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EQUICONVERGENCE OF MARTINGALES

By EDWARD S. BOYLAN
Rutgers, The State University

Let (X, &, P) be a probability space, #,,n = 1, 2, ---, a sequence of subfields
of & increasing (or decreasing) to a limit subfield &, and fe L (X). It is a (by
now) classical result of martingale theory that llm,,“,w E(f| F,) = E(f| F o)
almost everywhere. (See [2] for details.) In all such convergence proofs, however,
there is little investigation as to the rate of convergence to the limit. One would
expect that knowledge regarding how quickly the subfields &, “approach” the
limit field &%, should yield some information regarding how well E(f| F
approximates E(f| F ). Such information, depending only on the %, is, in
some sense, independent of the particular L; function f. In this paper we first
define a pseudometric, D, on the set of subfields of # and then show that if
D(#,, # ) — 0 then rates of convergence of E(f| F,) to E(f| ») can be given
which are, in a sense to be defined below, independent of f.

DEFINITION 1. If Fe & and &' is a subfield of &, let
d(F, #') = infp..z P(F A F'),
where F A F' = (F—F') u (F' — F), the symmetric difference of F and F'.

DEFINITION 2. If # | and & , are two subfields of & let
d(F , F,) = supp,cz, d(F, F3),

and D(F ,, F,) = dF |, F)+d(F,, F ).

THEOREM 1. D is a pseudometric on the set of subfields of #

ProorF. Clearly (a) D(F {, F,) 2 0; (b) D(F |, F,) = D(F,, F,). It remains
to show

©) D(F,,F3) £ D(F,, F+DF,,F ;). By symmetry, however, it suffices
to show

(C,) d(yl"g/’-:{) é d(‘g'vl’ (0/—"2)+d(572, ‘973)

Suppose d(F ,, #,) = a and d(F,, F ;) = b. To show that d(F |, F;) S a+b it
suffices to show that for every ¢ > 0 and F, € &, there exists an F; € & 5 such that
P(F, AFy) < a+b+e. Let Fie#,. Since d(¥,,F,) = a, there exists an
F,e %, such that P(F| AF,) < a+¢/2. Since d(¥,, % ;) = b, there is an
F; e & 5 such that P(F, A F3) £ b+¢/2. The inclusion F; A Fy <« (F; A Fy)) v
(F, A F3) implies

P(F, AF,y) < P(F, AF,)+P(F, AF) < a+b+e.
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It should be noted that d is not a pseudometric because it is not symmetric.
In particular, if #, < &,, then d(¥,, #,) = 0 but d(¥,, #,) need not be zero.
There is a significant relationship between D and conditional expectations, as the
following theorem begins to show.

THEOREM 2. D(¥ |, ¥ ,) = Oif and only if E(f | F.) = E(f | F ,) almost every-
where for every f € L,(X).

Proor. Suppose D(F,, % ,) = 0. Let feL,(X) and real numbers ¢ and b,
a < b, be given. To prove the only if segment of the theorem, it suffices to show that

P({w:E(f|F,) <a<b<Ef|F,)})=0.

(For simplicity of notation, the symbols {w: —} will be omitted, e.g. the above
equation will be written

PE(f|F)<a<b<E(|F,)=0.

Let A = (E(f| #,) <a)and B = (E(f|#,) > b). Then A€ F, and Be F,.
Since D(# , #,) = 0, for any ¢ > O there exist sets F,.€ #,, F, € #, such that
P(F, A A) £ ¢ and P(F, A B) < ¢. (We omit the dependence of F, and F, on &.)
We have

jAandP: jAnF,,fdP+IAn(B—F,,)fdP__[An(F,,—B)fdP
) = jAmFb E(flﬁl)dp_*_,‘.AM(B—Fb)fdP_IAn(F,,—B)fdP
= aP(Aan)'*'jAn(B—F,,)fdP_jAm(F,,—B)fdP-

As ¢ >0, P(ANnF,) > P(AnB) while the remaining integrals all approach
zero. Thus, we may conclude that

In similar fashion, however, we have

Since a < b, this is possible only when P(4nB) = 0.

