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A NECESSARY AND SUFFICIENT CONDITION THAT FOR
REGULAR MULTIPLE DECISION PROBLEMS OF
TYPE I EVERY UNBIASED
PROCEDURE HAS MINIMAX RISK!

By WILHELMINE STEFANSKY

University of California, Berkeley

1. Introduction and summary. We shall use the notation of [1], Sections 2 and 3.
Briefly, multiple decision problems (m.d.p.’s) of Type 1 have the following
formulation. On the basis of the outcome of a random variable (rv) X, which takes
on values in the space %, one element of the finite decision space & =
{dy, dy, **+, d,} is to be selected. The rv X has a density p, w.r.t. some o-finite
measure p for some 0eQ. The parameter space Q is partitioned into (m+1)
disjoint subsets Q =Q,u---uQ,, and Q, U--UQ,, is denoted by Q'. The loss
function L:Q'x2 — [0, w0) with L(O,d)=w;; =0 for d=d; and 0€Q; (i=1,
«++,m;j=0, -+, n)is constant over each Q; and is not defined for Q. Type 1
m.d.p.’s satisfy the following assumptions: (i) Q < R®, (i) [Q{]n N [Q,]=
Q,’ # 0, where [ ] denotes closure w.r.t. the usual topology, (iii) for every test
function @, Ey[¢(X)] is continuous in 6. A m.d.p. of Type 1 will be called regular,
if it satisfies the additional assumption (iv) for every test function ¢, E, [¢(X)] =0
for all 6,eQ,’ implies that E,[(X)] =0 for all 0eQ’.

A procedure 6 = §(¢@,, ***, ¢,) is unbiased if and only if for i=1, -, m the
following inequalities hold

)] Y ownj Bl (X)] = Y -0 wi; Eo[@(X)], 0eQ;; h=1,---,m.

Let W(M) denote the class of all unbiased (minimax risk) procedures for a m.d.p.
of Type 1. Procedures with the same risk function will be identified. Let w.; denote
the point (wy;, - * -, w,,;) of R™ and let S denote the convex hull of w.;(j =0, - -, n).
Finally, let E denote the set of points ee S withe; =+ =e¢,,.

In [1] Theorem 4.1 it was proved that for problems of Type 1, a sufficient
condition for W < M is that there exists a point ee E that is both a minimax and a
maximin point of S. This note establishes the following result.

THEOREM. For regular problems of Type 1, necessary and sufficient for W < M
is that one of the following conditions holds: (i) E = 0, (ii) E consists of exactly one
point e and this is a minimax point of S.

The following non-trivial example shows that for a regular m.d.p. of Type 1 the
sufficient condition of Theorem 4.1 [1] is not necessary. Take m =3, n=2,
wo=0(@, =3,0),w.,=(-3,3,0),w,=(6, —4,06).

Then e=(0,0,0)=4iw.,+iw., is the unique convex representation with
all coordinates equally large. Moreover, e is a minimax point, so that condition
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(ii) of the Theorem is satisfied, but e is not a maximin point, since the point
3w. /5+2w.,/5 = (3/5, 1/5, 12/5) has all coordinates strictly larger than zero.

2. Proof of the theorem.

Necessity. First we shall show that W < M implies that every point of E is a
minimax point of S. If E = @, there is nothing to prove. Therefore, suppose that e
is an arbitrary point of E with some convex representation )}_,p;w.;. The
constant procedure 6* = §*(po*, - -, @,*) with ¢;*(x) =p; (j=0, -, n)is un-
biased, because equality holds in (1). By assumption W = M, so that §* also has
minimax risk. Since for all 0,€Q,’, Eg [@;*(X)] = p;, it follows from Theorem 3.1
(ii) [1] that e is a minimax point of S. Next we need to show that if every point of
E is a minimax point of S and E # 0, then condition (ii) of the Theorem holds.
Suppose e and e’ both belong to E. The common value*of the coordinates of one
point must be strictly smaller than the common value of the coordinates of the
other point, so that it cannot be the case that both e and e’ are minimax points of S.

