem 2.3 and Section 4 are independent of the remainder of the paper.

Other approaches to the problem of parameter estimation in (1.1) and (1.2)
and/or determining the effect of replacing A, V, and W by estimates in the
Kalman Filter may be found in [3], [4], [7], [9], and [13]. These authors, however,
have not been primarily concerned with analytical results; in fact, only [2] and
[5] even consider the consistency of their estimates. Somewhat more theoretical
work has been done on parameter estimation in linear-stochastic difference
equations with independent inputs, of which (1.1) and (1.2) are a special case if
W = 0 ([16], [17], and [19]). The presence of a non-zero W in (1.2), however,
introduces major complications in the filtering and prediction problems (taking
W =0in (14) yields P, = 0,8; = V,and Ay, = VV', k = 1) as well as some
complications in the parameter estimation problem. The main results of Section
4 on the asymptotic behavior of (1.4) have been proved by Kalman and Bucy
[12] for the continuous case;i.e. when (1.1) is a differential instead of a difference
equation. Theorem 2.3 has been proven via Lyapunov theory by Kalman ([11],
page 371) under somewhat stronger conditions. However, the proof is not given
explicitly for the discrete case, so we have included a proof here by other means.

2. Statement of the theorems. In order to state our results precisely, we will
need the following notation. We will denote by R” and ®” respectively the real
linear spaces of p-dimensional column vectors with real components and p X p
matrices with real entries. The topologies in B” and ®” will be determined by the
Euclidian norms.

2| = (90’90)%, zeR?
G = [tr G&)F, Ge®.

If G £ ®® is symmetric, then G > 0 and G = 0 mean that G is positive definite
(pd) and positive semi-definite (psd) respectively, and if F, G ¢ ®” are symmetric,
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then F = G iff F — G = 0. Finally, we will need the notion of parallel addition
which is defined for psd matrices F, G by
F:G =F(F + @)*G

F:@ is called the parallel sum of F and @ and is studied in detail by Anderson
and Duffin [1], [2].
We will estimate the parameter 4 of (1.1) by

2.1) A, = (O s Yis) (s Yi1Yi2) ", n

The estimate 4, is suggested by the fact that E{ywyis} = AE{ye1yr s}, k = 3,
and enjoys the following consistency property.

TreorEM 2.1. If p(A) < 1,and if A and V are nonsingular, then A, is a strongly
consistent estimate of A, that is, A, — A with probability one asn — .

Theorem 2.1 will be proved in Section 3. Granting its validity for the moment,
we may then estimate V and W as follows. Define

Bi = E{(yp — Aysr) (g — Ays)’}
=V + W+ AWA4,
By = B{ (yx — A%rs) (g — A'ys2)’}
=V 4+ W+ AVA' + A’WAY,
then, if A is nonsingular, By, B., and A uniquely determine ¥ and W by
W = 4B, + A (B, — B,)A™"}
V=08 —W-—AWA'

Therefore, strongly consistent estimates of 4, By, and B, determine strongly
consistent estimates of V and W.

TrEOREM 2.2. If A, is any strongly consistent estimate of A and if p(4) < 1,
then

(2.2) B,;=1/n ZI?=3 (ye — Ay'yi—i) (ys — Akiyk—i),, n = 3,

is a strongly conststent estimate of B;, © = 1, 2. In particular of A and V are non-
singular, and if Ay is given by (2.1) then B, is a strongly consistent estimate of B .

Remark. We have used A, rather than 4, in (2.2) in order to make the com-
putation of By, ; Markovian. It will be clear from the proof of Theorem 2.2 how-
ever, that B,,; would still be strongly consistent if Ay, were replaced by 4, in
(2.2).

Given any strongly consistent estimates Ay, Vo, and W, of A, V, and W
respectively it is natural to approximate the Kalman Filter by

Sk = Akp k—lx‘Ik, + Vk
(2.3) A = 8u(Se + Wi)*

v

3.
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(24) B = (1 — Ap)Adtes o1+ Aen, k=1,

where I denotes the p X p identity matrix and Py, may be any psd matrix. A
natural object of interest is then the asymptotic behavior of A, — A and
T % — %% as k — oo. Our analysis of this behavior requires knowledge of the
asymptotic behavior of S; as k¥ — «, which, of course, is of interest in its own
right.

TueoreM 2.3. Let V be >0 and let W be =0; define ¢ on the set $ of pd matrices
by

(2.5) p(S) = AS:W)A" + V, Ses.

