THE EXIT DISTRIBUTION OF AN INTERVAL FOR COMPLETELY ASYMMETRIC STABLE PROCESSES¹

BY SIDNEY C. PORT

University of California, Los Angeles

1. Main results. Let X_t be the stable process on the line R having exponent $\alpha \neq 1$ and log characteristic function

$$(1.1) \qquad \log E \exp \left[i\theta(X_t - X_0) \right] = -t |\theta|^{\alpha} \left[1 - i \operatorname{sgn}(\theta) \tan(\frac{1}{2}\pi\alpha) \right]$$

We will assume that X_t is a version of the process that is a standard Markov process. Let a < b and let $\tau = \inf\{t > 0 : X_t \notin (a, b)\}$ be the first exit time from the open interval (a, b). Our primary purpose in this note is to explicitly compute the distribution of X_t as well as the related Green's function of R - (a, b).

The results we obtain here are new for $\alpha > 1$. For $\alpha < 1$ the distribution of X_{τ} was first computed by Dynkin [2] and by a different method by Ikeda and Watanabe [3]. For the sake of completeness we will show how the potential theoretic methods used here also yield a very easy derivation for the case $\alpha < 1$. The results we obtain here should be compared with those of Blumenthal, Getoor, and Ray [1] for the isotropic case.

THEOREM 1. Let $\mu_x(dy) = P_x(X_\tau \in dy)$. If $\alpha < 1$, then μ_x is the unit mass at x if $x \notin [a,b)$, while for $x \in [a,b)$

(1.2)
$$\mu_{x}(dy) = (\sin \pi \alpha/\pi) [(b-x)/(y-b)]^{\alpha} (y-x)^{-1}, \qquad y > b$$
$$= 0, \quad elsewhere.$$

On the other hand if $\alpha > 1$ and $x \in (a, b)$

(1.3)
$$\mu_x(\{a\}) = [(b-x)/(b-a)]^{\alpha-1}$$

(1.4)
$$\mu_{x}(dy) = \pi^{-1} \sin \left[(\alpha - 1)\pi \right] \left[(b - x)/(y - b) \right]^{\alpha - 1}.$$

$$(y - x)^{-1} \left[(x - a)/(y - a) \right], \qquad y > b$$

$$= 0, \qquad y \notin \{a\} \cup [b, \infty).$$

For $x \notin (a, b)$, $\mu_x(dy)$ is the unit mass at x.

Let B be a Borel subset of (a, b). The Green's function of R-(a, b) is the function G(x, y) such that

$$E_x \int_0^\tau 1_B(X_t) dt = \int_B G(x, y) dy,$$

where 1_B is the indicator function of B.

Received September 18, 1968.

¹ The preparation of this paper was partially supported by National Science Foundation Gran GP-8049.

39

Theorem 2. For $\alpha < 1$,

(1.5)
$$G(x, y) = (\Gamma(\alpha))^{-1} \cos(\frac{1}{2}\pi\alpha)(y - x)^{\alpha - 1} \qquad a \le x < y < b$$
$$= 0, \qquad elsewhere.$$

For $\alpha > 1$, G(x, y) = 0 if x or $y \notin (a, b)$. If $x, y \in (a, b)$ then

(1.6)
$$G(x,y) = (\Gamma(\alpha))^{-1} \sin(\frac{1}{2}\pi(\alpha - 1)).$$

$$\{(y-a)^{\alpha-1} [(b-x)/(b-a)]^{\alpha-1} - (y-x)^{\alpha-1} \}, \qquad a < x < y < b$$

$$= (\Gamma(\alpha))^{-1} \sin(\frac{1}{2}\pi(\alpha - 1))(y-a)^{\alpha-1} [(b-x)/(b-a)]^{\alpha-1},$$

$$a < y < x < b.$$

From G(x, y) one may, in principle, compute all of the moments of τ by means of the formula

(1.7)
$$E_x \tau^n = n! \int_a^b \cdots \int_a^b G(x, x_1) \cdots G(x_{n-1}, x_n) dx_1 \cdots dx_n.$$

In particular for $x \in (a, b)$,

(1.8)
$$E_{x}\tau = (\Gamma(\alpha+1))^{-1}\cos(\frac{1}{2}\pi\alpha)(b-x)^{\alpha}, \qquad \alpha < 1$$
$$= (\Gamma(\alpha+1))^{-1}\sin(\frac{1}{2}\pi(\alpha-1))(x-a)(b-x)^{\alpha}, \qquad \alpha > 1.$$

