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A NOTE ON SYMMETRIC BERNOULLI~
RANDOM VARIABLES!

By MoRrris L. EATON

University of Chicago
Consider independent random variables X, X,, - - - such that X; takes the values
+1 each with probability . If 6 = (6,,- - -, 6,) satisfies Y 7, 6,> = 1, let S,(0) =
10,X;and S, =n"*Y1X, Recently, Efron (1969) has shown that E(S,(6) )** <
ES,* for k = 1,2, and for all n. In the present note, sufficient conditions on a
continuously differentiable function f are given so that Ef(S,(0)) < Ef(S,) for all n.

This result is then used to derive probability bounds related to results of Hoeffding
(1963).

DerFiNiTION 1. Let a = (ay,"**,a,,) and b = (by,**,b,,) be real vectors. Reorder
the components of @ and b such thata;, 2 a;,, =2+ 2 a;,andb; =2 b;, =2+ 2 b;,.
Then, a majorizes b if and only if Y5  a;, =Y s_1b; for k=1,---,m—1 and

m g =3Y"__b.

a—lata Zaz—l Ja*

DEFINITION 2. A real-valued function ¢ defined on an open subset of R" which
has continuous first partial derivatives is called a Schur function if

Jdp 0¢p
1 ———20
o Ox; O0x;~
when x; > x; for i,j = 1,-++,n and x in the domain of ¢.

A result which relates Schur functions and one vector majorizing another is

THEOREM. Let C be an open symmetric convex set in R" and suppose ¢ is a Schur
JSunction on C which is a symmetric function of its arguments. If ae C majorizes
beC, then ¢(a) = ¢(b).

For a proof of this theorem, see Schur (1923) and Ostrowski (1952).

Now, let F be the set of all functions f on R to R which are continuously dif-
ferentiable and satisfy

©)) T A+D) = (= t+ D) +f' (1= A)—f'(—1=A)]
is non-decreasing in ¢ for ¢ > 0 and A = 0. Note that fe F is equivalent to

3) B[ (t+ W) =f (=t + W)]
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’

is non-decreasing for ¢ > 0 for all bounded symmetric random variables W. Also,
a useful sufficient condition that fe F is that

C)) tTHf(t+ D) —f'(—t+4)]
be non-decreasing in ¢ for ¢ > 0 and for all real A.

THEOREM 1. If fe F and if (0,2, - -,0,%) majorizes (&,%, ", &%), then

(%) Ef(S.(0)) = Ef(S,(9)).
ProOF. Define g on {n|n = (n,,"**,n,); n; >0} by
(6) 9(n) = Ef(Yin*X).

It will be shown that —g is a Schur function. Since g is a symmetric function of its
arguments, it is sufficient to verify (1) for i = 2 and j = 1. However,

09 Og - ,
@) 5’1‘—0—’1‘ = QM n)H T EX 0t = Xon D X A2 X+ W)
1 2

where W = Y7_3n*X, is a bounded symmetric random variable. Computing the
expectation on (X, X,), we find after some manipulation that

® 29_9% :(m*+nf)(nz*—nl*)E{f'(n1*+nz*+ W)=f'(=n=nt+W)
ony 0, 8(nyn2)* nd+nt
_f,(712%—711%+ W)"fl(_”zi‘l"h%"‘ W)}
’12*_’11%

which is non-negative for n, > n, since fe F. Hence —g is a Schur function. Since
the distribution of Y'7_, 6, X, is the same as the distribution of 7., |6, X;, the
theorem holds for any vectors 8 = (6,,*--,0,) and & = (£,,- -+, &,) which have no
components zero when (0,2, -, 0,%) majorizes (¢,2, -, £,2). However, when some
of the 0, or &, are zero, the conclusion follows from the continuity of f when
(6,%,+++,0,%) majorizes (£,2,- -+, ¢,2). This completes the proof.

COROLLARY 1. If fe F, then
9) Ef(S,(0)) < Ef(S,) and
(10) Ef(S,-1) = Ef(S,).

PROOF. If ; 2 0, i = 1,---,n are such that Yt n; = 1, then the vector (1,,"**,1,)
majorizes (1/n,: -, 1/n) and (9) follows. Choosing 6 = ((n—1)"%,--+,(n—1)7%,0)
in (9) shows (10) holds.