Suppose E(f | #,) = E(f| #,) almost everywhere for every fe L,(X). Let
Ae&F,. Then E(1,|#F,) =1,=E(l,|#,) almost everywhere. Let B =
(E(1,| #,) > 0). Then Be #, and

P(4 AB) = P(1, # 1) < P(L, # E(L, | 1)) = 0.
Since A was arbitrary, this implies d(¥,, #,) = 0. The same logic shows
d(F,, F,) = 0,and hence D(¥ ,, #,) = 0.
COROLLARY 1. If D(F ,, F,) = 0 every set in F | differs from a set in ¥ , by at

most a set of measure zero.

COROLLARY 2. If & has no nonempty subsets of measure zero then D is a metric.
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Having defined D, we now return to the question raised in the first paragraph
of the paper.

DEFINITION 3. Let f},, j€J, J an indexing set, n = 1,2, ---, be a collection of
functions such that lim,_, ., f;, = f., exists for every j. The functions f}, are said
to be equiconvergent in measure if for every ¢ > 0

limn-*oo P(|fjn*f;ao| > 8) =0
uniformly in j. The functions f}, are said to be strongly equiconvergent if

| My [ | fiu =y @P = 0
uniformly in j.

THEOREM 3. Let &, n = 1,2, .-, © be subfields of & with &, increasing or
decreasing to ¥ ., and llm,,_ﬂ,o D(?n,? ) = 0. Then the functions E(f| F ),
n=1,2-, ”wa < 1, are strongly equiconvergent.

ProOF. Strictly speaking, we have not put the functions E(f | #,), | f|o < 1,
in the form given by Definition 3. It should be clear, however, that the conclusion
of the theorem is

lim,o, | |ECf | F)—E(f | F )| dP = 0

uniformly for all f'such that |f| < 1 almost everywhere.

Because all the functions in question are uniformly bounded, strong equi-
convergence is equivalent to equiconvergence in measure, and this is what will be
shown. The proof is similar to that of Theorem 2. For simplicity of notation,
E(f | # ) will henceforth be denoted simply by f,,. We wish to show that

(4) limn-'oo P(|fn—foo| > 8) =0

uniformly in f] | f | < 1. (Unless otherwise stated, all functions f appearing below
will be assumed to be bounded in absolute value by 1.) Let ¢ > 0 be given. To
prove (4) it suffices to show there exists an integer N(¢") such that

(5) P(fi—fo| >0 S ¢, n = N().
Since | f| <1 almost everywhere, |f,| < 1 almost everywhere. We can find a
sequence of numbers a;, i = 0, 1, ---, k, where k is a function of ¢, with the follow-

ing properties:
(a) a; = 0 for some value i;
() ai41—a; 2 ¢/2;
©) |ai

<1
(d) |a| £ 1,b—a > eimpliesa < a;,b > a;,, forsome,0 < i < k—1.

b

(Forexample,ife = 1/m, thena; = —1+3%i/m,0 < i < 4m.) We now prove

(5) P(fo—1n>€) = ¢/2, nz N()
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for some N(¢’) yet to be determined, uniformly in f. From the properties of the q;,
we have

P(foo —f;l > 8) é Zf‘;(} P(/n é ai’foo > ai+1)'

To prove (5) it thus suffices to show

(6) P(f, S a;,fo > aisy) <

uniformly in f.

Let A= (f,Za), B=(f, > a;y;) and D(F,, ¥ ,) = 0. There exist sets
Fe#,, Ge%, such that P(F A B) = P(G A A) = 4. (Strictly speaking the
value 6 need not necessarily be attained, but we assume so for simplicity of nota-

tion. There are already more than enough ¢’s in use.) Then (assuming a; = 0)
acsfdP = [4np fAP+[4n5-p)f AP —[ 4 (r -5 fdP
@) < JunrfdP+26 < a; P(ANF)+26
< a(P(ANB)+0)+26 = a; P(AnB)+ (2 +a;).

