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ESTIMATING THE EMPIRIC DISTRIBUTION FUNCTION
OF CERTAIN PARAMETER SEQUENCES!

BY RicHARD J. Fox?
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1. Introduction and notation. A compound decision problem (see Section 6 of
Robbins (1951)) consists of a set of # independent statistical decision problems,
each having the basic structure of a so-called component problem. The usual
objective is to find procedures, which may use all n observations for each decision,
whose average risk across problems converges, as n— oo, to the component
problem Bayes risk versus the empiric distribution of the n underlying parameter
values. This latter quantity represents the minimum average risk if one employs a
procedure where the same decision rule, which does not depend on the set of
observations, is applied independently to the individual problems.

One possible solution technique is to use the set of observations to estimate the
empiric distribution of the set of parameter values and then use the Bayes procedure
versus this estimate in each individual problem. For a very simple example, the
estimators developed in Section 2 and Section 3 of this paper, which deal with two
specific uniform distributions, could be used in this way to construct procedures
which meet the previously specified objective for the compound test of simple
hypotheses problem solved by Hannan and Robbins (1955).

Let x = (x;, X5, ***) be a sequence of independent random variables with x;
having distribution function Fj,, henceforth abbreviated to F;, 0;eQfori=1, 2, ---
and Q a subset of the real line. Suppose that this family, indexed by the parameter
0eQ, is dominated by Lebesgue measure u and let f, be the density of F, with
respect to u. Also abbreviate fy, by f;.

Throughout this paper we will occasionally omit the display of the argument of a
function of a real variable. We also adopt the convention that distribution functions
are right continuous. Let F be a distribution function; we will also use the letter F
to denote the corresponding Lebesgue-Stieltjes measure. If 4 is an event, [4] will
be used to denote the indicator function of A.

Let F = X 7=, F;, i.e. F is the product measure on the space of x’s corresponding
to a particular 0, @ denoting a parameter sequence: (6,, 0,, ‘). Let G, be the
empiric distribution function of the first » parameters: 6,, 6,, *--, 6,. We now
define the following functions:

(1.1 F=IF0dGn(0)=n—lZin=lFi;
(1.2 f=1fdG @) =n""YI_f;

Received March 14, 1969; revised April 29, 1970.
! Research supported by National Science Foundation, Grant No. GP-13484.
2 Now at Procter and Gamble.

1845

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. RIKORS ®

Www.jstor.org



1846 RICHARD J. FOX

and note that f = dF|du. Also, for any x, let
(1.3) F¥x)=n"'Y0, [x = x],

i.e. F* is the empiric distribution function of x,, x,, - -, x,. For any distribution
function, say F, define, for any 4 > 0 and any x,

(1.4) AF(x) = h ~Y(F(x+h)—F(x)).

We allow 4 to depend on n.

We now make some remarks about the Lévy metric which is discussed on page
215 of Logve (1963). This metric is defined on the space of all distribution functions
by the following distance formula. For any two distribution functions F, and F,,
letting d denote distance,

d(Fy, F;) =inf{e > 0| forall x, F(x—¢&)—¢ < F,(x) < F,(x+&)+¢}.

Loéve mentions that convergence in Lévy metric of a sequence of distribution
functions is equivalent to complete convergence.

In Section 2, we consider the family of uniform on the interval (0, 6) distri-
butions, 0e(0, co) and exhibit an estimator of G, whose Lévy distance from G,
converges to zero a.s. F for a certain class of #’s. In Section 3, we deal with the
family of uniform on the interval [, 0+ 1) distributions, e€(— oo, + ). In this
case, we exhibit an estimator whose Lévy distance from G, converges to zero a.s. .
F uniformly in 6.

In Section 4, we again consider the two families mentioned above and assume
that the 6’s are i.i.d. possessing the distribution function G. Thus, x,, x, - are
i.i.d. with a distribution function called the mixed distribution function. We then
apply the results of Section 2 and Section 3 to the problem of estimating this prior
distribution function G. Estimates of the prior have applications in empirical Bayes
decision problems (see Robbins (1964)). In this situation, one is faced with a
sequence of independent, identical statistical decision problems in which there is a
fixed but unknown prior distribution on the parameter. For the uniform [0, 8+ 1)
family, Theorem 4.3 of Fox (1968) states that in the squared error loss estimation
problem, the expected risk of using the Bayes estimator of 6 versus a Lévy-
convergent estimate of G converges to the Bayes risk versus G.