EXAMPLE 1. To obtain Efron’s (1969) result, let f(x) = x2* for k a positive integer.
That fe F is immediate from (4) and Theorem 1 holds.

ExaMPLE 2. Consider f(x) = e for a# 0. Again, verification of (4) is immediate
so fe F. From this example, it is clear that the function e®*+e~"*,b# 0 is also in F.
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THEOREM 2. If feF and if there exists a 6 >0 and a constant M such that
E|f(S)|'*® £ M for all n, then

1y Ef(S(0) = Ef(Z)
where Z has a unit normal distribution, and we assume that E(, f(Z)l) < +oo0.

PRrOOF. The continuity of f implies that f(S,) converges in distribution to f(Z).
Since E|[f(S,)|'*® £ M for all n, E|f(Z)| < + o0, and f(S,) converges in distribution
to f(Z), we conclude that Ef(S,) converges to Ef(Z). From Corollary 1, Ef(S,) is a
non-decreasing sequence and the conclusion follows.

The next result extends Theorem 2 to symmetric random variables taking values
in [—1,1]. Let Y;,---, Y, be independent symmetric random variables such that
|Y ,-| =< 1. It is clear that there exist independent random variables ¥, -, ¥V, and
X, ', X, such that 0 < V; £ 1, X, takes the values +1 each with probability 3,
and the distribution of Y; is that of ¥, X,. If 6 = (6,,"*",0,) satisfies } 6,> = 1, let
T,(6) = Y1 6, Y. Further, let

U, = @gf% if Y0212 >0,
=0 otherwise;
and note that
(12) T.(0) = .02V Yi-1 Ui X,

For ¢ =2 0 and fe F, let £, be defined by f.(x) = f(cx). Obviously, f.€ F for ¢ > 0 when
fePF.

THEOREM 3. Let fe F and assume
(i) for each c€(0, 1], f, satisfies the assumptions of Theorems 1 and 2
(ii) for each c€[0,1], Ef(Z) £ Ef(Z). Then

(13) Ef(T(0)) < Ef(2)

where Z has a unit normal distribution.

PRrOOF. From (12)

(14) Ef(T,(6)) = Ef (L6 V*)* Y U, X))
= E[E(f (RO V L UX) | Ve, -, V)]
< E[E((Q 02V D) |y, -+, VD] S Ef (D).

The first inequality follows from the application of Theorem 2 to f, with
c¢=(}0.2V»)* < 1and the second inequality follows from assumption (ii). This
completes the proof.
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COROLLARY 2. Let o > 0 and assume fE€F satisfies the assumptions of Theorem 3.
If £ 2 0 is symmetric and if f(x) 2 1 for |x| = o, then

(15) P{T,(0) 2 o} < $Ef(2).
ProOF. From the assumptions on f;

P{T,(0) 2 a} = }P{|T,(0)| 2 o} < IEA(T,(9)) < 1Ef(2),
the last inequality following from Theorem 3.

EXAMPLE 3. Let f(x) = (e** +e~*)/(e* +e~*"). Application of (15) yields

16 Ozaps— o

P{T(0) =z a} £ —=
(16) L0z <
for a > 0. (16) is useless for small values of « as the bound is greater than 1. Let o,
be the unique positive solution to 2 = e#** 4+ ¢~3%*/2, Then for « > oy, (16) is less
than 1.

ExXAMPLE 4. A somewhat more complicated bound can be given by choosing

F(x) = (" + e~ "% —2) /(" + e~ —2), h # 0. (14) then yields
.thal
. -1

(17 P{T,(0) 2 o} < miny, 7 —— .
By setting 4 = 1, the bound in (17) is a uniform improvement on (16) for & > a.

The inequalities (16) and (17) are related to results by Okamoto (1958) and
Hoeffding (1963). It seems likely that uniform improvements on (17) are possible
by a more clever choice of fin (15). However the author has been unable to do so.

Acknowledgment. I wish to thank the referee for many helpful suggestions which
greatly improved this paper. In particular, the referee’s comments led to Theorem 3
and to the inequality (17).
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