Let $\tau' = \inf\{t > 0 : X_t > b\}$. By letting $a \to -\infty$ in (1.2) and (1.4) we obtain the density of the distribution of X_t . Thus for x < b and y > b

(1.9)
$$P_{x}(X_{\tau'} \in dy) = \pi^{-1} \sin(\pi \alpha) [(b-x)/(y-b)]^{\alpha} (y-x)^{-1}, \qquad \alpha < 1$$
$$= \pi^{-1} \sin(\pi \alpha) [(b-x)/(y-b)]^{\alpha-1} (y-x)^{-1}, \qquad \alpha > 1.$$

The Levy measure $M(d\xi)$ of the process X_t is concentrated on $(0, \infty)$. Consequently, the only jumps the process can have must be in the positive direction. For $\alpha < 1$, $X_t - X_0$ is strictly increasing while for $\alpha > 1$, $X_t - X_0$ decreases only in a continuous manner.

Let $T = \inf \{t > 0 : X_t \in (a, b)\}$ be the first entrance time of (a, b). From the above facts it is easy to see that the distribution of X_T is as follows.

COROLLARY 1. Let $H(x, dy) = P_x(X_T \in dy; T < \infty)$. Then for $\alpha < 1$ H(x, dy) is the unit mass at x if $x \in [a, b)$, and

(1.10)
$$H(x, dy) = \pi^{-1} \sin(\pi \alpha) [(a-x)/(y-a)]^{\alpha} (y-x)^{-1} dy, \qquad x < a, a \le y \le b$$

= 0 $\qquad x > b.$

For $\alpha > 1$, H(x, dy) is the unit mass at x for $x \in [a, b]$. Let $I_b(dy)$ be the unit mass at b. For $\alpha > 1$, and let $a \le y \le b$. Then

(1.11)
$$H(x, dy) = \pi^{-1} \sin \pi (\alpha - 1) [(a - x)/(y - a)]^{\alpha - 1} (y - x)^{-1} dy$$

$$+ P_x(X_{\tau'} > b) I_b(dy), \qquad x < a,$$

$$= I_b(dy), \qquad x > b.$$

For $\alpha > 1$ the distribution of X_T was derived in [4] by an argument similar to that used to derive that of X_t . However, the formula given there was more complicated than that in (1.11). [However, the change of variable $(t-x)/(y-t) \rightarrow s$ in (3.1) of [4] will yield the same formula as (1.11).]

2. Proofs.

Let p(t,x) be the density of $X_t - X_0$. For $\lambda > 0$ set $p^{\lambda}(x) = \int_0^\infty e^{-\lambda t} p(t,x) dt$ and set $H^{\lambda}(x,dy) = E_x(e^{-\lambda t}, X_t \in dy)$. Then for any Borel set B the first passage relation yields

(2.1)
$$\int_{B} \left[p^{\lambda}(y-x) - \int_{(a,b)^{c}} H^{\lambda}(x,dz) p^{\lambda}(y-z) \right] dy$$
$$= \int_{0}^{\infty} e^{-\lambda t} P_{x}(\tau_{a} > t, X_{t} \in B) dt.$$

It follows that the measure on the right hand side has an upper semi-continuous density $G^{\lambda}(x, y)$ satisfying the relation

$$(2.2) p^{\lambda}(y-x) = \int_{(a,b)^c} H^{\lambda}(x,dz) p^{\lambda}(y-z) = G^{\lambda}(x,y).$$

It is here that we must separate the case $\alpha < 1$ (transient case) from the case $\alpha > 1$ (recurrent case).

For $\alpha < 1$ it is known (See [5], Eq. (1.9)), where however the factor $(1 + h^2)^{-1}$ was omitted from the right hand side) that $p^{\lambda}(x) \uparrow g(x)$, $\lambda \downarrow 0$ where

$$g(x) = (\Gamma(\alpha))^{-1} \cos(\frac{1}{2}\pi\alpha)x^{\alpha-1}, \qquad x > 0$$

= 0 \qquad x < 0.