Robbins (1964) treats the general problem of estimating a prior distribution
function, say G. Under certain assumptions, he shows that if the estimate of G is
chosen so that the resulting mixed distribution function is within ¢,(e, 0 as n = )
of minimizing over the class of possible mixed distribution functions, the sup norm
distance from the empiric distribution function of the observations: x;, x,, * * * X,
then the estimator will converge to G in Lévy metric. However, no explicit method
is given for obtaining this estimator. The family of Section 2 of this paper is
discussed in Robbins’ Example 3 and the family of Section 3 is a special case of
his Theorem 2.

Deely and Kruse (1968) add to Robbins’ assumptions the condition that Fy(x)
is continuous in x for every 6. They then exhibit a method of finding an estimator
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satisfying Robbins’ condition. Calculating the estimate involves finding an optimal
strategy in a certain game.

2. Uniform (0,0) case. We now consider the following family of distributions.
For 0eQ = (0, ), let fo(x) = 07[0 < x < 6]. It then follows that

Fyx)=0 x=s0,
=x0""! 0<x<9,
=1 x=6.

Thus, for any x, by the definition of F in (1.1),
F(x) = ([0 < x]+x07 [0 > x]) dG,(6).

Hence, recalling the definition of f in (1.2), we obtain the following important
relationship which suggests an estimator of G,:

(2.1) F(x) = G,(x)+ xf(x).
We estimate G, at any point x = 0 by
(2.2) G,*(x) = F¥(x)—x AF*(x)

where F* and A are defined by (1.3) and (1.4) respectively.
For each n, form the following grid: 0 = x,, < X,; < *** < X,y <, where f and
N are both functions of n. For any & > 0, define for all x = 0,
A,(x) = {x| x AF*(x) > (x—&)] (x — &) + (F(x)— F(x—¢) ) +¢/2},
B,(x) = {x| x AF*(x) < (x+8)f(x +&)—(F(x+¢&)— F(x))—¢/2}.

The following lemma follows immediately from equation (2.1), definition (2.2) and
the definitions of 4,(x) and B,(x).

LEMMA 2.1. For any ¢ > 0, for each x = 0,
(%] G,*(x) < Gy(x—&)—&} = {x| F*(x) < F(x)—e/2}uy(x),
{x| G,*(x) > G,(x+&)+e} = {x| F*(x) > F(x)+¢/2}UB(x).
LEMMA 2.2. If h =0 and Y % Nexp {—n(he p~1)?[2} < oo, then
F{UJ-o(4,(x,)UB(x,))i.0.} = 0.

PROOF. Let 0 < x < f be fixed and note that AF*(x) =n~"Y7_; Alx; < x]. The
variables A[x; < x] have expectations AF(x) and since fi(x) is a nonincreasing
function for x > 0, AF,(x) < fi(x). It then follows that the expectation of xAF *(x)
is bounded above by xf(x). Noting that (F(x)—F (x—¢)) is bounded below by
&f (x) when x = & and by xf(x) when x < ¢, if we subtract this upper bound, xf(x),
on the expectation of xAF *(x) from the right-hand side of the inequality defining
A,(x), then the resulting quantity is bounded below by &/2. Hence by Theorem 2 of
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Hoeffding (1963), since 0 < x < B, F(4,(x)) < exp {—n(hep~*)?/2}. Thus, since
F(A4,(0)) = 0 for all n,

(23) F(UJ=0 4x(xs))) < Nexp{—n(hep™")*/2}.

