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0. Introduction and summary. In a recent paper Raktoe [1969] has presented a
new approach and also a generalized technique of combining elements from
distinct finite fields. The results however were related only to distinct prime fields,
i.e. each of the Galois fields in question consisted of residue classes modulo a
prime. This paper solves the problem of combining elements for the most general
case, i.e. the fields are not necessarily based on distinct primes and they can be
prime powered.

1. Preliminaries and background. Let GF(p,"!), GF(p,"?), -+, GF(p,"'"),
GF(p,""), GF(p,"?), *+, GF(py"*%), -+, GF(p™"), GF(p™?), -+ , GF(p,") be
o = Y%=y t;) Galois fields, based on k distinct primes py, p,, ", pi. As is well
known, each GF(p;"") consists of residue classes of polynomials over the ring of
integers modulo an nj;-degree polynomlal P;(x) over GF(p;) and modulo the
prime p;,i=1,2,",t;,j=1,2,""", k. Flrst White and Hultquist [1965] and
more recently Raktoe []969] have solved the problem of combining elements from
the fields for the case £; = 1 and n;; = 1 for allj=1, 2, -+, k, i.e. for the case of k
distinct prime fields. In this paper we assume that ¢; = 1 and n;; = 1, i.e. we may
have more than one field based on the same prime and the fields may be prime
powered. This is the general combining problem, so that White and Hultquist’s
[1965] and Raktoe’s [1969] results will be special cases.

In order to facilitate the ensuing developments for the reader, we summarize
in the form of definitions, lemmas and theorems the main results obtained by
Raktoe [1969]. Thus, when R(p), (p = ]—I'}=1 pj, p;’s distinct), denotes the ring of
residue classes modulo p and I(w) denotes the ideal generated by the arbitrary
element w of R(p), then he has proved eight lemmas and two theorems and has
stated two definitions. These results are numbered alphabetically:

LEMMA a. The elements of the form a; = Hﬁ‘#jp,-—pj =c;~pj, (where c;=
H?;e ;D:) in the ring R(p) are prime to the number p and hence a j" exists in R(p),
forj=1,2,--- k.

LEMMA b. The elements of the form b; = cjra; ' =14p;ra;7Yj=1,2,-, kin
R(p) are idempotent.
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LEMMA c. The product b;- b = 0 in the ring R(p) if j # j*, j and j* taking on the
values 1,2, -, k.

LeEMMA d. The element b; of Lemma b generates the ideal 1(b;) in the ring R(p),
which annihilates the ideal I(b;) if j # j*, j and j* taking on the values 1,2, -, k.

LEMMA e. The ideal generated by the element p; in R(p) annihilates the ideal I(b;),
J=12k

LemMma f. The multiplicative identity element of the ideal I(b;) of Lemma d is
bj3j= ]323“'9k~

LEMMA g. The multiplicative identity element 1 of the ring R(p) is the sum of the
multiplicative identities of the 1(b,)s, i.e. 1 =3Y%_,b;.
THEOREM a. The ring R(p) is the direct sum of the ideals 1(b;)’s i.e. R(p)=
=1 @ 1.
LEMMA h. The field GF(p,) is isomorphic to the ideal I(b}),j= 1,2, -+, k, via the
map o(x) =b;*x =y, for xe GF(p;) and yel(b;).
DEFINITION a. Define addition and multiplication of elements from distinct prime
fields, i.e. xe GF(p;) and x*e GF(p;+), j # j* by the rules:
x+x* = a(x)+a(x*)
x - x* = a(x) - a(x*).
DErFINITION b. If re R(p) and xe GF(p;), then we define the addition and multi-
plication of x and r by:
x+r=ax)+r

x-r=0(x)-r.

THEOREM b. The ring R(p) is the direct sum of the GF(p;)’s, i.e. R(p) =Y 5=1 ®
GF(p;).

