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CENTERED VARIATIONS OF
SAMPLE PATHS OF HOMOGENEOUS PROCESSES!

By MICHAEL SHARPE
University of California, San Diego
1. Introduction. Let X = {X,, 1 = 0} be a homogeneous stochastic process on
the probability space (Q, &, P). In other words, the process X is assumed to have

stationary independent increments given by the semigroup {,}. We wish to consider
limits of the sums of the form

(1-1) Z[tkEGJf(th+1_th)_b

where fis a certain function on the line and & = {t, <‘-- <t,} is a partition of
[0, #], over a sequence of partitions © as the mesh of & tends to zero.

The special case f(x) = x? is of special interest and has received much attention
in the literature. It is easy to show, for example, that if X is a Brownian motion
with no drift and EX,? = ¢?t, then the sum (1.1) converges in L%(Q, #, P) to ot.
If one assumes that the partitions are refining, a famous theorem of P. Lévy asserts
that the convergence is almost sure.

Convergence in distribution of the sums (1.1) has been considered by Bochner
[1] and Loe¢ve [3], though the latter paper studied limits where X, , —X, is
replaced by a random variable X, of a triangular array of u.a.n. variables. In both
the above papers, f was assumed to be at least continuous. Almost sure convergence
of the sums (1.1) along a refining sequence of partitions was studied by Cogburn
and Tucker [2], and they required f'to be continuous and have a second derivative
at 0, with £(0) = 0. In [4], we studied limits of (1.1) in the sense of convergence in
probability and in L'(Q, &, P) in the case where the centering term b vanishes.
The function f was of rather general type, but the theorems held for a certain class
of processes which included at least the non-Gaussian stable processes. In the
present paper, we study limits for the same class of processes, but a different class
of functions f, and the convergence in this case is in L2(Q, &, P) or in probability.

2. Notation. Let {u,} be the weakly continuous convolution semigroup of
probability measures on (— oo, c0) associated with the process {X,}. Let v be the
Lévy measure for {u,} so that

2.1) 17 1(x2 A Dp(dx) — 62 8o(dx) +(x2 A 1)v(dx)

weakly as t — 0, where o2 is the variance of the Gaussian component of X. (Note
that in (2.1) of [4] it should be assumed that f(x) = o(x?) near 0, not 0(x?) as
stated.)
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As in [4], the semigroup {u,} is called powerfully continuous on the open set
Sc(— o0, ) if

22 sup i (A)/tv(A) < oo,

t running over (0, c0) and A running over the Borel subsets of S. We always assume
that v has infinite total mass, and it is then shown in [4] that v has no atoms in S,
and that if g = 0 has support in S, then

2.3) fgdu, < const.t{gdv, and
24 fgd@ 'u)— fgdv as t—0, if [gdv< 0.

It follows from (2.1) and (2.4) that if § = (— o0, ), then 62 = 0, so that a semi-
group {u,} which is powerfully continuous on (— o0, c0) can have no Gaussian
component. It was shown in [4] that all non-Gaussian stable processes are power-
fully continuous on the support of the Lévy measure.

We shall assume that fis Borel measurable and satisfies

2.5) v{x:|f(x)| > B} < oo, and
2.6) S 1enzpf? dv < oo

for some, and hence all, § > 0. It may be checked quite easily that (2.5) and 2.6
are necessary and sufficient in order that vof~! be a Lévy measure. In [4], we
considered f = 0 satisfying (2.5) and

27 Jee:sosmfav < oo,

and in that case, (2.5) and (2.7) are necessary and sufficient in order that vef ™!
be the Lévy measure of a subordinator.

About X, we assume that X, =0 and that almost all sample paths are right-
continuous and possess left limits everywhere.

For convenience of notation,if & = {0 = ¢, < *** < t, = t} is a partition of [0, 7],
we let ¢,,, =t The symbol const. denotes a constant depending only on the
process X, but it is not necessarily the same at each occurrence.

It is convenient to express our results in terms of an integral similar to the Itd
integral representation for a homogeneous process. Let N(¢, A) = N(¢, o, A\) be
the number of jumps of the mapping s - X (w) of [0, ¢] into R whose size is in the
Borel set A. For a fixed Borel set A with v(A) < co, N(¢, A) is a Poisson process
with Lévy measure v(A)d,, and for disjoint X/A; the processes N(z, A;) are mutually
independent.