Then Sy = ¢(Sk—1), k = 2. Moreover, ¢ has a unique positive definite fixed point
So, and ¢" (S) — So uniformly on $ asn — «, where ¢".denotes the nth iterate of ¢.

CoROLLARY 2.1. Let V. > 0, then Sk — So, Ay — Ao = So(So + W)™, and
Pk—>P0 = So - So(So+ W)_ISoaSk—) 0,

CoROLLARY 2.2. For A e ®*, W = 0, and V > 0, define So(4, V, W) to be the
unique positive definite fixed point of the function ¢ defined by (2.5);then So(4,V, W)
depends continuously on (A, V, W).

Remark. Theorem 2.3 and its corollaries have applications in the study of
asymptotic properties of certain classes of optimal control problems via the dual-
ity theorem of Kalman [10].

The proofs of Theorem 2.3 and Corollary 2.2 will be presented in Section 4
together with an example illustrating some difficulties which may arise if V is not
pd. Corollary 2.1 is an obvious consequence of Theorem 2.3. We now consider
the asymptotic behavior of 8 and £ | . Theorems 2.4 and 2.5 (below) will be
proved in Section 5; their corollaries are obvious.

TaEorEM 2.4. If V > 0, and if A,, V., and W, are strongly consistent esti-
mates of A, V, and W for which V. > 0 and W, = 0 for all n = 1, then Sy — So
with probability one as k — «.

CoroLLARY 2.3. If the hypotheses of Theorem 2.4 are satisfied, then Ay, — Ao
with probability one as k — «.

TarorEM 2.5. If V > 0,4 p(4) < 1, and if . A, , V., W, are strongly consistent
estimates of A, V, and W for which V> 0 and W, = 0 foralln = 1, then

liMpe 7" D o |k 1 & — %1% = O with probability one.
COROLLARY 2.4. If the hypotheses of Theorem 2.5 are satisfied, then
Mg 77 204 [@hgr 1k — Ai'8x 14| = O with probability one.
foranyr = 1.

3. Consistency of the estimates. In this section we will establish Theorems
2.1 and 2.2; accordingly we assume throughout that p(4) < 1. Define

v

2 = Wy + v — AW = Yr — AYr—1, k

2
R, (21:;3 Zky;—z) (le;s yk_1y£_2)+ 3.

IIV
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To prove Theorem 2.1, we will show that, with probability one,
3.1) w7 D i i — O
(3.2) WD s Yralis — ¥

where ¢ is nonsingular. It then follows that for large n the left side of (3.2) is
nonsingular, and thus for large n, by a simple computation, that 4, = A + R,.
Thus, (3.1) and (3.2) suffice to prove Theorem 2.1.

To establish (3.1) we need first a bound on the covariance matrix of ¥, . We
have from (1.1) and (1.2)

(3.3) v = w + im0 Ay + Ao
from which it follows that
(34a) E(y) = AE (x0)
3k = Cov (yx)
(3.4b) =W + D3 4VA"7 + A* Cov (z)A™*

> W+ 270 AVA7 = % say,

as k — o. Here we have used the fact that lim,.,, [|4"|n™" = p(4) < 1 ([15],
page 75). Define

Sn,l = 21:;3 k—lwky£—2

Sn,2 = Zl?=3 knl (Uk—l - Awk—l)yl:—z , n = 3,
and forn = 3 let &, be the smallest ¢ algebra with respect to which 9,0, -, 0n,
wy, -+ , W, are measurable. If a, b & R? it is easily seen that {a'S,, 1b; Fn;n = 3}
and {a'Snsb; Fn1;n = 3} are martingales, ¢ = 1, 2; for example

E(0'Sny1b | Fu) — 'Snib = (n + 1)70'E Wapryn- | Fu)b
= (i + 1)¢'E Wn1)ynsb = 0.
Moreover, by the mutual independence of wy, w., - - -, and the independence of