Since

$$\int_{(a,b)^c} H^{\lambda}(x,dz) p^{\lambda}(y-z) = E_x \left[e^{-\lambda \tau} p^{\lambda}(y-X_{\tau}) \right] \uparrow E_x \left[g(y-X_{\tau}) \right]$$

we see that $G^{\lambda}(x, y) \to G(x, y) < \infty$ and

$$g(y-x) - \int_{(a,b)^c} \mu_x(dz)g(y-z) = G(x,y).$$

Now as the process X_t can only move to the right, $\mu_x(dz)$ is concentrated on $[b, \infty)$. From this, and the fact that g(x) = 0 for $x \le 0$, it follows that G(x, y) = g(y - x) for $a \le x < y < b$ and G(x, y) = 0 elsewhere. Thus we obtain the integral equation

$$(y-x)^{\alpha-1} = \int_{[b,y]} \mu_x(dz)(y-z)^{\alpha-1}, \qquad a \le x < b, y > b.$$

This equation has a unique solution given by

$$\begin{split} \Gamma(\alpha)\Gamma(1-\alpha)\mu_x([0,t]) &= \int_b^t (y-x)^{\alpha-1}(t-y)^{-\alpha} \, dy \\ &= \Gamma(\alpha)\Gamma(1-\alpha) - \int_a^b \left[(y-x)/(t-y) \right]^{\alpha-1}(y-x)^{-1} \, dy \\ &= \Gamma(\alpha)\Gamma(1-\alpha) - \int_0^{(b-x)/(t-b)} s^{\alpha-1}(1+s)^{-1} \, ds. \end{split}$$

Thus

$$\mu_{x}(dt) = \left[\Gamma(\alpha)\Gamma(1-\alpha)\right]^{-1} \left[(b-x)/(t-b)\right]^{\alpha} (t-x)^{-1} dt$$

$$= \pi^{-1} \sin(\alpha \pi) \left[(b-x)/(t-b)\right]^{\alpha} (t-x)^{-1} dt, \qquad t > b, \ a < x < b.$$

We now turn our attention to the case $\alpha > 1$ which is more complicated. Let $A^{\lambda}(x) = p^{\lambda}(0) - p^{\lambda}(x)$. Then we may rewrite (2.1) as

(2.3)
$$A^{\lambda}(y-x) - \int_{(a,b)^c} H^{\lambda}(x,dz) A^{\lambda}(y-z)$$
$$= -G^{\lambda}(x,y) + \lambda p^{\lambda}(0) \int_0^\infty e^{-\lambda t} P_x(\tau > t) dt.$$

Let

$$A(x) = (\Gamma(\alpha))^{-1} \sin(\frac{1}{2}\pi(\alpha - 1))x^{\alpha - 1}, \qquad x > 0$$

= 0 \qquad x \leq 0.

It was shown in [4] that $A^{\lambda}(x) \to A(x)$ uniformly on compacts, and that $G^{\lambda}(x,y) \uparrow G(x,y) < \infty$ as $\lambda \downarrow 0$. It was also shown that G(x,y) = 0 if x or $y \notin [a,b]$. Since $\lambda p^{\lambda}(0) = \Gamma(1-1/\alpha)\lambda^{1/\alpha} \to 0$ as $\lambda \downarrow 0$ and $E_x \tau < \infty$ it follows from (2.3) that

$$A(y-x) - \lim_{\lambda \to 0} \int_{(a,b)^c} H^{\lambda}(x,dz) A^{\lambda}(y-z) = -G(x,y).$$

The Levy measure of X_t is $M(d\xi) = \xi^{-(\alpha+1)} d\xi$, $\xi > 0$ and $M(d\xi) = 0$, $\xi < 0$. Thus X_t can jump only to the right and must move continuously to the left. Hence both $H^{\lambda}(x,dz)$ and $\mu_x(dz)$ are concentrated on $\{a\} \cup [b,\infty)$. Since $A^{\lambda}(x)$ and A(x) are continuous and $H^{\lambda}(x,dz)$ converge weakly to $\mu_x(dz)$ it follows from (2.3) that for any r > b

(2.4)
$$A(y-x) - \mu_x(\{a\})A(y-a) - \int_{[b,r]} \mu_x(dz)A(y-z) = -G(x,y) + \lim_{\lambda \downarrow 0} \int_{(r,\infty)} H^{\lambda}(x,dz)A^{\lambda}(y-z).$$

Simple computations show that there are constants K_1 and K_2 such that for all $\lambda \ge 0$ and $x \in R$, $|A^{\lambda}(x)| \le K_1 + K_2|x| = \varphi(x)$. By Theorem 1 of [3] we then obtain that

$$\begin{split} \int_{(r,\infty)} H^{\lambda}(x,dz) \left| A^{\lambda}(y-z) \right| &= \int_{a}^{b} G^{\lambda}(x,w) \, dw \int_{t}^{\infty} M(dz-w) \left| A^{\lambda}(y-z) \right| \\ &\leq \int_{a}^{b} G(x,w) \, dw \int_{r}^{\infty} \left| z-w \right|^{-(\alpha+1)} \varphi(y-z) \, dz \\ &= O(r^{1-\alpha}). \end{split}$$

