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ADMISSIBILITY OF THE USUAL CONFIDENCE SETS
FOR A CLASS OF BIVARIATE POPULATIONS

By V. M. JosH1

Secretary, Maharashtra Government, Bombay

For a bivariate population, with a probability density p(|x— 6|) where
p(t) is strictly decreasing for # = 0, when a single observation is taken, the
usual confidence sets are circles of constant radius centered at the observed
value. Previous results of Kiefer imply that these circles have the minimax
property of minimizing the maximum expected Lebesgue measure of
the confidence sets for a given lower confidence level. It is now shown here
that subject to mild conditions on p(z), the confidence circles are also
essentially unique in having the minimax property. The result generalizes
the result proved previously for the bivariate normal case.

1. Introduction. For an m-variate normal population with the identity matrix
as covariance matrix, the usual confidence sets for estimating the population mean
are m-dimensional spheres of fixed volume centered at the observed sample mean.
They have the minimax property that amongst the confidence procedures with a
given lower confidence level, they minimize the maximum expected Lebesgue
measure of the confidence sets.

Investigating a conjecture of Stein (1962), it was shown in previous papers that
in the univariate and bivariate cases the usual confidence sets are essentially
unique in having the minimax property (1969), and that for m =z 3, the usual sets
are not essentially unique and are in fact inadmissible (1967).

The uniqueness in the univariate case was later shown to hold generally for the
invariant confidence sets based on # observations for any population with a prob-
ability density function f(x — 6) subject to two mild conditions (1970).

In the following we now show that the property of essential uniqueness in the
bivariate case holds also for any population with a density function p(|x——0|]
where the function p(¢) is strictly decreasing for ¢+ = 0 and satisfies certain other
conditions, and only one observation is taken from the population. The restriction
to the single observation case is necessary as the proof depends upon the mono-
tonicity of the function p(¢).

The minimax property however holds without any restriction on the density
function p. In fact from the results proved by Kiefer (1957) it follows that the
minimax property holds for the invariant confidence sets for an m-dimensional
random vector with a density function f(lx'—~0|) where 0 is the m-dimensional
translation parameter, without any restrictions on f.

2. Preliminaries. X = (X, X,) denotes a random vector which assumes values
x = (x;, x,) in the 2-dimensional Euclidean sample space R; X has a probability
density p(|x——0|) where 6 = (0,, 0,) is a point in 2-dimensional parameter space
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CONFIDENCE SETS FOR BIVARIATE POPULATIONS 663
Q; for any vector u = (uy, uy), |u| denotes the absolute magnitude = (1,2 +u,%)*;
the function p(¢) strictly decreases as ¢ increases for ¢ = 0. On R, Q and the product
space R xQ is defined the Lebesgue measure, all sets considered being Lebesgue
measurable. Confidence procedures including randomized ones are defined as in
Section 2 of the previous paper (1969). We obtain the class of all such procedures
by taking as the decision space

a1 2 = {¢(x, 0); ¢(x, 0) jointly measurable in x and 6;
0= ¢(x,0) < 1}
For any confidence procedure, ¢(x, 0) is the probability that the point 6 is included

in the confidence set selected, when x is the observed value. Equivalence of pro-
cedures is defined by

DEFINITION 2.1. Two procedures ¢, and ¢, are equivalent if ¢,(x, 0) = ¢,(x, 0)
for almost all (x, 8) e Rx Q.

For a more detailed discussion of randomized confidence procedures, definition
of equivalent procedures, and restrictions on the geometrical form of the sets
which may be imposed as an alternative to the definition of equivalence procedures,
we refer to Sections 2, 3 and 4 of [2].

For given confidence level (1 —«), the smallest confidence sets are given by

) lx—6] <
where & is fixed by [, —g < p(|x—0]) dx = 1 -0

Here we have written dx for short for dx,dx,. Similarly for any vector u we shall
write du for du,du, .

