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1. In the theory of infinitely divisible (i.d.) distribution functions (df’s), it is well
known that a finite df (i.e. a df whose entire mass is concentrated on a finite
interval) cannot be i.d. unless it is degenerate. Different proofs of this result have
been given, most of them in connection with the investigation of one-sided df’s (see
[1], [3], [6], [7])- The purpose of the present note is to generalize the above state-
ment, i.e. the following question will be answered: How ‘‘close” can a non-
degenerate i.d. df F be to a finite df, or more precisely: How rapidly can the “tail”
T of F, given by T(x) = 1 — F(x)+ F(— x), converge to zero as x — oo if Fis a non-
degeneratei.d. df ?

2. THEOREM 1. If F is i.d., and if there exist constants a > 0 and o > 1 such that
T(x) = O[exp(—ax'**)] as x — oo, then F is degenerate.

If F is finite, the above hypothesis holds for any positive a; Theorem 1 therefore
generalizes the result mentioned in 1.

THEOREM 2. If F is i.d., non-degenerate, and if there exist constants a > 0 and
(0 < a £ 1) such that T(x) = Ofexp (—ax***)] as x = o, then F is normal.

PROOF OF THEOREMS 1 AND 2. By Theorem 7.2.4. ([4] page 142), the characteristic
function (ch.f.) f of F is an entire function of finite order p, < 1+a~ . Since F is
i.d., f has no zeros ([4] page 187), and therefore f(z) = exp(g(z)), where g denotes
the principal determination of logf, vanishing at z = 0.

By the definition of p, we have for every positive ¢

max|z|=r‘%g(z) = rrlaX|z|=r lOg lf(z)l
= 10gmax|z|=r|f(z)| é rpf e

for all sufficiently large r, hence by Theorem 1.3.4. ([2] page 3), g is a polynomial
and its degree is equal to p,. But a classical result due to Marcinkiewicz ([4]
page 147) states that the only ch.f.’s which have the form exp(g(z)), g being a
polynomial, are either exp (—az?+ibz) (normal law) or exp (ibz) (degenerate law)
with respective orders of 2, 1 or 0, and since p, < 14+a~!, the assertions of
Theorems 1 and 2 follow immediately.

COROLLARY 1. The only i.d. ch.f.’s which are entire functions of finite order are
the normal and the degenerate ch.f.

3. By using a different and slightly more involved method of proof, the hypo-
thesis of Theorem 2 can be weakened in the following way.
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THEOREM 3. If F is i.d., non-degenerate, and if there exist constants a > 0 and
8 > 1such that T(x) = O[exp (— ax(log x)°)] as x — oo, then F is normal.

If fis an entire function, its order p and, in case p 18 positive and finite, its type
7, are used to characterize its rate of growth ([2] page 8). For an entire function f
of infinite order, we will require the following concept of “form” A 1> which gives a
more precise description of the rate of growth of f:

logloglog M(r,
Ay = limsup 08 08 og MIr.J) (/)
oo logr

(0 = A, < 0). Here M(r, f) denotes as usual the maximum of | /(z)| for |z| = r.
We first state and prove the following

LeMMA. Let f(z) be an entire function which has no zeros, and let g(z) = logf(z).
Then, for any positive y, we have p, = yiff p; = 00 and A, = y.

PROOF OF LEMMA. If p, > 0, then p, = 00, because if f were of finite order, it
would follow as in the proof of Theorems 1 and 2 that g is a polynomial, i.e. py = 0.
If p; = oo, then we have by the definition of A, for every positive ¢

max , -, #9(z) = max,, -, log|f(2)|
= logmax|z|=r If(Z)I é 299 [rlf+£]

for all sufficiently large r. But since (for |z| < r) #g(z) < max, -, %g(z) (maximum
principle for harmonic functions), Carathéodory’s inequality ([2] page 2) can be
used to obtain

2r
max,, -, |9(z)| £ R~__—rmax|z|=R.@g(z) 0 <r<R).

It follows that for 2r = R sufficiently large
max]zl =r lg(z)l é 2 maxlzl =2r ‘%g(z)
< 2exp[(2r)**¥],

and therefore p, < 1+ ¢ for every positive ¢, i.e. Py = As.
On the other hand, we have

max,, -, |9(z)| 2 max,, -, #g(z)

= logmaxy, . |f(2)]

and therefore M(r, g) = log M(r, f), which implies that Py = As, ie. py= A,
thereby completing the proof of the lemma.

PrOOF OF THEOREM 3. It follows from the hypothesis of Theorem 3 and from
Lemma 9.1. ([5] page 1252) that F has an entire ch.f. f either of finite order or of
infinite order and form A, < 671, i.e. Ap < 1since é > 1. Since Fis non-degenerate,
it follows from Corollary 1 that either fis normal or p ;=00 and A, < 1. We will
show that the second possibility cannot occur.
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Let us therefore suppose that p, = oo. By Theorem 8.4.2. ([4] page 189), the
Kolmogorov canonical representation

logf(z) = g(z) = imz+[*2 (™ — 1 —izu)u™? dK(u)

is valid in the whole complex plane. Here m is a real constant, K a non-decreasing
bounded function, and the integrand is defined at # = 0 by continuity to be equal
to —4z%. As it follows from the proof of Theorem 8.4.2., we can interchange
differentiation and integration, so that
g"(z) = —[*2 ™ dK(u)

holds in the whole complex plane. Since f is non-degenerate, K cannot vanish
identically, and since f'is non-normal, K cannot concentrate its total mass at u = 0.
It follows that the entire function g’’ is (up to a constant factor) a non-constant
ch.f., and therefore its order p, . is at least equal to one (Theorem 7.1.3. [4] page 135).
But since differentiation does not change the order of an entire function ([2] page 13),
we have p, > 1, and the Lemma implies that 1, = 1, which contradicts the above
inequality for 4.

COROLLARY 2. There exist no i.d. ch.f.’s of infinite order and of form less than one.

4. Corollaries 1 and 2 imply that the only entire i.d. ch.f.’s f whose rate of growth
is smaller than the one determined by p, = c0 and A, = 1 (the Poisson law gives an
example of such a ch.f.) are the normal and the degenerate ch.f.’s. The situation
becomes completely different if we consider larger rates of growth.

THEOREM 4. For every A 2 1, there exist (infinitely many) i.d. df’s F whose ch.f.’s
[fare entire functions of infinite order and of form A.

PRrROOF. Let K be a df whose ch.f. k is an entire function of order 4 = 1. (This is
certainly possible because of Theorems 2.2.5 and 6.1 in [5].) It is then easy to verify
that

9(z) = [T2 (™~ 1—izu)u™* dK(u)

also represents an entire function whose order is, by the same reasoning as above,
equal to A, and it follows from the lemma that f(z) = exp(g(z)) is an entire i.d.
ch.f. of infinite order and form A.
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