Thus $\lim_{r \uparrow \infty} \lim_{\lambda \downarrow 0} \int_{(r,\infty)} H^{\lambda}(x,dz) |A^{\lambda}(y-z)| = 0$, and consequently from (2.4) we obtain

$$(2.5) A(y-x) - \mu_x(\{a\})A(y-a) - \int_{[b,\infty)} \mu_x(dz)A(y-z) = -G(x,y).$$

In particular for y > b we obtain an integral equation for $\mu_x(dy)$.

$$(2.6) (y-x)^{\alpha-1} - \mu_x(\{a\})(y-a)^{\alpha-1} = \int_b^y \mu_x(dz)(y-z)^{\alpha-1}, y > b, x \in (a,b).$$

This equation has a unique solution. To solve it let $\alpha - 1 = \beta$ and $f_x(z) dz = \mu_x(dz)$, $z \ge b$. Then

$$\begin{split} &\Gamma(\beta)\Gamma(1-\beta)\int_{b}^{t}f_{b}(z)\,dz\\ &=\int_{b}^{t}\left[(y-x)^{\beta-1}-\mu_{x}(\{a\})(y-a)^{\beta-1}\right](t-y)^{-\beta}dy\\ &=\left[1-\mu_{x}(\{a\})\right]\Gamma(\beta)\Gamma(1-\beta)\\ &-\int_{x}^{b}\left[(y-x)/(t-y)\right]^{\beta}(y-x)^{-1}dy+\mu_{x}(\{a\})\int_{a}^{b}\left[(y-a)/(t-y)\right]^{\beta}(y-a)^{-1}dy\\ &=\left[1-\mu_{x}(\{a\}\right]\Gamma(\beta)\Gamma(1-\beta)\\ &-\int_{0}^{(b-x)/(t-b)}s^{\beta-1}(1+s)^{-1}ds+\mu_{x}(\{a\})\int_{0}^{(b-a)/(t-b)}s^{\beta-1}(1+s)^{-1}ds. \end{split}$$

Thus

(2.7)
$$f_x(t) = \pi^{-1} \sin(\pi \beta) [((b-x)/(t-b))^{\beta} (t-x)^{-1} - \mu_x(\{a\}) ((b-a)/(t-b))^{\beta} (t-a)^{-1}].$$

However $\mu_x(\{a\})$ is the same as the probability that the two point set $\{a,b\}$ is first hit at a. From results in [4] we obtain that

(2.8)
$$\mu_{x}(\lbrace a \rbrace) = \lceil (b-x)/(b-a) \rceil^{\beta}.$$

Substituting this into (2.7) yields

(2.9)
$$f_x(t) = \pi^{-1} \sin(\pi \beta) [(b-x)/(t-b)]^{\beta} (x-a) [(t-x)(t-a)]^{-1},$$

 $t > b, a < x < b.$

This establishes Theorem 1.

To establish Theorem 2, note that (2.5) shows that for $\alpha > 1$

$$G(x, y) = \mu_x(\{a\})A(y-a) - A(y-x), \qquad a < x < y < b$$

= $\mu_x(\{a\})A(y-a), \qquad a < y < x < b;$

and the theorem follows.

REFERENCES

- [1] BLUMENTHAL, R., GETOOR, R., and RAY, D. (1961). On the distribution of first hits for symmetric stable processes. *Trans. Amer. Math. Soc.* 99 540–554.
- [2] DYNKIN, E. B. (1961). Some limit theorems of independent random variables with infinite mathematical expectation. Select. Transl. Math. Statist. Prob. 1 171-178. American Mathematical Society, Providence.
- [3] IKEDA, N. and WATANABE, S. (1962). On some relations between the harmonic measure and the Levy measure for a certain class of Markov processes. J. Math. Kyoto Univ. 2 79–95.
- [4] PORT, S. C. (1967). Hitting times and potentials for recurrent stable processes. J. D'Analyse Math. 20 371-395.
- [5] PORT, S. C. (1968). A remark on hitting places for transient stable processes. Ann. Math. Statist. 39 365-371.