LemMa 2.1. If [|f|dv < oo, and A is a Borel set bounded away from 0 and o,
then

E [, fN(t, dx) = t] , f(x)v(dx), and
V[ AfOON(, dx) = [  f2(x)u(dx).
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Proor. If f is an indicator function, the results hold because N(¢, B) has a
Poisson distribution, and if f is an infinite linear combination of indicators of
disjoint events, the result follows by independence of the N(¢, B;) for disjoint B;.
For general, if ¢ > 0 is given, we can find such an infinite sum g such that | f—g| < &
on A and [g?dv < co. Letting h = f—g, we find that

E|f,h(x)N(t, dx)| < eEN(t, N) = etv(A)
and
E|f ,h(x)N(t, dx)|* £ E [ ,h*(x)N(t, dx)- | , N(t, dx)
< E2N(t, N)? = 2(tv(N) + t2v3(N))
and the general result follows. []
THEOREM 2.1. If f satisfies (2.5) and (2.6), then
1, 1 < 1 <aL FEINE, ) = O Fx))¥(dx)]
exists a.s., and in L? if, in addition, [f*dv < co. The function 0 is defined by
6(y) =y if |y <1;
=1 if y>1;
=—1 if  y<-1.

PROOF. Suppose firstly that [ f?dv < 0. Then [ 1| f| v < [ 12/ dv < o0,
and so | | f—of )| dv < oo. It suffices, therefore, to prove that

lim, o, f1 jn< ) <nf(X)N(E, dx) = tW(dx)]

exists a.s. and in L%. But this is actually a sum of independent random variables
Y, = fme1 <ixl s Umutns x| <n+ nJE)IN(E, dx)— tv(dx)]
and by Lemma 1,
EY, =0, EY} = j{l/n+1<|x|§l/n}u{n§|x|<n+ 1}f2tv(dx).

Therefore, ) V(Y,) = t[f*v(dx) < o0, and by a well-known result, the series ) Y,
converges a.s. and in L2,

To complete the proof, we note simply that the integral with f replaced by
f1y51sp differs from the original for some » only on {w: N(t, », {|f| > B}) > 0} =
Q, and by (2.6) we obtain convergence a.s. on Q,° for every > 0; however, Q,
contracts to a null event as f# — o0, so we have convergence a.s. on Q. []

Let us denote by C— [ f(x)N(t, dx) the expression

limn-> © _fl/n< |x| <n[f(x)N(t5 dx) - G(f(x))tv(dx)]

and call it the compensated integral of f relative to N. In case f satisfies (2.5) and
Js12m|f]dv < 00, we showed in [4] that [ f(x)N(z, dx) exists a.s., because it is then
simply the sum Y, f(J,) where J(w) is the jump of the sample path X,(w) at s.



CENTERED VARIATIONS OF SAMPLE PATHS OF HOMOGENEOUS PROCESSES 1433

In any case Y, = C—[f(x)N(t, dx) certainly is a homogeneous process whose
Lévy measure is vo f~'. If f satisfies (2.5) and [ ;< |f|4v < oo, then we have
§Eg|x|vef~(dx) < o0, and the compensating terms can be dispensed with,
modifying the process by a translation if necessary.

LEMMA 2.2. If {u,}, powerfully continuous on S, has Lévy measure v, if f = 0 off S,
if [|f|av < o0, and if {@,} is a sequence of partitions of [0, t] with mesh &, — 0,
then Y e, Sty —n,— t[fdv as n— co.

PROOF.

|Ztk66n.ffdmk+l—tk" tjde|
d Tk+1 1tk
ff“—- [fdv

: Ztkse,.(tH 1— b
bev1— 4

S SUpPee,

-0 as n-o0,by(2.4). []
3. The main results.

THEOREM 3.1. Let X be a real-valued homogeneous process whose semigroup {1} is
powerfully continuous on the open set S. Suppose f has support in S and satisfies
(2.5) and (2.6). If t is fixed and {S,} is a sequence of partitions of [0, t] such that
mesh (S,) » 0 as n — 0o, we have

Z{tkeen)[f(xtk+ 1 _th) _je(f(x)“hn- 1 "tk(dx)] g C_jf(x)N(t’ dx) as n-— oo,

in probability, and in L*(Q, #, P) if [f*dv < co. In the latter case, the function 0
can be replaced on both sides by the identity function.