Wiy W1, *** , fromyr, + -+, ysp, we find
E{(@Sa1b)"} = Xies kE{ (' wyisb)’}
= 2 k7 (@ Wa)b' E{ys-sgio}b
and (similarly)
E{(@8D)"} = 2k K7'l0' (V + AWA)alb' E{ys-spji—2}b
are bounded for n = 3 by (3.4). The martingale convergence theorem ([5],

page 319) therefore asserts that lim,.., a’Sn,b exists and is finite with probability
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one, ¢ = 1, 2. It now follows from the Kronecker Lemma ([14], page 238) (which
asserts that if ), a, converges and b, — o, then b, * Dy bz — 0) that

a (n_1 Zl?=3 'wkylﬁ—-z)b -0
@' (W7 ks (k1 — Awi1)yia)b — 0

with probability one. Equation (3.1) now follows by the arbitrariness of a and b.
To establish (3.2) we will take advantage of the fact that y; in (3.3) is almost

a moving average of the v’s and w,’s. Let v_w_» , - - - be a sequence of independent
random vectors which have the same distribution as the v;’s and are mutually
independent of zo, v, v1, - -+, and wy, ws, - -+ ; such a sequence may always

be found by possibly enlarging the probability space ([5], page 71). We now
define random vectors u; and ¢ as

(3.5) Y = Ur — Qi ,
(36) Uy = Wi + Z;'L()Aj’l)k_j_l, k = 1,
(3.7) g = AN D0 Ay — x0) = A¥qo, k=o0.

Using p(4) < 1, it may be shown by the Three Series Theorem ([3], page 111)

that u; and ¢ are well-defined random vectors. Here u, ¥ = 1, is a moving

average of the v’s and wy’s and, therefore, a metrically transitive, strictly sta-

tionary process ([5], page 460); and |gx| — O with probability one and mean square

as k — «. Equation (3.2) is now a special case (¢ = 1) of the following lemmas.
Lemma 3.1. Let ¢ = 0 be an integer. Then

@) Eflwu—il} < B{lwml} = tr (F) < ;
(ii) Bluu—i} = A*(F — W) + 8;,0W

where 8;,; is the Kronecker 8. If A and V are nonsingular, then so s E{ukuzi_i}.
LevmA 3.2. Let © = 0 be an integer; then

(3.82)  liMpuw W Doty Yathhes = LMoo 87 Dopmips wathis = B{usuz_s)
(3.8b) limp,on " ZI?=@'+1 llykyzi_all = liMpae 7" ZI?=1‘+1 “ukulf:—i” = E{ ”ukuli—z”}

Proor. Equation (ii) of Lemma 3.1 follows from (3.3) and (3.4) by a routine
computation and the remark that £ — W is pd if V is nonsingular. Thereafter,
(i) follows from

Ef|lwisi—il)} = Ef|ua] i}
< E{jwf*}
= E{tr (ukuk')} = tr ().

The final equalities in (3.8a) and (3.8b) follow from the ergodic theorem and
Lemma 3.1, since wi_s, k = 7, is again a metrically transitive, strictly sta-
tionary process. Therefore, Lemma 3.2 would follow from
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(3.9) Ui — ykyl:—i = qu}i—i + Qkul:—i + qué—i —0

with probability one as k — «. Since [|A*|| — 0 exponentially fast as k — o,
(3.9) follows from (3.7) and the fact that suprs1 & Jux| < supws1 N7* D 5m1 us]
< o with probability one. []

To establish Theorem 2.2, define

Bn,i =n" ZI:L=3 (yk - A’yk_i) (yk - Aiyk—i),, n = 3, 1 =1, 2

then by the ergodic theorem B, ; — B; with probability one as n — « because
the sequences (yx — Ayr_s) (yx — A'ys—;) are strictly stationary and (i + 1)—
dependent and therefore metrically transitive. Therefore, it will be sufficient to
show that

B, — Bn,i =n" 21:;3?/16?/;—%‘ 4 — A\lc), + n™ El?=3 4 — A‘Ik)yk—iyk,
(3.10) +n El?=3 (Atk - A)yk—iyli—iA,
+n ZI:L=3 J‘Ikyk—iyii_i A, — 4

converges to zero as n — o, ¢ = 0, 1. This, however, is an easy consequence of
Lemma 3.2. For example, it follows from Lemma 3.2 that for any m = 3

limy... sSUp ”n_l Zl?=3 yky;i—i 4 - ﬁlo),”
< supizm |4 — Al| i sup 27 D |yei—|
SuDizm |4 — Al B lwuii}

which may be made arbitrarily small by proper choice of m. The other sums in
(3.10) may be handled similarly, thus completing the proof of Theorem 2.2.