Let n be sufficiently large so that # < e. Then, f(x+¢) >0 implies AFy(x) =
fi(x+¢) and it follows that for all x, xAF(x) = xf;(x+¢). Hence, the expectation of
xAF *(x) is bounded below by xf(x+¢). Thus, since (F(x+¢&)—F(x)) = f (x +¢),
subtracting xf(x+ ¢) from the right-hand side of the inequality defining B,(x) yields
a quantity bounded above by —¢/2. Again applying Hoeffding’s Theorem 2, since
0 < x < B and F(B,(0)) = O for all n, we obtain the bound of the right-hand side
of (2.3) for F(UY-0 B,(x,;)). The infinite series formed by summing this bound
over n converges by assumption. Hence, by the Borel-Cantelli Lemma, the proof
is complete.

Define the distribution function G, by:

G(x)=0 for x<0,
= max {G,*(x,;) |0 < x,; < x} for 0Zx<8p,
=1 for x=p.

Note that G,*(0) =0. Also, let § be the maximum of the distances between
consecutive grid points.

THEOREM 2.1. If 6 = 0, h = 0, G,(B) — 1 and if for every € > 0,
YaziNexp{—n(he ™)’} < oo,
then d(G,, G,) - 0a.s.F.

PROOF. Let & > 0 be arbitrary. By the extension of the Glivenko-Cantelli Theorem
to non-identically distributed independent random variables, see Theorem 4.1 of
Wolfowitz (1953), F(x)—F *(x) —» 0 uniformly in xa.s.F. It then follows from
Lemma 2.1 and Lemma 2.2 that

(2.4) F{UY-0(Go(Xn;—8)—& < G, *(X,;) S G,(Xy;+8)+8)i.0.} =0,

where the prime notation is to denote the complement. Since for 0 < x < f,
G,(x) = G, (%) where X is the largest x, ; Which is not larger than x,

U0§x</i {x I Gn(x) > Gn(x+8)+8}c U}Lo {len*(xnj) > Gn(xnj+8)+8}
andifd Z¢, .
Uosx<p {X| Gu(®) < G,(x—28)—&} = U0 (x| G,*(%n)) < Gy(x,;—8)—8}.

Since 6 —» 0 and G,(B) - 1, by (2.4) and the fact that G, = G, for x <0, a.s. F, for
n sufficiently large, d(G,, G,) < 2e, which completes the proof.

3. Uniform [0, 0+ 1] case. We now consider the following family of distributions.
For 0eQ = (— o0, + ) let fo(x) = [0 £ x < 0+1]. It then follows from (1.2) that



EMPIRIC DISTRIBUTION FUNCTION OF A PARAMETER SEQUENCE 1849

for all x, f(x) = [[0 < x < 0+1]1dG,(6). Hence, we have the following relationship
which leads us to an estimator of G,:

(3.1) : 7(x) = G,(x)—G,(x—1).
By (3.1),
(3.2) G(x) = Y20 f(x—1).

Since F *(x) £ G,(x) £ F*(x+1), we estimate G, at a point x by G, *(x) which is
the truncation to the interval [F*(x), F*(x+1)] of Y 2o AF *(x—r), i.e.
(33) G, *(x) = {((T20 AF*(x—1)) v F¥(x)) AF*(x+1)}.
For convenience we assume that 4 < 1.
LEMMA 3.1. For any ¢ > 0, if h < ¢, then for all x,
F({x|G,(x—&)—¢ £ G,*(x) £ G(x+&)+&}') < 2exp(—2nh?s?).

ProoOF. Since the truncation involved in the definition of G,* can only improve
the estimator, it suffices to prove the lemma for the estimator T, defined for all x
by T (x) =Y 20AF*(x—r)=n""Y7_,Y,20Alx; < x—r]. Let x be fixed. Re-
calling the definition of F in (3.1), it is easily seen that

[T (x)dF = h™'Y2 o (F(x+h—r)—F (x—7)).
By (3.1),
o (F(x+h—r)—F(x—r)) = Y 20 (J3iZ} (G — G (1= 1)) d1).

Writing 337" G,(t—1)dr as [(1217! G,(1)dr we see that the right-hand side of
the equality displayed immediately above is a telescopic series and we obtain

3.4 2o(F(x+h—r)—F(x—r)) = [*"G(nar.