If ¢ o(x, 0) denotes the procedure consisting of the confidence sets defined by (2),
then since for each x, ¢(x, 0) gives the probability that the point € is included in the
confidence sets, we have

3) do(x,0) =1 if |x—0| <h,
=0 if |x—0| > h.
3. Further conditions on p(¢). We assﬁme that besides being strictly decreasing,
p(t) satisfies the following further conditions:

ConbiTioN 1. The frequency function p(|x—6|), has finite second moment, i.e.

4) fr|x=0)*p(|x = 0)) dx =27 [§ *p(1) dt < 0.
ConpITION 2. There exists a positive function f(7) such that
(5) lim,, ,, T2 [y 55 P(Ju]) du =0,
and
B
6) as T — 0.

flog ofF

Here we write f§ for short for f(7).
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ConpITION 3. If A denotes a positive or negative increment in the value of ¢,
1 p(h +A)]
7 liminf, o< 1—=—F— >0

We note that Condition 1 implies that lim,_,, *{,>. p(|ju[) du = 0. Condition 2
involves a slightly stronger assumption.

If a § satisfying (5) and (6) exists, by replacing it, if necessary, by a more slowly
varying function, we can always secure that

8) B/t -0 as T - oo.

Let 2y be the inferior limit in Condition 3. Then the condition implies that there
exists a positive number 6, < h, such that for any 5,0 < 8 < 6, < h

&) p(h+6) < p(h)(1—y9) and,
p(h—3) 2 p(h)(1+ o).

Condition 3 thus implies that p(z) decreases at a certain minimum rate in the
neighbourhood of the point ¢ = A.

4. Bayes risk. We assume a prior distribution on Q given by

1 0|2
(10) £ = o p( |2|2>.
We define a loss function for the procedure ¢ by
(11) Ly(x, 0) = bvg(x,-)—¢(x, 0),
where,
(12) vp(x,-) = [q ¢(x, 6) b,
and b = p(h).

For the prior distribution in (10), let ¢_(x, 6) be the Bayes procedure; let L (x, )
denote the loss function of the Bayes procedure and Ly(x, 6) that of the procedure
¢, in (3). Let E, denote expectation with respect to the prior distribution (4). We
now prove the following:

LEMMA 4.1. If the function p(t) satisfies Conditions 1, 2, and 3 given in Section 4,
then as T — oo

(13) E.Ly(x, 0)—E.L/(x, 6) = O(1/7%).
PRrOOF. Let J be a given arbitrarily small positive number, such that

(14) 0 =< d, where 6, is as in (9).
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We put
(15) p(h+90) = b(1—n), 0<pn<l,
(16) p(h—=0) = b(1+n'), 0<n,
and
a7 e = min (n/3, n'/3, 9).

Since n < 1,
(18) ' e < i

The Bayes risk is given by,
6]

1 0
(19) EL(x,0)= a0 L exp (— F) do JR [bv.(x)— (x, 0)]p(|x— 0]) dx

where
(20) v(x) = v (x,) = [q P(x, 0)db.

We now partition, the domain of integration RxQ of the integral in (19), into
subsets, D;, D,, D5 respectively defined by

=01 > </, {Jxl/z > ep, [x—0] < ©/p}

and {|x|/t < eB, |x— 0| < 1/B}. Let I, I, and I, respectively denote the values of
the integral on D,, D,, D;.

We now take, 7, so that for t 2 7, each of the following conditions is satisfied
viz.

(211) St P(u) du < /72,
1 Jul?
. I i < 2
(21 i) 271T2f|u|/z>(zﬂ—1/ﬂ) exp( 212>du <o/t by (6) and (7),
Mo+ 20
(21 iii) %é ,

where mg = [, ... [u]*p(Ju|) du which is finite by Condition 1 and

(21 iv) Bhir£1 where hy =h+34,.
Then using that 0 < ¢ (x, #) < 1 and that [, p(|x—0|) dx = 1, we have

