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ASYMMETRIC STABLE PROCESSES'

By SiDNEY C. PorT
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1. Main results. Let X, be the stable process on the line R having exponent « # 1
and log characteristic function

(1.1 log Eexp [i0(X,— X,)] = —t|0]|* [1—isgn(6) tan(3n)]

We will assume that X, is a version of the process that is a standard Markov process.
Let a<b and let 7 =inf {t > 0: X,¢(a,b)} be the first exit time from the open
interval (a, b). Our primary purpose in this note is to explicitly compute the distri-
bution of X, as well as the related Green’s function of R—(a, b).

The results we obtain here are new for « > 1. For « < 1 the distribution of X, was
first computed by Dynkin [2] and by a different method by Ikeda and Watanabe
[3]. For the sake of completeness we will show how the potential theoretic methods
used here also yield a very easy derivation for the case a < 1. The results we obtain
here should be compared with those of Blumenthal, Getoor, and Ray [1] for the
isotropic case.

THEOREM 1. Let p(dy) = P(X,€dy). If a < 1, then u. is the unit mass at x if
x ¢ [a, b), while for x € [a, b)

1.2) 1(dy) = (sinna/m)[(b—x)/(y—b)]*(y—x)"%, y>b
=0, elsewhere.

On the other hand if « > 1 and x € (a, b)

(1.3) m({a}) = [(b-x)/(b-a)]*"*
(1.4 pdy) = o~ tsin[(a— Dr][(b—x)/(y—b)]*~*.
=x)"[x-a)(y-a)], y>b
=0, y¢{a}u[b, c0).

For x ¢(a,b), u(dy) is the unit mass at x.
Let B be a Borel subset of (@, b). The Green’s function of R—(a, b) is the function
G(x, y) such that

E, 5 15(X,) dt = [5G(x,y) dy,
where 15 is the indicator function of B.
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THEOREM 2. Fora <1,
(1.5) G(x,y) = (T'(@))~ ! cos Gma)(y —x)* ! as<x<y<b
=0, elsewhere.
Fora>1,G(x,y)=0ifxoryé¢(a,b). If x,ye(a,b) then
(1.6)  G(x,y) = (T (x))” 'sin Gm(ae—1)).
(U= [G-0lb-a)F ' ~p=x*"",  a<x<y<b
= ([(@) ™ sin(Gn(e— D)y —a)* ' [(b-x)/(b—a)] %,
a<y<x<b.

From G(x, y) one may, in principle, compute all of the moments of ¢ by means of
the formula

@n E.t"=n!fl- [ G(x,x) ** G(xp-1, X )dXy  * * dx,.

In particular for xe(a, b),

(1.8) E.t = ([(x+1))"* cos Gma)(b—x)?, a<l
= (T(a+1))" ! sin Gn(a—1))(x—a)(b—x)", o> 1.

Let ¢ =inf{t > 0: X, > b}. By letting a > — o0 in (1.2) and (1.4) we obtain the
density of the distribution of X.. Thus for x <bandy > b
1.9 P(X.edy)=n""sin(n)[(b—x)/(y—b)]"(y—x)"", a<1
=z~ 'sinn(a—D[(b—x)/(y—b)]*"'(y—x)"", o> 1.
The Levy measure M(d¢) of the process X, is concentrated on (0, c0). Conse-
quently, the only jumps the process can have must be in the positive direction. For
a <1, X,— X, is strictly increasing while for « > 1, X,— X, decreases only in a
continuous manner.

Let 7= inf {t > 0 : X,e(a,b)} be the first entrance time of (@, b). From the above
facts it is easy to see that the distribution of X is as follows.

COROLLARY 1. Let H(x,dy) = P(Xpedy; T < ). Then for a <1 H(x,dy) is
the unit mass at x if x € [a, b), and

(1.10) H(x,dy) ==~ 'sin(n)[(a —x)/(y —a)]*(y—x) " dy, x<a,a<y<bh
=0 ‘ x> b.

For a > 1, H(x, dy) is the unit mass at x for x € [a, b]. Let I,(dy) be the unit mass at b.
Fora> 1,andleta <y < b. Then

(1.11) H(x,dy) = n~'sinn(a—1)[(a—x)/(y—a)]*" '(y—x)"'dy
# +P (X, > b)I(dy), x <a,
= I,(dy), x>b.
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For o > 1 the distribution of X was derived in [4] by an argument similar to that
used to derive that of X,. However, the formula given there was more complicated
than that in (1.11). [However, the change of variable (¢ —x)/(y—1) — s in (3.1) of [4]
will yield the same formula as (1.11).]

2. Proofs.

Let p(t, x) be the density of X,—X,. For 1> 0 set p*(x) = [§ e ~*p(t,x)dt and
set H*(x,dy) = E(e”**, X,edy). Then for any Borel set B the first passage relation
yields

(21) IB [p;.(y _x) - j(a,b)c H;'(x, dz)p)'(y —_ z):l dy
= [¥ e MP (1, > t,X,eB)dt.