4. Asymptotic behavior of S;. In this section we will prove Theorem 2.3,
which asserts the existence of a unique fixed point for the ¢ defined by ¢(S) =
AS:W)A" + V, 8 €8, the set of pd matrices. For this purpose we will obviously
need to know some properties of the parallel sum (S:W) = S(S + W)™W.
Since we consider parallel addition only when one of the summands is pd, the
pseudo-inverse appearing in its definition is really a true inverse. This fact sim-
plifies the proof of the following lemmas considerably (ef [2]).

Lemma 4.1. Let G be the set of (F, G) e ®® X ®” for which F = 0, G = 0, and
F + G > 0: then

(i) parallel addition is continuous when restricted to G;
@) F:G = G:F =z 0, (F, @) eg;

i) o F,G)eGand F < H, then (F:G) = (H:Q); and

) F:G=F—-FF+ G F<F, (F,@)egq.

Proor. (i) is obvious since matrix inversion and multiplication are continuous
operations. In the special case that F and G are pd, (ii) and (iii) are also obvious
from (F:G)™ = F~' 4+ G; and the general case follows from the special one by
considering Fe = F + el and G = G + el as e — 0. Finally, (iv) follows from

F.G=FF+G) " F+G—F)=F—FF+G)"F.
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We will also need the following lemma, which is the easy half of a theorem due
to Stein (see [8]).

Lemva 4.2. Let D & ®”. If there exists a pd matriz F for which F — D'FD is
pd, then p(D) < 1.

Proor. Let F be such a matrix and let A be any (possibly complex) eigenvalue
of D; then there is an x ¢ R” for which Dz = Az and, consequently,

& (F — DFD)x = 1 — \)<'Fz > 0.

It follows that [\|] < 1 and, therefore, that p(D) < 1. []

The first step in the proof of Theorem 2.3 will be to verify that if V' > 0,
then S, = ¢(Sp), bk = 2. If Sp is pd, then from (1.4) and Lemma 4.1 (iv)
4.1) Sy = AlSi1 — 81 (S + W) 'Spald” + V

=A@ WA + V = ¢(Si1),

which is again pd by Lemma 4.1 (ii). Therefore, since S; is pd by (1.4), (4.1)
must hold for & = 2.

Next we show that ¢ has at most one fixed point. Toward this end we observe
that if T) and T, are any two fixed points of ¢, then by parts (ii) and (iv) of
Lemma 4.1

Ty — Ty = A{(TuW) — (T W)HA" = AW((T+ W)™ — (Th + W)} WA/
= AW (T, + W)Y™T: — To} (T2 + W)?'WA' = D"(Ty — T:)Dy",
n =1,

where D; = AW (T; + W)™; ¢ = 1, 2. Therefore, it will suffice to show that
p(D:) < 1,7 = 1, 2. For later reference we state this fact as
Lemma 4.3. Let V be pd; let T be any fixed point of ¢, and let

D = AW (T + W)™
then p(D) < 1.

Proor. Since p(D) = p(D") it will suffice by Lemma, 4.2 to exhibit a pd matrix
F for which F — DFD’ is pd; but F = T is such a matrix, for

T — DTD = AW(T + W)?TA" + V — AW(T + W)'T(T + W) ‘w4’
=AW + W)'T{I — (T + W) Wid' + V
= AW (T + W) (T + W)7'TA" + V
= AT(T + W) W(T +WwW)?T4" + V. []
To complete the proof of Theorem 2.3, we observe first that for any S eS8,
"42) V=¢@) =A@:W)A +V =AW —WES + W)y wid' +V
S AWA' +V
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by Lemma 4.1 (iv). In particular, V < ¢ (V), from which it follows by induction
from Lemma 4.1 (iii) that

" (V) < " (V) < AWA' + V, n = 1.

Therefore, lim,.., ¢" (V) = S, exists, ([18] page 263) and since ¢ is continuous
on 8, So must be a fixed point. Similarly, limy., ¢" (AWA" + V) is a fixed point
which must, therefore, equal Sy . The uniformity statement in Theorem 2.3 now
follows from (4.2); indeed,

" (V) = ¢"7(8) = ¢"(AWA" + V)

forallSeSandn = 1. []
To establish Corollary 2.2let A, — 4,V,— V > 0,and W, — W with V, > 0
and W, = 0 for all » = 1; then, setting Sg" = So(4n, Va, Wa),n = 1,

4.3) 80" = An(So™:Wa)A, + Vu £ AWad, + Va, n =1,

by (4.2). Therefore, Sy" is bounded. Moreover, if S is any limit point of Sy,
then S = A(S:W)A' + V by Lemma 4.1 (i). Therefore, So(4, V, W) is the
unique limit point of S¢". []

Finally, we remark that if (2.5) were used to define ¢ on the set of all psd
matrices, and if the requirement that V be pd were dropped, then the extended
¢ need not have a unique fixed point. For example, let A = 21,

0 0 1 0
V—-(O 1>, and W——(O O)’

then it is easily verified that V and V' + 3W are both solutions of the equation
S =4(@S:W)+ V.