By (3.4), | T,(x)dF 2 G,(x). It then follows by Theorem 2 of Hoeffding (1963) that
F{x| T(x) < G,(x—¢)—¢} < exp(—2nh’c®). Similarly, if h<e, then by (3.4),
|T(x)dF < G,(x+¢) and applying Hoeffding’s bounds again we see that
F{x| T,(x) > G,(x+¢)+¢} < exp(—2nh’e?), which completes the proof.

Let 6 = N~!, N being a positive integer depending on n and consider the
following grid on the real line: - < —26 < —9 <0 < J <20 < ---. Consider the
following distribution function.

(3.5 G x) = sup{G,*(O)|jo S x,j=0, £1, £2,-}.

We now proceed to show that the Lévy distance of G, from G, converges to zero
a.s. F uniformly in 0, i.e. for each ¢ >0, 3m(s)aF{x|d(G,,, G,) > ¢ for some
n 2 m(e)} < ¢ for all 0.

TueorReM 3.1. If Y2, Nexp(—2nh%?) < o for all ¢>0, G, is defined by
equation (3.5) and if N - oo and h— 0, then d(G,, G,) - 0a.s.F uniformly in 6.
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PrOOF. Let ¢ > 0 be arbitrary. Let g be an integer sufficiently large so that
n = ¢ implies that # < ¢ and § < ¢ and let n 2 g. Define J to be the largest integer
such that F*(Jd+1) < e Define the following subset of the real line, letting
F={j|FXG+ DS+ D)—F*(d)) >e,j2 J,j=0%1, £2,--+},

An = Ujef []69 (j+ 1)6)

Note that there are at most L = (N+1)K grid points in A4, where K is the
smallest integer greater than or equal to ¢~ !. Also note that 4, may be empty.
Since F*(J5+1) < ¢ implies that for all x <J§ both G,(x)<¢ and G,(x) <,
it follows that if x < J&, then G, (x—¢&)—& < G,(x) £ G,(x+¢&)+e. For m=J, if
(F*((m+1)6+1)—F*@md)) < ¢, then for xe[md, (m+1)d), since both G,(x) and
G, (%) are in the interval [F*(md), F*((m+1)6+1)], it follows that G,(x—¢&)—¢ =
G, (x) £ G(x+¢e)+e.

Let [md, (n+1)d)cA,. For all x in this interval G,(x) = G,(md). Thus, since
x¢ A, implies G,(x) £ G,(x+¢)+¢,

UxeA,, {xlén(x) > Gn(x+8)+8}c U]éeA,, {X|G,,*(](S) > Gn(jé+8)+8}
and since § L ¢,
Use s, {x]G(%) < G(x—2)—&} = Ujsc 4, {X| G,*(40) < G,(jo—&)—e}.

The F-measure of the union of the two right-hand sides of the above inclusions, by
Lemma 3.1, is no larger than 2Lexp(—2nh%?). Hence, F{x|d(G,,, G,) > 2¢ for
some n = q} <Y2, 2Lexp(—2nh*?) and since Y., Nexp(—2nh’e’) < co by
assumption, the right-hand side of this last inequality can be made less than or
equal to 2¢ for all @ by choosing ¢ sufficiently large and the proof is complete.

It can easily be shown that foralla > 0,a > Oand all ¢, Y2, n°exp {—an"} < co.
Hence, if we let N = n°, ¢ being a positive integer, h = n"% B =n’ with a,y >0
and a+7y < 3, then the series of the hypothesis of Theorem 2.1 converges. Also, if
we let N = ¢, ¢ again being a positive integer and A =n"% 0 <a < 4, then the
series of the hypothesis of Theorem 3.1 converges.

4. Estimating the prior distribution. Let (5, %) be the measurable space consisting
of the real line and the Borel field. Assume that Q is a Borel subset of the real line
and define the o-field on Q to be the restriction of the Borel field to Q. Let the
o-field on Q= be the usual product o-field. We now drop the assumption that Fy
is absolutely continuous with respect to u for each 6eQ and refer the reader to
page 137 of Loéve (1963) for a brief discussion of regular conditional probability.
For a proof of the following result, see Lemma 3.5 of Fox (1968).

