INADMISSIBILITY OF THE BEST INVARIANT TEST IN THREE OR MORE DIMENSIONS

By Stephen Portnoy¹ and Charles Stein²

Harvard University

Consider the problem where one observes (X, Y) with X an arbitrary random quantity and Y a p-dimensional random vector, and where there are two hypotheses, H_i , under which $(X, Y - \eta)$ is distributed according to P_i (i = 0, 1) for some unknown point $\eta \in \mathbb{R}^p$. Lehmann and Stein [1] show that if p = 1, then under certain reasonable conditions, the best invariant test of H_0 versus H_1 is admissible. Here we present an example showing that the analogous result does not hold if $p \geq 3$. The example was suggested by certain problems in the recovery of interblock information in the randomized designs considered in [2]. Although the present example is somewhat artificial and not directly applicable to the above problems, it is not unlikely that similar methods might also work there.

Let η be an unknown point in R^P and let $\varepsilon_i = (-1)^i$ for i = 0, 1. Suppose X = (W, V) and Y are distributed as follows under H_i : W is normally distributed with mean ε_i and variance 1, V is independent of W and uniformly distributed over the surface of the unit sphere in R^P , and $Y = \eta + \varepsilon_i V$. The problem is invariant under translation: $(W, V, Y) \rightarrow (W, V, Y + c)$ for $c \in R^P$. An invariant test is one depending only on (W, V) and the best invariant test of given size accepts H_0 if and only if W > K. We shall take K = 0 for ease of computation. We want to show that for sufficiently small a > 0 and sufficiently large b, we have for all η

(1)
$$P_{0,\eta}\left\{W + \frac{aV'Y}{b + ||Y||^2} > 0\right\} > P_0\{W > 0\},$$

(2)
$$P_{1,\eta}\left\{W + \frac{aV'Y}{b + ||Y||^2} > 0\right\} < P_1\{W > 0\},$$

where V and Y are column vectors, V' denotes the transpose of V and $||Y||^2 = Y'Y$. Because of the symmetry of the problem under interchange of the two hypotheses, we need only prove (1).

We use the identity

(3)
$$\frac{1}{A+B} = \frac{1}{A} - \frac{B}{A^2} + \frac{B^2}{A^2(A+B)}$$

with

(4)
$$A = b + ||\eta||^2, \quad B = 2\eta' V + 1,$$

Received January 19, 1970; revised September 28, 1970.

¹ This work facilitated by a grant from the National Science Foundation (GS-2044X).

² This work facilitated by a grant from the National Science Foundation (GS-8985).

and note that (under H_0)

(5)
$$||Y||^2 = ||\eta + V||^2 = ||\eta||^2 + 2\eta' V + 1$$

(since $||V||^2 = 1$). Thus,

(6)
$$\frac{V'Y}{b+||Y||^2} = \frac{1+\eta'V}{b+||\eta||^2} \left\{ 1 - \frac{2\eta'V+1}{b+||\eta||^2} + \frac{(2\eta'V+1)^2}{(b+||\eta||^2)(b+||\eta+V||^2)} \right\}$$

$$= \frac{1}{b+||\eta||^2} \left\{ 1 + \eta'V - \frac{2(\eta'V)^2}{b+||\eta||^2} + O\left(\frac{1}{b^{\frac{1}{2}}}\right) \right\}$$

where the remainder is uniform in both η and V; this follows from the fact that ||V|| = 1 and the results

(7)
$$\left| \frac{\eta' V}{b + ||\eta||^2} \right| \le \frac{||\eta||}{b + ||\eta||^2} = O\left(\frac{1}{b^{\frac{1}{2}}}\right),$$

(8)
$$\frac{(1+2V'\eta)^2}{b+||\eta+V||^2} = \frac{(2V'V+2V'\eta-1)^2}{b+||\eta+V||^2} \le \frac{8[V'(V+\eta)]^2+2}{b+||\eta+V||^2}$$
$$\le \frac{8||V+\eta||^2+2}{b+||\eta+V||^2} = O(1).$$