2. Combining elements from arbitrary prime powered fields. Let GF(p,""!),
GF(p,"), **+, GF(p,""), GF(p,""), GF(p,"?), -+, GF(p,"*2), **- , GF(p,"™"),
GF(p/,™?), -+, GF(p,™*) be our o = Z’,; 1 t;) finite fields, based on & distinct primes
P1s P2, * > Py Further let n; be the least common multiple of {n;y, 15, **-, n,-,j},
and consider the Galois fields GF(p,"), GF(p,™), -, GF(p"™). Then each GF(p;")
consists of residue classes of polynomials over GF(p;). As before, let R(p), p =
H’}=1 pj» be the residue class ring modulo p and consider the ring R(x, p) of poly-
nomials over R(p), then we are ready to prove the following:

LEMMA 2.1. The ring R(p) is a subring of R(x, p).
PRrROOF. See any standard text in modern algebra.

THEOREM 2.1. The eight lemmas and two theorems under the definitions of Section
1 are all true for the subring R(p) of R(x, p).
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ProOF. The proof follows immediately from Lemma 2.1.

LEMMA 2.2. To each prime polynomial Py(x) of degree n; over GF(p;), there
corresponds a polynomial P;*(x) of degree n; over I(b;) of R(p).

ProoF. Follows from Lemma h of Section 1, with P;*(x) = b; - P;(x).

LEMMA 2.3. The ring of polynomials over I(b;) is a subring of R(x, p), for each
Jj=1,2,-+, k. Call these subrings R(x, b;)’s.

ProOOF. The proof follows immediately from Lemma d of Section 1.

LEMMA 2.4. The residue classes of the ring R(x, b;) modulo P;*(x) form a com-
mutative ring for each j= 1,2, -+, k. Call these rings R(x, b;, P;*(x))’s.

Proor. Noting that any element in R(x, b, P;*(x)) can be written as:
fi(x)+ P;*(x)- Q(x), where fi(x) is a polynomial over I(b;) of degree < (n;—1)
and Q;(x) is a polynomial with coefficients in I(b;), the ring properties can be
easily verified.

LeMMA 2.5. The multiplicative identity element of R(x, b;, P;*(x)) is b;.

Proor. The proof follows from Lemma 2.4 and Lemma f of Section 1.

LEMMA 2.6. The ring R(x, b;, P;*(x)) annihilates the ring R(x, bjs, P}’i(x)) for
J#J*

PrOOF. The proof follows from Lemma 2.4 and Lemma d of Section 1.

THEOREM 2.2. The }ing R(x, bj, P;*(x)) is isomorphic to GF(p;").

Proor. The proof follows from Lemma 2.4, Lemma 2.5 and Lemma h of
Section 1.

DerINITION 2.1. If peGF(p;") and p*eGF(pi*) with j# j*, then we define
addition and multiplication of elements from distinct finite fields by the rules:

ptp* = o) +a(p*)
poop* =) - o(n*)
where o is the coefficient isomorphism defined by Lemma h of Section 1.

DEerINITION 2.2. If pe GF(p;™) and re R(x, p), then we define the addition and
multiplication of u and r by:

ptr=o()+r
prr=o-r

where ¢ is again defined by Lemma h of Section 1.

Now, consider an element g(x) of R(x, p), then this element may in virtue of
Theorem a of Section 1 be written as g(x) = Y ;= g,(x), where g(x) is a polynomial
over I(b;). Setting g;(x) = hj(x)+q;(x)* P;¥(x), where hj(x) is a polynomial of
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degree < (n;— 1) over I(b;) and g,(x) is a polynomial with coefficients in I(b;), we
have as a consequence that g(x) = Y %_ & i(x)+4q(x) - P;*(x). Hence it follows that
g(x) = Y% [h(x)(mod P;*(x))] and letting h(x) = Y %, h;(x), we have in con-
ventional notation g(x) = h(x) (mod P, *(x), mod P,*(x), : -, mod P, *(x)). Denote
the set of 4(x)’s by R(x,p, P, *(x), P,*(x), - - -, P,*(x)) then this set may be given the
interpretation of consisting of residue classes of the ring R(x, p) modulo P, *(x),
modulo P,*(x), -+, modulo P, *(x). This leads us to the following lemma and

additional results:

LEMMA 2.7. The set R(x, p, P;*(x), P,*(x), "+, P,*(x)) is a commutative ring.