LEMMA 4.1. If F,, 0€Q is a regular conditional probability measure on (%, 8),
then F, 0€Q>, is a regular conditional probability measure on (X, B%).

Let P be a probability measure defined on the o-field of subsets of Q and Fj be a
regular conditional probability. We then have a measure, say H, defined on the
product space Q x &, resulting from P on Q and F, on &. Let H® be the usual
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product measure on the space (Q x Z)®. Consider the one to one mapping of
(Q x Z)* onto Q® x > which associates the point (6, 05, - -, x;, x,, * **) with
the point ((0,, x,), (02, X;), **-). The measure induced on Q® x Z*® by this
mapping and H® on (Q x Z)® is the measure resulting from P® on Q® and the
regular conditional probability measure F (see Lemma 4.1) on Z*®. Denote the
marginal probability measure of x of the pair (6, x) by P>(F).

Consider the identity map from Q into the real line and let G be the distribution
function corresponding to the measure induced on the Borel field of the real line
by this mapping and P on Q. We are interested in estimating G. The following
theorem establishes sufficient condition for obtaining a Lévy convergent estimate
of G. The subsequent corollaries are applications to the specific families discussed
in this paper.

THEOREM 4.1. If P is a probability measure on the o-field of Borel subsets of Q and
G is the resulting distribution function and if G, is an estimator of G, based on
(%15 X3, ***, x,,) such that d(G,, G,) is a jointly measurable in (0, x) for each n and if
P{0|d(G,, G,)>0as.F} =1 and Fs, 0€Q, is a regular conditional probaiblity
measure, then d(G,, G) - 0a.s. P*(F).

ProOF. By the triangle inequality, d(G,, G) < d(G,, G,)+d(G,, G). By the
Glivenko-Cantelli Theorem, page 20 of Loéve (1963), d(G,, G) —» Oa.s. P°. Let C
be the set of pairs (8, x) such that d(G,, G,) + 0 and note that C is jointly measurable
in (0, x). Since by Lemma 4.1, F is regular, the measure of C is [F(C)dP~.
Since F(C) = 0a.s. P%, the proof is complete.

In the proofs of Corollary 3.1 and Corollary 3.2 of Fox (1968), it is shown
that the estimators of Section 2 and Section 3 of this paper are such that for each n,
d(G,, G,) is a measurable function on (X®, #°) as was tacitly assumed and
then that d(G,, G,) is jointly measurable in (0, x) for each n. Hence, we ignore
the joint measurability hypothesis of Theorem 4.1 in the proofs of the following
corollaries.

CoROLLARY 4.1. If Fy corresponds to the uniform distribution on the interval
(0, 0), 0€Q = (0, o0) and if P is a probability measure on Q and G is the resulting
distribution function and if G, is defined as in Section 2 and the h ypotheses of Theorem
2.1 are satisfied with B — o replacing G,(B) — 1, then d(G,, G) - 0a.s. P°(F).

PROOF. Let B be a Borel set. Fy(B) =0~ u(Bn(0, 0)) which is a continuous
function of 6 > 0. Thus, F,, 6eQ, is a regular conditional probability measure.
Since f— oo, by the Glivenko-Cantelli Theorem, G,(8)— 1a.s. P*. Thus by
Theorem 2.1, P*(0|d(G,, G,) > 0a.s.F} =1 and it follows by Theorem 4.1 that
d(G,, G) - 0a.s. P°(F).

COROLLARY 4.2. If F, corresponds to the uniform distribution on the interval
[0,0+1), 0€6Q = (—00, +©) and P is a probability measure on Q and G is the
resulting distribution function and if G, is defined by (3.5) and the conditions of
Theorem 3.1 are satisfied, then d(G,, G) - Oa.s. P*(F).
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" PrOOF. Let B be a Borel set. F(B) = u(Bn[0, 6+1)) which is a continuous
function of § and hence Fj is a regular conditional probability. Applying Theorem
3.1 and Theorem 4.1 completes the proof.
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