Sufficiency. If E = 0, then Corollary 4.1 [1] implies that W =0, so that W < M
holds trivially. Therefore, we may assume that E consists of exactly one point e
and that this is a minimax point of S. Let J = {j,, ", j,} denote the collection of
indices j such that there is a convex representation ) ;_op,w., of e with p; > 0.
We need an auxiliary m.d.p. of Type 1, all of whose symbols will be provided with
a star. This auxiliary problem is obtained from the original one by omitting all
decisions d; from 2 for which j¢J. Formally we have n* =r, d* =d,;, , wj, =
wii=1,-,m;h=0,,r). Let S* denote the convex hull in R™ of the points
wh (h=0,--,r). Let W*(M*) denote the class of all unbiased (minimax risk)
procedures for the auxiliary problem. In part (a) we show that e is a minimax
point of S*, and in (b) that e is also a maximin point of S*. Then it follows from
Theorem 4.1 [1] that W* < M*. But every procedure for the auxiliary problem
corresponds in a natural way to a procedure for the original problem: if 6* =
0* (po*, -+, ¢,*) is a procedure for the auxiliary problem, then the corresponding
procedure 6 = i(6*) = 6(¢po, ***, @,) is defined by ¢; =0 if j¢J and ¢; = ¢@,* if
j=Jjs€J. Then, of course, W* <'M* implies i(W*) < i(M*). In (c) we show that
i(M*) = M, and in (d) that i(W*) = W, which completes the proof. Part (d) is the
only part of the proof in which assumption (iv) is used.

(a) e is a minimax point of S*. This follows straightforwardly from the facts that
eeS* < Sand e is a minimax point of S.

(b) e is a maximin point of S*. We shall show that if e is not a maximin point of
S*, then there exists a point s*e S* all of whose coordinates are strictly smaller
than the common value é of the coordinates of e, so that e cannot be a minimax
point of S*. Since this contradicts (a), it follows that e is a maximin point of S*.
The point s* can be constructed as follows. From the definition of J it is seen that
there exists a convex representation Y j_,p,w} of e such that p,>0 (h=0,
-+, r); for example, one can take an average of the various convex representations.
In particular, ¢ = min(p,) > 0. If e is not a maximin point of S*, then there exists
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a point s" =Y 1_opy/w.,eS* whose smallest coordinate is larger than é. Let
s* =(1+e)e—es' =Y h_o [(1+8)p,—ep, Iwh = Y 5o py*w?, . The point s* belongs
to S* because Y j_op,* =1 and p,* = (1+¢)p,—ep, > p,—e =0 by definition
of &. Since s* = e+¢(e—s’) and every coordinate of e—s’ is less than zero, every
coordinate of s* is strictly less than é.

(c) i(M*) = M. From Theorem 3.1 [1] it follows that the minimax risk for both
the original and the auxiliary problem is equal to é. If §* = 5*(p,*, -+ -, ¢,*) has
minimax risk for the auxiliary problem, then for all 8, R(8, i(6*)) = R*(0, 6*) < ¢,
so that i(6*) has minimax risk for the original problem.

(d) i(W*) = W. If 6*e W*, then it is easy to verify that (1) holds for i(5%), so
that i(W*) c W.If 6 = 6(pq, ** , ¢,) € W then by Corollary 4.1 [1], for all 8,€Q,/,
Yioow.; Egl@ {X)] = e, which implies that for all 8,eQ,’, Ey [0;(X)] =0 for all
J¢J. Then by assumption (iv), Eg[¢(X)] =0 for all j¢J and for all 0eQ’. Since
procedures with the same risk function are identified, we may assume that ¢ (x) = 0
for all j¢J, so that 6* = 6*(po*, -, @,*) with @,*(x) = ¢, (x) for j,eJ is a
procedure for the auxiliary problem. It is easily verified that 5*e W* and that
0 = i(0*) so that W < i(W*). []
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