5. Asymptotic behavior of S; and #;. In this section we will prove Theorems
2.4 and 2.5, which compare the asymptotic behaviors of S; and £ with those of
Sy, and xx, respectively. To establish Theorem 2.4 it will clearly suffice to show
that if 4,, V., and W, are any fixed sequences of matrices for which 4, — 4,
Vo—aV>0and W,— W = 0, with V, > 0and W, = 0foralln = 1, then
Si — 8o, where S; is defined by (2.3) and S is as in Theorem 2.3. Let 4,,
V., and W, be such sequences and define ¢,, n = 1 by

. (S) = A, (S:W,)A, + Vo, Ses;

then by (4.3) there is a compact subset ¢ C 8 for which ¢,(8) € 8n = 1, and
by Lemma 4.1 ¢, — ¢ uniformly on 8. We now observe that the estimate S,
of S, may be written

Sn=¢n°"°°¢’2(‘§1): n;l,

where o denotes composition, S > 0by (2.3), and Spe8, k = 2. Let e > 0;
then by Theorem 2.3 there is an integer r = r. for which ||[So — ¢ (S)|| = €
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for all S &8: and since $p is compact, we may select a subsequence k;, ¢ = 1,
for which

limi_,w ”Sk1 - So” = limk_,w sup ”Sk - So”, limi.,wsk,._r = TSS().

By the uniform convergence of ¢, to ¢ on Sy, we must then have limie S
= ¢'(T) and, therefore,

limyenw sup [|Se — Sof| = limse Sk, — Sof| = [|¢"(T) — Sol| < e

Since e is arbitrary, Theorem 2.4 follows. []
Finally, to prove Theorem 2.5 we write

ae = ([T @)oo + 25— (Lo Gi)Aw;
g = (T51G)g00 + i (i G)Ay;
where G, = (I — A)A and G, = (I — Ay)Ax, k = 1. Now under the hypothesis
of Theorem 2.5
G—G=(I—0)A=W(@So+W)'4, as k— o,

where p(@) = p(W(So + W)™4) = p(AW (So + W)™) < 1 by Lemma 4.3.
Therefore, there is an r = 1 for which ||G'|] < 1, and since G% — G and
@, — G, — 0 with probability one by Corollaries 2.1 and 2.3 respectively, there
exist po < 1 and a (random) integer ko = 1 such that with probability one

max {[| [Ii5 Gill, [T G4} < oo
whenever j = ko . In particular,
max {|| [ T%=1 Gill, [ T15= Gill} — 0 with probability one

as k — . It follows that for any jo = 1

iMoo SUP 7" D iy 801k — s

< liMpow sup 20 Dory Domes || T hcisn Gitsy — TTocinn G|yl
limy.. SUP nt Z}L,-o ZZL,'HL]'H Gi&' - H’§=j+1 G|yl
supjzie (2otms | [limssn G — TTicina Gitg])) (limm™ 257, lyil)
supszio (D || [Li=i1 Gitry — TT¥ina Git D E{fal)
where the final inequality follows as in (3.8). Moreover, since Ay — Ag «— Ay
and G, — G «— Gy as k — «, we have, for any fixed j = 1 that
limje | [T2550 Gia; — T Gy = 0.

It follows immediately that for any s = 1

lim 8Upjse (Xiimj | [ L5miin Giy — TTimia Gii]))
(5:2) < lim SuPjow D tmiirs || [Limits Gidy — TTimsin G|

< 2||Ao||rp’/ (1 — po), with probability one

(5.1)

A 1IA

I\



2074 ANDERSON, KLEINDORFER, KLEINDORFER AND WOODROOFE

which may be made arbitrarily small by proper choice of s. Theorem 2.5 follows
easily from (5.1) and (5.2). []

6. Numerical results. A computer program embodying the estimators deseribed
above gave the results in Table 1. In this program the linear system (1.1) and
(1.2) was scalar with normal noise and parameters A = 0.9, V = 4.0, and
W = 1.0. The initial condition on z; was 2o = 100.0. The program simulated the
system (1.1) and (1.2) and computed the estimators A, Vi, Wi, and &, over
periods of time of length 20, 40, 60, 80, 100, and 200. Fifty runs were made for
each of these time periods.