It follows that the measure on the right hand side has an upper semi-continuous
density G*(x, y) satisfying the relation

22 Py —X) = Japye H¥(x, d2)p*(y —2) = G*(x, y).
It is here that we must separate the case « < 1 (transient case) from the case a > 1
(recurrent case).

For a <1 it is known (See [5], Eq. (1.9)), where however the factor (1+/4%)~" was
omitted from the right hand side) that p*(x) 1 g(x), 4 | 0 where

g(x) = ([(@))™ ! cos (3ma)x*~ 1, x>0
=0 x<0.
Since
j(a,b)c Hl(x: dZ)PA(y - Z) = Ex[e— Atp;.(y - Xt)] T Ex[g(y - Xt)]
we see that G*(x, y) = G(x, y) < oo and
9V —=X) = (a,0yc ux(d2)g(y — 2) = G(x, y)-

Now as the process X, can only move to the right, u.(dz) is concentrated on [b, o).
From this, and the fact that g(x) = 0 for x < 0, it follows that G(x, y) = g(y—x) for
a £ x <y < band G(x,y) = 0 eisewhere. Thus we obtain the integral equation

(y_x)a—l =j[b,y]‘tx(dz)(y_z)a—la a éx <b,,V> b
This equation has a unique solution given by
T()I(1 —o)u ([0, £]) = [ (y=x)"'(t—y)~*dy
=T —a)— 2 [(=x)/ =N (r=x)"dy
= D)1 —a)— [P (1 +5) ™ ds.
Thus
p(dt) = [CT(1—0)] ™ '[(b—x)/(t=Db)J(t—x) " dt
=z~ Lsin (an)[(b—x)/(t—b)]*(t—x)" ' dt, t>b,a<x<b.
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We now turn our attention to the case « > 1 which is more complicated. Let
A*(x) = p*(0) — p*(x). Then we may rewrite (2.1) as
(23) A —X)=[ape HH(x,d2) ANy —2)
= —GYx,y)+p*0)[§ e *P,(r > f)dt.
Let
A(x) = (T(@)) ! sin (3n(e—1))x*"1, x>0
=0 x =20.
It was shown in [4] that A*(x) » A(x) uniformly on compacts, and that

G*(x,)1 G(x,y) < oo as 4] 0. It was also shown that G(x,y) = 0 if x or y¢[a,b].
Since Ap*(0) = I'(1 —1/a)A'/* - 0as A | 0 and E,r < oo it follows from (2.3) that

A(y—x)— limuo j(a,b)c Hz(x, dz)A‘(y —z)= —G(x,y).

The Levy measure of X, is M(d¢) = ¢~ @* D d¢, & > 0 and M(d¢) = 0,¢ < 0. Thus
X, can jump only to the right and must move continuously to the left. Hence both
H*(x,dz) and p,(dz) are concentrated on {a} U [b, ). Since 4*(x) and A(x) are
continuous and H*(x, dz) converge weakly to u, (dz) it follows from (2.3) that for
any r>b
24 A@-x)—m{aDAY—a) =i s (d2)A(y—2)

= —G(x, y)+lim,; o j(r,oo) H*(x,dz)AX(y —z).
Simple computations show that there are constants K; and K, such that for all
A= 0and xeR, |A*(x)| £ K, +K,|x| = ¢(x). By Theorem 1 of [3] we then obtain
that

§ry HA(x, d2) | AH(y —2)| = £ G*(x, w) dw ;> M(dz —w) | A*(y —2)|
< [2G(x,wydw [P |z—w| " Vo(y—2z)dz
=0(@r'™".
Thus lim,;,, lim, o (.0, H*(x,dz)|4’(y—2)| =0, and consequently from (2.4)
we obtain
@2.5) A(—x)—p({aDAY =) = [0y 1 (d2)A(y — 2) = = G(x, y).
In particular for y > b we obtain an integral equation for p.(dy).
26  (-x)*"'—p({ahy—a)r ' = Iud)y—2)""", y > b, xe(a,b).

This equation has a unique solution. To solve it let «—1 = f and f(z)dz = p(dz),
z 2 b. Then
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LB —B) [ufy(2) dz
= [ =x "= ({aDy—ay "Wt~y "Pdy
=[1—u,({aH]TBI1-p)
—BLo=0[t=»Py—x) " dy+p{a}) i [ —a) =] (y—a) "' dy
= [1-p,({a}JTBTA-P)
— [ F=Y] +5) s+ p, ({a}) [P (1 45) " ds.
Thus
Q@7 fi(®=n"tsin@BL(b—x)/(t—-b)(t—x)""
— (e (b= )t = b)Yt —a)~"].

However u,({a}) is the same as the probability that the two point set {a,b} is first
hit at a. From results in [4] we obtain that

(2.8 1 ({a}) = [(b-x)/(b-a)T.
Substituting this into (2.7) yields
(2.9) fu(t) =z sin(@B)[(b~x)/(t—b)P(x~a)[(t—x)t—-a)] ™",

t>b,a<x<b.

This establishes Theorem 1.
To establish Theorem 2, note that (2.5) shows that for o > 1

G(x,y) = u,({ahA(y—a)— A(y —x), a<x<y<b
= pu,({ahA(y—a), a<y<x<b;

and the theorem follows.
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