PROOF. Suppose firstly that [f2dv < co. Since | f| £ /2 on {|f| > 1}, we have
Z{tkeén)jfl{|f|>l)d'u'tkn‘tk_’ tj'fl(|f|>1}dv

as n — oo, by Lemma 2.2. Hence it suffices to show
(3‘1) Z(tkeen)[f(xtk-(-x_th)_Ef(thq-[_-th)]
- lln‘lm—' @ Il/m< | x| <mf(x)[N(t, dx) - tV(dX)]

in L*(Q, #, P) as n— oo, the right side converging because the mth term differs
from C— | f(x)N(t, dx) by

Jimeist<mf N p1> 1()(dX) = [ £ 1 51> 1yt AV-
Let ¢ > 0 be given: choose m, so large that & = f—f1(1me,m Satisfies
3.2) [R?dv <e.
Each side of (3.1) is linear in f, and
E|f1/m<1x <mh(GIN(t, dx) —tw(dx)]|?

=V [1jm<ix) <mh(ON(t, dx) =t |1 m<x| <mh?dv,  (by Lemma 2.1)
<te forall m=1.



1434 MICHAEL SHARPE

Also
E|Yoeoh(X i = X0) ~ER(X,,,— X,)|?
= V¥nea Xy, = X0) S Yeeh dity o,
< const. t [ h* dv < const. te, by (3.2).

These last two estimates show that in proving (3.1), one may assume that f'is zero
in a neighborhood of 0 and co; say f is supported in 1/m, < |x| < m,. Note now
that each side of (3.1) has zero expectation so the problem is to prove that

(33) V[Ztkeenf(xtk+| —th)_jl/mo<|x|<mof(x)N(t’ dX)] - 0 as n— .

Suppose f = 1,5 where G is an open interval in (1/m,, my). By a simple ar gument,
written down in detail in [4] (Lemma 4.3), one has

Z,(@) = Y yeel6(Xp, (@)= X, (@) Z N(t, @, G) = [1,(x)N(t, dx)
for all large n (depending on w). Thus lim inf,_, ., Z, = N(¢, G), and
V(Z,—N(t, G)) = E[(Z,— N(t, G))*]+[E(Z,— N(t, G))P.
Now |
EZ, = Yuestr-u(G) = (G) = EN(t, G)

so the second term above tends to zero. On the other hand,

E[(Z,— N(t, G))*] = EZ,>—2E[Z,N(t, G)] + E[N(t, G)*]. But
EZ? = V(Z)+(EZ)" = Ypeobtsi -0 (O =ty s, -6 (O + Cnesobtics 1 - n(D)
- t(G)+t2v*(G) as n- oo,
Also,
E[N(t, G)*] = V(N(t, G))+(EN(t, G))*
= tv(G) +t*v*(G)
and so

lim sup,_, ,E[(Z,— N(t, G))*] = 2tw(G) +2t*v*(G)—2liminf ., , E[Z, N(t, G)],
and liminf, , L E[Z, N(t, G)]
2 E[liminf, ,,E[Z,  N(t, G)] Z E[liminf,_,,Z," N(t, G)]
= E[N(t, G)*] = tW(G)+t*v*(G).

Hence V(Z,— N(t, G)) - 0 as n — oo, and the theorem is proven in case f= 1.
If A is a Borel set bounded away from 0 and oo, we may choose Ag, a finite
union of open intervals bounded away from 0, such that v(AAAy) < &, and we
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then have N(t, N)—N(t, No) = N(t, AN—No)—N(, No—AN) and since A—Ao
and A,— A are disjoint,

E(N(t, N—N(t, No))* = V(N(t, A= No)— N(t, o= N)
+[V(A=No) = t¥(No—N]?
S t(ANA No) +HEVENA N, < te+12e2,
Also,
E [(ZtkEenl A (X teet X tk) - Ztkeenl A o(X tket X tk))z]
<E [(Zrkees,.l AAA o(X fear — X, tk))z]
= Zrkee,.ﬂ:k o=t NAN[ =y, —‘tk(/\ ANy)]
+ [ tetnbes i~ AN AN
< const. (te+t%¢%)
while |EQ el a(Xoer s = Xu) = Ll noXes s = X))
S Y et - (A A No) < const. te.

The result is therefore proven in the case f = 1,. where A is a Borel set bounded
away from zero and infinity. The extension to simple functions is immediate. For
a general f whose support is bounded away from zero and infinity, given any
¢ > 0, we may choose a simple function g whose support is bounded away from
zero and infinity such that [(f—g)*dv <.