TaBLE 1
4, Va
Time Period # - -
mean variance mean variance
20 .899 .152 X 1073 274 X 10! .481 X 10!
40 .899 .110 X 1073 .331 X 10! .264 X 10!
60 .900 .141 X 1073 .348 X 10! .170 X 10!
80 .899 .547 X 10 .344 X 10! .126 X 10!
100 .900 .138 X 1073 .362 X 10! .170 X 10!
200 .901 .768 X 10 .378 X 10! .624
Wa An
Time Period - -
mean variance mean variance
20 .174 X 10t .289 x 10! .639 .961 X 107!
40 .143 X 10! .903 .730 .320 X 107!
60 .140 X 10t 722 .748 .212 X 107!
80 .128 X 10! .569 762 214 X 107!
100 .124 x 10t .815 .780 .223 X 1071
200 .110 X 10t .232 .802 .669 X 1072

Computation of A; showed that it was stationary at the end of 20 time periods
at A, = 0.824.

It was found that the parameter estimators are sensitive to the initial condition
of the linear system. Occasionally when the system is at 2, = 0 the fluctuations
in the initial values of 4} cause the B, ; to assume extremely high values so that
the corresponding means and variances of V., and W display large dispersion.
This problem does not arise when the initial conditions of the process differ from
zero enough to give initial stability to A .

REFERENCES

[1] ANpERsON, W. N. (1968). Series and parallel addition of operators. Ph.D. dissertation,
Carnegie-Mellon Univ.

[2] ANpERrsoN, W. N. and DurriN, R. J. (1969). Series and parallel addition of matrices.

i J. Math. Anal. Appl. 26 576-594.

18] Aoxi, M. (1967). Optimization of Stochastic Systems. Academic Press, New York.



PARAMETERS OF A LINEAR SYSTEM 2075

(4] Cox, H. (1964). On the estimation of state variables and parameters for noisey dynamic
systems. IEEE Trans. Automatic Control. 9 9-12.
[5] Doos, J. L. (1953). Stochastic Processes. Wiley, New York.
[6] GrivicuEs, Z. (1967). Distributed lags: a survey. Econometrica 37 16-49.
[7] Ho, Y. C. and Leg, R. C. K. (1965). Identification of linear dynamic systems. Informa-
tion and Control 8 93-110.
[8] HoUSEHOLDER, A. S. (1958). The approximate solution of matrix problems. J. Assoc.
Comput. Mach. 5 205-243.
[9] Jones, R. H. (1966). Exponential smoothing for multivariate time series. J. Roy.
Statist. Soc. Ser. B 28 286-293.
[10] KaLman, R. E. (1960). A new approach to linear filtering and prediction problems.
Trans. ASME Ser. D. J. Basic Engineering 82 35-45.
[11] Katman, R. E. (1963). New methods in Wiener filtering theory. Proceedings First Sym.-
posium on Engineering Applications of Random Function Theory and Probability.
Wiley, New York. .
[12] Kawman, R. E. and Bucy, R. 8. (1960). New results in linear filtering and prediction
problems. Trans. ASME Ser. D. J. Basic Engineering 82 35-45.
[13] Kumag, K. S. and SripHAR, R. (1964). On the identification of linear systems. Proc.
Joint Automatic Control Conf. Palo Alto 361-365.
[14] Lo&ve, M. (1953). Probability Theory. Van Nostrand, Princeton.
[15] Loowmis, L. (1953). Abstract Harmonic Analysis. Van Nostrand, Princeton.
[16] ManN, H. B. and Waip, H. (1943). On the statistical treatment of linear stochastic
difference equations. Econometrica 11 173-220.
[17] Rao, M. M. (1961). Consistency and limit distributions of estimators of parameters in
explosive stochastic difference equations. Ann. Math. Statist. 32 195-218.
[18] Rigsz, F. and 8z-Nagy, B. (1955). Functional Analysis. Ungar, New York.
[19] Rusin, H. (1950). Consistency of maximum likelihood estimation in the explosive case.
Statistical Inference in Dynamic Economic Models. Cowles Commission Mono-
graph No. 10, Wiley, New York.