(22) I, = -3z by (211)

v

1 |9|2)
and 1 — exp| —=—= 1d0 = —6/7? b 211
’ 27”2.[|e|/r>(eﬁ—1/ﬁ) p( 272 2~/ y (i)
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In the integral for I;, by interchanging the order of integration with respect to
x and 0, putting ¥ = x— 6, and writing (x-u) for the inner product x and v and
substituting [¢(x, 0) df for v (x), we get

e N [x*
( ) 3 =002 |x|/1§ﬂsexp 772

x| tuke-puess| S0 e [bo 00

(24) Ki(x) = p(Ju l)exp[(x lzi]]d”

|ul £</B

The integral of the term (x-u) vanishes by symmetry and the integral of |u|2 =<
the second moment of the distribution = m, by (21iii). Hence using (21i), we get
from (24)

where

mg my

0
>l
(25) K(x)z1 i Y

where we put m; = mgy+20,.

Hence we have from (23),

26) Iz L
( ) 3 — 27tT lx'/téﬁsexp 212

BN R 1 e

Let B, denote the subset of Q, defined by 6 € B,,, if, and only if,

@7 p(|u) exp [(x;;;)] > b(l —é%) and,

jul = </B.

We shall show that the set B, is completely contained in the circle in Q, defined by
|u| < h+0, and completely contains the circle defined by |u| < 4—34.

For (x, 0) € D5, |(x-u)|/7* < & Hence

(28) exp [("T '2“)] > 1—¢
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and exp |:(x 'zu):l <1+ &
: T 1—¢
< 1+2¢ since & < % by (18).
Also
(29) -k > 1—¢ by (21iii).
21

If |u| > h+3, p(|lul) < b(1—3¢) by (15) and (17), and hence by (28),

(30) p(|u]) exp [(’:z”)

:I < b(1—3e)(1+2¢) < b(1—¢)

and if |u| < h—0, p(Ju|) = b(1+3¢) by (16) and (17),
and hence by (28),

31 p(Ju)) exp [(’:2”)] > b(1+3e)(1—¢)
> b(1—¢).

(29), (30) and (31) combined with the definition of B, in (27) show that the boundary
of the set B, lies wholly within the area bounded by two concentric circles with
centre x and radii #— p and h+ p where

(32 p=0.

Let f(x) denote the inner integral in the right-hand side of (26). Clearly f(x) is
minimized by putting ¢,(x, §) = 1 for 0 € B, and ¢ (x, 0) = 0 for 0 ¢ B,, and
taking the integral over the whole set B,. We also substitute in the inner integral by

) A 2 2
exp [(xzzu)] s 1+(322u)+_—|x| d I+e+-]

274

e
1.4

IIA

XU
1+(—2'—)+
T

(x-u) hy?|x|?
el

lIA

1
where i, = h+3, = h+35 = |u| by (32) and (14). We then obtain from (26).

’|

f(x)z Lx [b—p(|u])] d”—Lx[% +h1r‘?|2]d“

®) - [ S wupan

T

=t +t,+1; say.
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Now since p(|u|) > & for |u| < h, p(|ju|) < b for |u| > h, 1, is minimized when B,
coincides with the circle [u| < 4. Hence putting v, = 7h?, and using (2), we get,

(34) ty 2 bvg—(1—a).
Next, since the set B, is wholly contained in circle of radius 4, = h+3d,,

bm1+h12|x|2].

212 T4

(35) t, = —nh12|:

Let C, denote the circle in Q, defined by |u| < A. In the integral for ¢;, we
partition the set B, by putting
(36) Bx = Cx+(Bx—Bx'Cx)_(Cx_Cx'Bx)‘

By symmetry the integral of (x-u) on C, vanishes. Hence using that in the domain
of integration |u| < h,, we get

hifx|

h
(37) ty = _LB ey p(|u|)du—£c ey @ p(|ul)du.

To obtain a lower bound for 75, we now prove that p in (32) is in fact 0(1/72).