Then V[ (f—g)(x)[N(t, dx)— tv(dx)] = [ (f—g)* dv and

V[Ztkesn(f - g)(X te+1 -X tk)] é Ztkeen,[ (f - g)z.utm 17t
< const.t [(f—g)* dv

< const. te.

and an obvious estimate completes the proof in the case | /2 dv < co.

In case [f2dv = oo, we observe that if g = f* 1, <p then [g?dv < 0, by (2.6)
and that the terms ), s f(X,.,,—X,) and Y, 9(X,,,—X,) differ only on
{w:X,, (0)—X,(w)e{|f| > B} for some #, € €,} and the probability of this event s

1-P{X,,,— X, e{|f| £ B} V1,eC,}
S | R (T EY)
=S | CE TN (V) by )
< 1-TT@ —const. (ty; — 1| f| > B))
< 1—exp[—const. tv(|f| > B)]

when mesh &, is fine. By taking B sufficiently large, we guarantee that
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Y e Xor 1 — Xu) = Yte, 90X, — X,,) except on a set with arbitrarily small
probability, when # is large. The terms 0(f(x)) and 6(g(x)) are identical if § = 1
and we imagine B so chosen. Note finally that {1 m<|x)<n JOON(t, dx) and
j'”,,<,x|<,,g(x)N(t, dx) differ only on {w: N(t, w, |f| > f) > 0} and because of the
Poissonian character of N(z, | f | > f), the probability of this event is
1—exp {—t(f| > B)} and this can be made as small as desired by taking
sufficiently large.

Thus, the result on convergence in probability follows immediately from L?
convergence for f 11 <p- [

It is natural to ask about the possible distributions of the limits C— [ f(x)N(t, dx)
for a fixed Lévy measure v, as f'is allowed to vary.

THEOREM 3.2. Let v be a Lévy measure on (— o0, 00) with the property that there
is a Borel set S such that v(S) = oo and v has no atoms in S. Then, given.any Lévy
measure )\ on (— o0, ). There is a function f with support in S, and satisfying the
conditions (2.5) and (2.6), and such that . = vof™'.

COROLLARY. Under the conditions of Theorem 3.1, any infinitely divisible distribu-
tion without a Gaussian component may appear as the distribution of the limit
variable C— [ f(x)N(t, dx).

PrOOF OF THEOREM 3.2. Write A = A, + 1, where 1, is concentrated on (0, o)
and 1, is concentrated on (— oo, 0). Let S = S;US, where S; and S, are disjoint
and v(S,) = v(S,) = co. Define v,(dx) = 15,(x)v(dx). We shall construct a function
f, with support in S, such that A, =v,0f; ", and a completely analogous con-
struction will give £, with support in S, such that 2, = v,0f,” !, Setting f = f, + /2,
we obtain A = vof~!. (Recall that, by convention, v{0} = 0.)

To construct f;, we begin by letting F(x) = v,{(x, )}, x > 0, and G(x) =
41{(x, )}, x > 0. Since v has no atoms in S, F is a non-increasing continuous
function on (0, o) and G is a non-increasing right-continuous function on (0, c0).
Define ®(y) = sup {x: F(x) = y}. It is easily checked that ® is a left-continuous
non-increasing function on (0, o) and that consequently ¢(x) = ®(G(x)) is non-
decreasing and right-continuous. Notice that F(¢(x)) = G(x) because of the
continuity of F. We let h be the right-continuous inverse of ¢, namely
h(y) = inf {x: ¢(x) > y} so that ¢(x) = inf {y: h(y) > x}, and therefore, (¢(x), c0) =
h™1[x, 00) = [¢(x—0), o) for all x > 0. Therefore, if x is a continuity point of ¢
and x is not an atom of 1, we have, since v, has no atoms,

vy oh™1x, 0) = v, {($(x), 0)} = F($(x)) = G(x) = 4, {(x, 0)} = A{[x, 0)}.

This being true for a dense set of x in (0, ©0) we must have v, oA~ " = 4,. Since v,
is concentrated on S,;, we can take f; =h-1g, and obtain v, of; '=14, as
desired. []

It is, of course, also true that the Lévy measure of any subordinator may be
represented in the form vof ™!, where /= 0 satisfies (2.5) and (2.7). The same
proof applies essentially.
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