LEMMA 2.8. The ring R(x, p, Py*(x), P,*(x), **+, P,*(x)) = Y51 ® R(x, b,,
P*(x)). i

Proor. From Theorem a of Section 1, we know that R(p) = Y ¥, @ I(b;), which
implies the unique decomposition of g(x) above as g(x)= Z’;=1 @ hi(x)
(mod P, *(x), mod P,*(x), - - -, P,*(x)), so that by Lemma 2.4 the desired result
follows.

THEOREM 2.3. The ring R(x, p, P1*, P,*(x), -+, P,*(x)) = Y 5=, ® GF(p,").

PRrOOF. The proof of this theorem follows directly from Theorem 2.2, Definition
2.1, Definition 2.2, and Lemma 2.8.

Let us now return to the beginning of this section and dispose of the problem of
combining elements of fields based on the same prime. Noting the definition of the
n;’s as least common multiples of the {n;,, nj,, -, n j,j}’s, the problem is resolved
in the following lemma and theorem:

LeMMA 2.9. The finite field GF(p;") contains as subfields all the fields GF(p;"*),
GF(p;*?), =+, GF(p;"*s).

Proor. Follows from the definition of n; and Theorem XXIV on page 160 of
Carmichael [1956].

THEOREM 2.4. The ring R(x, b;, P;*(x)) contains subrings to which each of the
fields GF(p;""), GF(p"?), - -+, GF(p"*s) are isomorphic, so that combining elements
from these fields with other arbitrary fields is a solved problem.

ProOF. Follows immediately from Lemma 2.9, Theorem 2.2 and Theorem 2.3.

3. An example. Consider the fields GF(2), GF(2%) and GF(3). Here, n, = 2 and
n, = 1 so that P (x) = x>+ x+1 and P,(x) = x+1. Hence we have:

R(p) = R(6) = {0, 1,2,3,4, 5}
I(by) = 1(3) = {0, 3}
I(b,) = I(4) = {0, 4, 2}

R(x,p) = {ex'+e,_x' "'+ -+ +e,x+eo, ¢;€ R(6)}.
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Lemma 2.1: R(6) = R(x, 6).
Lemma 2.2: P, *(x =3 - (x*+x+1) = 3x*+3x+3,
P*(x) =4(x+1) =4(x+1) =4x+4.
Lemma 2.3: R(x, 3)= R(x, 6), R(x, 4) = R(x, 6).
Lemma 2.4: R(x, 3, 3x*>+3x+3) = {0, 3, 3x, 3x+3};
R(x, 4, 4x+4) = {0, 4, 2}.
Lemma 2.5: Identity element of R(x, 3, 3x2+3x+3) is 3.
Identity element of R(x, 4, 4x+4) is 4.
Lemma 2.6: ve {0, 3, 3x+3}, v*€ {0, 4, 2} then clearly
v-v*=0.
Lemma 2.7: R(x, 6, 3x*+3x+3, 4x+4)={0, 1, 2, 3, 4, 5, 3x, 3x+1, 3x+2,
3x+3,3x+4, 3x+5}. .
Lemma 2.8: R(x, 6, 3x2+3x+3,4x+4) = R(x, 3, 3x*+3x+3) @ R(x, 4, 4x +4).
Theorem 2.3: R(x, 6, 3x*+3x+3,4x+4) = GF(2%) ® GF(3).
Lemma 2.9: GF(2?) contains GF(2).
Theorem 2.4: R(x, 3, 3x* 4+ 3x+3) contains the subring /(3) which is isomorphic
to GF(2).

4. Discussion. In actual manipulations of elements from finite fields one needs
only to multiply the elements of the fields with their respective b’s before per-
forming the addition or multiplication operation. This remark shows the simplicity
in practice. The results obtained through application of our technique to the
construction of confounded mixed factorial and mixed lattice designs has already
been set forth in a paper by Raktoe and Federer [1969].
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