Since in (27),

exp l:(—)%;—)] < 1+|—)il2|—uI [1+e+e*-]

|x] -4,
2’

my 2h,|x[\ ™"
- 27‘)(” l

I\

142

therefore for 6 € B,

p(|u|) > b

(38) >b

TN TN

Let u = h+ A. Then since A < 9 by (32), we have by Condition 3, and (9)
(39) p(lu) £ b(1—yA).
By (38) and (39),

1/ my 2hx|
(40) A<;<§?+ - )-
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exp[p:—zu)] = l—@l.

Again in (27)

Hence for 0 ¢ B,

. .
p(u)) < b( 212)(1 b ) , by (27)
= b<1 I)::lzhl 118>
< b<l+2 lfl i ) by (18).

If u = h— A, then by Condition 3, p(|u|) = b(1+7yA).
Hence for 6 € B,,

(41) A< EM
y 12
Combining (40) and (41), we get in (32),
1/ my 2hx|
4 < -
42) p= (21 t— )

Thus in (37), the sets (B,—B,-C,) and (C,—C,-B,) are both contained
within the region enclosed by concentric circles with center x and radii (4+ p) and
(h— p) whose area is 4nhp. Also throughout this region,

43) p(|u]) < p(h—6o)
= b, say.

Note that by the strictly decreasing property of p(t), b, must be finite

ash— 0, > 0 by (9) and hence p(h—9,) < p((h—354)/2) < oo. We thus obtain in
(37), using (42),

Amhhybo [mlx] | 2, |x]?
(44) iz —— [zf =
, .
2 4””;’ = [”;ﬂx|+2ht|x| assuming that 7, > 1.

Combining (34), (35) and (44) with (33) we obtain the lower bound for f(x).
We substitute this lower bound for the inner integral in (26). As the lower bound is
everywhere negative, the integral with respect to x can be taken over the whole
space R. Hence integrating out with respect to x and using

L exp _E l_x_l dx = —_(27.[)%
2nt? x 2t2) 1 2

1 X2 [
ZE—‘I:Z'JVRCXP (-—- -2?) 1,'—2 dx = 2,
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we get
bmy 2h,*
45) I3 2 bog—(1—a)—nh,* ('2—;71-#_1;_)
_drhhibolmy @)t 4y
y 2t 2 2 |

We now combine (45) with (22) to obtain the lower bound for E.L (x, 0). It is
also easily verified from the definition of ¢, in (3) that

(46) E_Ly(x, 0) = bvy—(1—0a).
Substituting (46), we obtain from (22) and (45) that
47) E.Ly(x, 0)—E,L(x,0) £ A/7* forall 72 14

where A is a constant independent of t and 6. This completes the proof of
Lemma 4.1.

5. Main Theorem. The loss function for the procedure ¢q(x, 0) is denoted by
Ly(x 0). Similarly we shall denote the loss function for the procedure ¢,(x, ) by
L,(x, 0). Using the result in (47), we now state and prove the following:

THEOREM 5.1. ¢ o(x, 0) being the usual confidence procedure defined by (3), if any
other procedure ¢, (x, 0) exists such that,

(48) E,Li(x,0) = E,Ly(x, 0) for all 0eQ,
then ¢, is equivalent to ¢ i.e. ¢,(x, 0) = ¢(x, 0) for almost all (x, ) € (RxQ).
PrOOF. We define functions U;(x), Uy(x) on R by
(49) Uy(x) = [q [b—p(|x—0D1:(x, 0) d6, and
Us(@) = o [b—p(|x—0)Ipo(x, 0) db.
Using the definition of ¢ in (3), we get,
(50) U (%)= Ug(x) = [ x—oy < [P(|x = 0]) ~ b][1 = §,(x, 6)] dO
+f1x-01>4 [0 = p(|x —0[)]1(x, 0) db.
Hence as p(¢) is strictly decreasing and p(h) = b
(51) Uy(x)—Uy(x) 2 0.

Suppose ¢, is not equivalent to ¢,. Then the strict inequality in (51) holds on a
non-null subset of R. Hence there exist positive constants k and a such that

(52) Jix1alUi(x) = Uo(x)] dx = k3 k > 0.