Therefore

$$P_{0,\eta} \left\{ W + \frac{aV'Y}{b + ||Y||^2} > 0 \right\} = E\Phi \left(1 + \frac{aV'Y}{b + ||Y||^2} \right)$$

$$= E\Phi \left(1 + \frac{a}{b + ||\eta||^2} \left[1 + \eta'V - \frac{2(\eta'V)^2}{b + ||\eta||^2} + O\left(\frac{1}{b^{\frac{1}{2}}}\right) \right] \right)$$

$$= \Phi(1) + \frac{a\Phi'(1)}{b + ||\eta||^2} E\left[1 + \eta'V - \frac{2(\eta'V)^2}{b + ||\eta||^2} + O\left(\frac{1}{b^{\frac{1}{2}}}\right) \right]$$

$$+ \frac{a^2}{2(b + ||\eta||^2)^2} E\Phi''(U) \left[1 + \eta'V - \frac{2(\eta'V)^2}{b + ||\eta||^2} + O\left(\frac{1}{b^{\frac{1}{2}}}\right) \right]^2$$

where U is a value between 1 and $(1+aV'Y/(b+||Y||^2)$. But

(10)
$$E(\eta' V) = 0$$
 and $E(\eta' V)^2 = \frac{1}{p} ||\eta||^2$,

and since $\Phi''(x)$ is uniformly bounded, the final expectation in (9) is bounded by

(11)
$$KE \left[3 + \left| \left| \eta \right| \right| + O\left(\frac{1}{b^{\frac{1}{2}}} \right) \right]^{2} \le (1 + \left| \left| \eta \right| \right|^{2}) O(1)$$

(again uniformly in η and V). Therefore,

(12)
$$P_{0,\eta} \left\{ W + \frac{aV'Y}{b + ||Y||^2} > 0 \right\} = \Phi(1) + \frac{a\Phi'(1)}{b + ||\eta||^2} \left[1 - \frac{(2/p)||\eta||^2}{b + ||\eta||^2} + O\left(\frac{1}{b^{\frac{1}{2}}}\right) + \frac{a(1 + ||\eta||^2)}{b + ||\eta||^2} O(1) \right] > \Phi(1) = P_{0,\eta} \{ W > 0 \}$$

for all $\eta \in R^P$ if $p \ge 3$ provided a > 0 is sufficiently small and b sufficiently large. Some comments about the inessentiality of special features of this example should be made.

- (1) We have not really used the fact that $W \sim N(\varepsilon_i, 1)$, but only that (i) the distribution of W under H_0 is the same as the distribution of -W under H_1 , (ii) the condition W > 0 is equivalent to rejection of the likelihood ratio test (based on W alone) for some critical level, and (iii) W has a density under H_0 which is positive at zero and has a uniformly bounded first derivative.
- (2) We have strongly used the condition that the distribution of V is spherically symmetric (to obtain (10)), but the condition $||V||^2 = 1$ could be circumvented with somewhat greater care (both in the definition of the improved test and in the calculations).
- (3) The assumption of a singular distribution for Y, that is $Y = \eta + \varepsilon_i V$, is also inessential since η can be replaced by $\eta + Z$ (where Z has an arbitrary distribution independent of (V, W) and the same under H_0 and H_1). Using conditional distributions (given Z), the above proof shows that (12) holds for the conditional probability given Z and hence, for the unconditional probability.

REFERENCES

- [1] LEHMANN, E. L. and Stein, C. M. (1953). The admissibility of certain invariant statistical tests involving a translation parameter. *Ann. Math. Statist.* **24** 473–479.
- [2] STEIN, C. (1966). An approach to the recovery of inter-block information in balanced incomplete block designs. *Research Papers in Statistics* (Neyman Festschrift, F. N. David, ed.). 351–366. Wiley, New York.