Let T, denote the subset of R defined by {x: |x| < a}, and let T,° be its comple-
mentary set.
We now write down the expressions for £ L(x, §) and E L(x, 0) as in (19).
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Then combining the two expressions we obtain the integral for E,.L,(x, 0)—
E.Ly(x, 0). We interchange the order of integration with respect to x and 6 and
partition the integral on R into integrals on T, and 7,°. We thus obtain, writing
G (x) for the integrand on R,

1 1
(53) E.L(x,0)—E.Ly(x, 0) = ijaGr(x) dx+ 2nrszacG’(x) dx
=T,+7T, say.

The intégrals corresponding to 7; and T, have been dealt with in the previous
paper ((1969) (44) to (54)). A similar argument applies here and it is unnecessary
to repeat the detailed argument. We show that the integrand G (x) is bounded in
absolute magnitude, uniformly in 7 by a function G(x) which is integrable on T,.
Also as T — 00, G(x) = [U;(x)— Uy(x)]. Hence by the Dominated Convergence
Theorem, for sufficiently large 7.

(54) Q)T =z k-6 by (52).

Similarly (—T,) gives the improvement in risk of the procedure ¢, over that of
¢, . This improvement must be less than that of the Bayes procedure. Hence
(55) T,z —Alt* by (47).

Since the left-hand side of (53) must be non-positive by (48), we have k < 274 + 6,
and so, as 0 in (14) can be taken arbitrarily small,

(56) k < 2rnA.

Since (56) holds however large a in (52) may be, letting a — oo, we obtain
(57) g [Ui(x) = Uo(x)] dx = a finite number M say,
and since M = k in (52), M > 0.

[Explanatory note: As the following argument is rather long we shall give its
brief outline. We consider the improvement in the expected risk of the procedure
¢, over that of ¢, viz. E.L(x, 0)— E.Lo(x, 0), whose value is given by the right-
hand side of (53). It is shown that the worsening of the expected risk of ¢, over that
of ¢, on the set T, can be made arbitrarily close to M by taking a sufficiently large.
This worsening has to be offset by the improvement in risk on the complementary
set 7,°. But it is shown that the latter, for any fixed a can be made arbitrarily small
by making 7 sufficiently large. Hence M must be = 0. The theorem follows from
this.]
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Now for each x € R, we partition Q into subsets E,, F,, G, and H, defined by
0eE,, ifandonlyif |x—0|<h—5,
(58) feF,, ifandonlyif h—8, <|x—0| < h,
0eG,, ifandonlyif h<|x—0| < h+d,
0eH,, ifandonlyif h+d, < |x—0|.
In (58), J, is the number defined in (9). Then substituting for U;(x) and Uy(x)
by (49) and for ¢ (x, ) by (3), we obtain from (57),
(59)  Jrdxfe [p(ju])=bI[1—1(x, 0)]d0+[rdx fr, [p(|u|)—bI[1—¢:(x, 6)]dO
[, [b—p((u])]6 (¥, 0)d0+ [xdx [, [b—p((u])]d1(x, 0)d0 = M.

The integrands of each of the integrals in the left-hand side of (59), being non-
negative, each of these integrals must converge and we have (writing ¢, for short

for ¢,(x, 0)),

(60) i i, [p(Ju)=b1-(1— 6,)d0 = M, 2,
(60 ii) frdx fp [p(ju))=b]-(1—¢,)d6 = M, 2 0.
(60 i) frdxfo [b—p(|u|)Jdp,do = M; 2 0,

(60 iv) jkdxjnx[b_l)d”l)]% =M,=20,

where My +M,+M3;+M, = M.

We now put

ve(x) = IE,, (1—¢,)do,
(61) vp(x) = jFx(l —¢,)do,
ve(x) = jcx ¢, 4o, and

vp(x) = [, ¢ do.
We next prove

LEMMA 5.1. The convergence of the integrals in (60) implies that

(62 1) Jrve(x)dx < oo,

(62 ii) Jrdx [E. p(ju)(1~¢1)d6 < oo,

(62 iii) Jrvu(x)dx <

(621iv) frvF?(x)dx < 0. and
(62 ) [rv6*(x)dx < oo.

ProOF. (62i) follows from (60i) as for f € E,, p(|lul)—b = p(h—3,)—b. (62i)
with (60i) then yields (62ii). (62iii) follows from (60iv) as for 6 € H,, b— p(lul) =
b—p(h+0,). Next in (62iv), let vp(x) = area enclosed between two concentric
circles with center x and radii 4 and h, where h, = h,(x) < h.
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Then
(63) 0p(x) = 72 —hy2).

As p(|u|) is a decreasing function of |u|, the inner integral in the left-hand side
of (60ii) is minimized for given vy(x), by putting ¢, = 0 for h, < |u| < h, and
¢, = 1 otherwise. Also since in this region h—|u| < , by the definition of
vp(x) in (58), we have by (9),

(64) p(|u]) = b1 +y(h—|u])].

From (60ii), using (64), we get,
§e.[p(ju])—bI(1—¢,) 46 2 2myb [, p(h— p) dp

nyb 5
(65) =T(h—h2) (h+2h,)

2
3n(h+hy)* F

yb3(h—0) , .
2 gTzo ve?(x)

by (63)

as h=h,>(h—38,) by (58).

Substituting the right-hand side of (65) in the left-hand side of (60ii) we obtain
(62iv).

Lastly, let v4(x) = the area enclosed between two concentric circles with center
x and radii 4 and A3 = h3(x) = h., so that
(66) v(x) = n(hy>—h?).

For given vg(x), the inner integral in the left-hand side of (60iii) is minimized by
putting ¢, =1, for h = |u| < hy and ¢, = 0 otherwise. As by (58), A3 =
h+6 £ h+3d,, we have by (9), ‘

(67) p(ju) < bl1—y(|ju| ).

Hence

Je.[b—p(|u|)]d1d0 2 27yb i p(p—h) dp

68 nyb
(68) =2 (ha— Y (2hy + )
b (h+2hy)
“Bn(h+hy)? ' C
yb 3h
23 21 67 6 )

On substituting (68) in the left-hand side of (60iii), (62v) is proved. This com-
pletes the proof of Lemma 35.1.

() by (66)

as h<hy; < h+d,
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6. Main Theorem continued. We now resume the proof of the Main Theorem
5.1. Using (57), (62iv) and (62v), we fix the number a, which determines the set
T, = {x|x| £ a, so that each of the following inequalities hold viz.,

(69 1) [7,[U(x)=Uqy(x)]dx = M =34,
(69 1) r,evp*(x)dx £ 62, and
(69 iii) Jr,ev6°(x)dx < 62,

where J is the fixed positive number in (14).

We now keep a fixed, and show that by making 7 sufficiently large, the improve-
ment in risk of the procedure ¢, over that of ¢,, on the set 7,° can be made
arbitrarily small.

In the right-hand side of (53), as observed in the remarks following (53), as
T — o0, (2nt*)T, — the left-hand side of (69i) = M —34.

Hence we can take 7, sufficiently large so that,

1
(70) T, > F(M_Zé) forall 72 74.

Next in the integral for T, in the right-hand side of (53), we partition the domain
of integration 7T,°XQ as follows:

D, = {(x, 0); xeT,’; |x—0| > %},
||

71) D, = {(x, 0); xe T, —> ef; |x—0] = %}, and

: . [x] i
D3: (x’g);XETa;_§8ﬁ7|x_0|§—‘
T i
The partitioning is similar to that into the sets D;, D,, D; described below
equation (20), except that the values of x are restricted to the set 7,°. Let J;, J,,
J; be the components of T, arising from integration on D,’, D,” and Dj;’
respectively.

Now on D,’, interchanging the order of integration with respect to x and 0,
using that 0 < ¢, < 1, and writing v,(x) for v¢,(x,-), we have,

1 _lof
Tv=o02 chP 272

(72) ' dHJ {[bo1(x)~'¢11~[boo—bol}p(|x—0]) dx
Ix|>a, lu]></B

1 o
~5 J;) exp (—-2—1—2) do flul - [1+ boo]p(|x—0]) dx

o

[

If

by (21i).

v
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Similarly,

=g (-5)
= exp| — =5
2721t [y ez en- 1 P\7222

-df’f {[bvy(x) = ¢11~[bvo—dol}p(x —0]) d0
|x|/t>¢€B, |x|>a, |u|>1/B
lo1®

1
—(1+ by, ——j ex (———)d@
( o) 27 161/¢> (e8- 1/8) P\ 722

5
— 1+ bvo) by (21ii).

(73)

1\

v

Next in the expression for J;, we interchange the order of integration with
respect to x and 6, and obtain

1 kil
I3 =2 e Pl 7272

(x-u) |uf?
(74) “dx 99 bvy(x)K(x)— p(jx—6|)exp| —z=—5=5 |$. d0
|x—8]<1/8 T 2t
{b K(x) (R [(”) [ 2]4) de}}
- - x—0|)ex -—
VoS X |x—0|§r/ﬁp p ‘C2 2,52 0
where K. is as defined in (24) and T, denotes the set {x;a < |x| < 7fe}.
Now,
(75) vy(x) =jn¢1 do 2j|x—o|§z/ﬂ ¢,d0 and

0o = Jjx-01 2P0 A0 = fjx—0|5e/p Do 40 by (3).
Substituting by (75), we have from (74)

(76) Jy = ! exp —I-ZC—E dx bK(x)—exp (x-u)_l_u_|2
3=2n1? Jrpe 272 w<us L 2 277

-p(|x—e|)}<¢1—¢o>de.

Now in the inner integral in the right-hand side of (76), we partition the domain
of integration {0; x—B{ < t/B} into the subsets of Q, E,, F,, G, and H,' =
H,.n{0;|x—0| < t/B} where E,, F,, G, and H, are the sets defined by (58).
Let J,, Js, J¢ and J; denote the components arising from integrations on E, ,F,,
G, and H,'. We assume here that 7/ > h+d,, so that E,, F, and G, are wholely
contained in the set |u| < t/f. Then

i) Jy = T +Js+Js+,.
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Now from (76), substituting for ¢, by (3)

(78) J4—27r12 T.,'cexp 772

- dx Lx{bK,(x)—- p(iu|)exp[(x'“)— !,;—Lf}}(@—l)d().

2
From (24),
x|? x—ul?
™) - K,(x)exp(—'z-T—L> = flulét/ﬁp([uDexp(—' 212| >du
<1
and

2 . 2 —ul?
exp(——lzx%> exp [(_x_ﬁu_)_%} = exp[—%ﬁ—'] <L

Hence in the right-hand side of (78), the integrand is bounded in absolute
magnitude, uniformly in 7 in the domain of integration by

g(x, 0) = [b+p(Jul(1 o)),

and by (62i) and (62ii), g(x, ¢) has a finite integral on 7,°xQ. Hence by
the Dominated Convergence Theorem, the limit of (2rnt?)-J, as T — oo can be
taken under the integral sign. But as T — o, the integrand — [b—p(|u]))(¢, —1) =
0 for 0 € E,. Hence lim,_, ,, (2n7t%J,) = 0.

Therefore we can take 7, sufficiently large, so that

(80) Jy, =2 =9 forall 7 = 7,.

Similarly,

o1 1 [x[?
(81) J7—27”2 Ta,cexP 272

dx Lx/ {bKT(x) — p(Ju])exp [("T'Z“)_ ‘2—2‘—:]} é, do.

Using (79) and that p(|u|) < b, the integrand is seen to be bounded in absolute
magnitude, uniformly in t by g,(x, 0) = 2b¢, and the integral of g,(x, #) on
T,°x H, is finite by (62iii). Hence by the Dominated Convergence Theorem, the
limit of (2n7?)-J, can be taken under the integral sign. Also as T — oo, the
integrand — [b—p(|u‘)]¢1 2 0 for 0 € H,'. Thus lim,_, , (2rnt?)-J; = 0.

Hence we can take 7, sufficiently large so that

(82) J,z =9 forall 72 1,
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We next have

1 e
2nt? |1 XP\ T oe2

~dx : {p(|u|)exp[

o

(83) Js=

| |2:| bK (x )}(1 ¢,)du

In the inner integral in the right-hand side of (83), p(|u|) 2 b,

[((x-u) |ul? x|-lu|  |ul?

(84) expL p |2‘c| ] = 1————| Lzl l—lz-jj—z
2
L
T 27

Also since for xe T,”, |x| < &t by (74)

» 2
K@= e - by (24)
[ [ - Ju]
(85) < p(|ul)exp >— |du
Jlul=v/8 T
< s |)[1+ [ ”“l] as |x|l”|§a<g- by (18)
Jlul=t/p T
[ 2h
< p(|u|)|:1+ lxl] u —1+—jc-|2£|.
~|“|<

Denote the inner integral on the right-hand side of (83) by f5(x). Then substituting
by (84) and (85), and noting the definition of vg(x) in (61), we have,

h*  3h
(86) ZOE —b(2 : T"") 0r(x).

We now use the following relations which have been proved in Lemma 6.2 of
the previous paper [2] viz. that the relation (69ii) implies that,

1 _|x|2 i < 8
(87) 2ne? [ P\ T 2e2 )R (x)dx = 1(2m)¥
(Inequality (93) of [2])

and

1 |x|? || 2 6
(88) 2mi? Luce’“’(_i ) o) S G T

(Inequality (99) of [2])
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Since the set T,’¢ which occurs in the right-hand side of (83) is a subset of
7.5, (87) and (88) continue to hold when 7, is substituted for 7 ,°.

NotE 5.1. In Lemma 6.2 of [2], the exponential term is exp (—|x|*/(2g7?) but it
is easily verified that the proof of that lemma remains valid for any positive value
of g and in particular for g = 1.

Substituting by (86) in (83), and using (87) and (88), we obtain that,
5 h* & 4 6h o
T O\2@2n)te?  (2m)E e

b (h? 0
> —(—2;5; -5+6h = forallt =7,

where we assume that 7 = 74 = 1.

(89) Js

v

Lastly,

-dx Lx {bK,(x) —p(|u|) exp [(xr—zu)— I;—Lz]} ¢, do.

Here we put,

K()21-33 by (25),
(91) ~ p(u) s b by (58),
x-u) |uf? x| |u x| |u
exp[( a )_l'z’z"?]ée"p(' |‘52| |)§1+2| L2| |
2h
<1+ lelx|

as (|x|-|u)/(?) < & < § for (x, B)eDy’, by (71) and (18), and for O € G,,
h+6, = h, by (58).

Because of (69iii) the relations (87), (88), also hold when vg(x) is substituted in
them for vy(x). Hence substituting by (91) in (90), and using (87) and (88) with
vp(x) replaced by vg(x), we get

bm, 5 4b Mo o
“\ 222 2n)F  (2n)* <3 oraftt=rto

u|§

(92) 7

1\%

b [m, o
——(27)_; 7+4h1 ‘_Z_—z for all T = T,

as t > 1, by (89).
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Now adding up the lower bound for 7} and J,, J, and J, to J; in (70), (72),
(73), (80), (82), (89) and (92), we obtain that
—Bd

3 forallt = 7,

(93) E.L,(x, 0)—E,Lyx, 0) =

where B is a fixed constant independent of é and 7. Since by (48), the left-hand
side of (93) < 0, and § in (14) is arbitrarily small, (93) implies that

(%94 M =0.
But by (57)
(95) Mz k>O0.

Thus the assumption that ¢, is not equivalent to ¢, leads to a contradiction.
Therefore ¢, must be equivalent to ¢, as was to be proved.
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