’

&

e 0<i<hknz NE),

The next to last inequality is true because (ANF) < (AN B)u (4An(F—B)).
Similarly,

Jansf AP = [, pf AP+ {465 S AP~ [ 16 ayf dP
(8) 2 [gnpfdP—20 = a;. P(GNB)—20
2 a;+(P(AnB)—0)—20 = a;,{ P(ANB)—(2+a;+ ).
Combining (7) and (8), we have
Q) a; [ P(ANB)—d(c+a;4 1) < a,P(ANB)+(2+a)),
which implies

(4+a;,+ay) < Eﬁs '

(10) P(AnB) = <
ai+1—4; €

Ifa; < a;,; = 0, thensimilar reasoning shows
64—a; . —a) 126

divy1—4; €

(11) P(ANB) <

Il

Therefore, if Nisso large that D(%,, # ) < €¢'/(24k),n = N, we have
P(fo—f, > ¢) < ¢&/2, n=N.

An examination of the argument used to prove (5’) reveals that the roles played by
& ,and & _ can be interchanged, i.e., it is also true that

(5" P(fi=fe > &) = €2, nz N,

where N is as defined above. (5) and (5"), however, are equivalent to (5) and the
proofis complete.
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It should be noted that Theorem 3 is true in a somewhat broader context as
well. In proving Theorem 3, use was made of the fact that all functions f were
uniformly bounded. (The bound was 1, but this was not significant.) The set, H,
of all functions f, || f |, < 1, is a uniformly integrable subset of L,(X). Theorem 3
remains true when f'e€ H, where H is any uniformly integrable subset of L,(X). The
set H= {f:|f].» = 1} was used in the statement of Theorem 3 for (relative)
simplicity of representation. The modifications necessary to prove the more
general result will be given in the proof of Theorem 4.

It should be noted that it is possible for &, to increase or decrease to &
w1thout D(¥,, F,) approaching zero. For example let X =1T[21;, =

21 B, P =[] L;, where I, = [0, 1), for all i, B; the Borel field for all i, L,
standard Lebesgue measure for all i. If &, = H;‘=1 Bix[]%Zn+1 B, where
B = {¢, I}, then the &, increase to &, but D(¥,,,, F,) = %, which implies
that D(&,, %) does not approach zero. To see that D(%,,,, &#,) = %, consider
two independent sets, 4 and B. The P(4 A B)= P(A—B)+P(B—A) =
P(A)+P(B)—2P(ANnB) = P(4)(1-2P(B))+P(B). If P(B) = %, P(A A B) = P(B).
Taking B a set in &%, independent of all sets in &, with P(B) = 1 (such a B
clearly exists), we have d(B, #,) = 4 = d(F ,+1, F,) = D(F .1, F,). In similar
fashion if #_, =[li=1 B/ % []2n+1 B;, then the & _, decrease to the tail field

F_ o, but D(F _,, F _ ) does not approach zero.

A large class of cases where D(#,, #.) does approach zero can be given,
however. If X = U _, A,, A, disjoint, with P(4,) —» 0, let #,' = A, " Z, i.e.,
the measurable subsets of 4,,. If, #, = | Ji-, 7,/ (or F, = Ul=1A,u Uk w17,
then the &, increase (decrease) to a limit ficld % and (clearly) D(#,, # )
approaches zero.

THEOREM 4. Let F,,n=1,2,---, be a sequence of subfields such that
lim,, e D(F . F,) = 0. Then there exists a subfield, #, such that

lim,... D(F,, #) =0,
Moreover, for every fe L\(X), E(f | #,) converges inmeasure 1o E( f | ).
PROOF. Let f'e L,(X). The proof of Theorem 3 shows that

Hmm,n—moqun—fml > 6) =0

for any fixed ¢ > 0. Thus, the functions f, are fundamental in measure. This implies
(see [1]) that there exists an integrable function (which we denote) f,, such that f,
converges to f,, in measure. The function f,, is unique (up to sets of measure zero).
Consider the mapping T:L,(X) — L,(X), T(f) = f,,. The mapping T clearly
satisfies the following properties:

(@) T:Ly(X) — Ly(X);

) Tk f+ko9) = kT(f)+k,T(g), ky, k,, constants, f, ge L (X);

(¢) f= 0impliesTf = 0

(d) T(1) = 1.
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If it can be shown that
(&) T(T(f)) = T(f),

then it follows that 7(f) = E(f[ H') for some subfield #. (See [2], page 123). In
other words, to show that T(f) = E(f[ ) for some subfield #, it suffices to
show thatif g = Li.m,,_, f,, then g = Lim.,_ . g,, where Li.m.,_, denotes con-
vergence in measure (and g, = E(g | F.).

LEMMA 1. Let g = Lim. f, for some fe L(X) and F = (g £ a) for some real
number a. For every ¢ > 0 there exists an N(¢') such that for every n = N(¢') there
isanF,e ¥ ,,P(F A F,) < ¢

PrROOF. Let ¢’ > 0 be given. Let ¢ > 0 be so small that P(a < g < a+2¢) < ¢/2.
Sincelim,, P([f,,—g| > ¢) = 0, for nsufficiently large we have

P(|f,,—g[ >¢) < ¢'/2.
Let F, = (f, < a+e¢). Then
F,AF=(f,>a+e,g<a or f,<a+eg > a+2e)
U(fpSatea<g=ate).

Thus P(F, A F) < P(|f_,,—g| >e)+Pla<g=a+2) Ze2+62=2¢.
To show that T is idempotent, it suffices to show that for every ¢ > 0 and
¢’ > Othere exists an N(g, ¢) such that

(12) P(lg—g.| > ¢) < ¢, n= N, e).

Choose M so large that Pi!gé > M) < ¢4 Let a;,i=0,1, -, k, be as in
Theorem 3, except they span theinterval [— M, M Jinstead of [— 1, 1]. (For example,
(c) would be replaced by |a,| < M).

We now show that

(13) limn—'so P(g § Qais Gn = ai+1) = 01 0 é [ < k

Letd = (g9 £ a,), B= (g, = a;,+,). We have

a;P(AnB) = jAnt dP = SF,.nt dP+j(A—Fn)nt dP—I(F,,—A)nt dp
(14) > SF,.ann dP—-26'
>a,,, P(F,nB)—20' = a;,, (P(ANB)—8)— 24",

where F, is the set (whose existence was proven in Lemma 1) with the property
that F,e #,, P(A AF,) =. 6 - 0 as 6 —» 0 because g is integrable, and thus
[rg dP — 0as P(F) » 0. We are also assuming thata; = 0. If a; < a,,, < 0, then
only minor modifications, as before, are necessary.

Rewriting (14), we have
15) P(ARB) < a;10+20 §4(M6+b)'

Aiv1—4; €
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Pick 6 so small that Md+0" < &¢'[/16k, and N so large that F, exists foralln = N.
Then
(16) P(g,—g > &) £ P(9,—9 > &, |g9| £ M)+P(g| > M)

S éld+¢€l4 = ¢€)2, n=N.
Similar logic, with g, and g interchanged, shows that
(17) P(g—g, > 6) < €2, nz N,

which implies (12). Therefore g, converges to g in measure, T(T(f)) = T(f),
for every fe L,(X), and there thus is a subfield, #, such that T(f) = E(f! H).

We have not completed the proof of the theorem, however, because we have
not yet show that lim,,_, , D(%,, #) = 0. It follows from Theorem 3 that

limm,n—mop(lfm—.fnl > 5) =0
uniformly inf; | f| £ 1. Thisimplies

(18) lim, .o, P(|f,—f| > 8 =0

uniformly in £, | /| £ 1. To show that lim,_,,, D(#,, #) = 0, it suffices to show
that for every ¢’ > 0 thereis an N(¢") such that:

(a) if H e o thereexistsan F,e #,, P(F, AH) £ ¢,n = N();
(b) if F, e &, there existsan He , P(F, A H) < ¢,n = N(¢).

Each statement is proven in essentially the same manner. Let ¢ > 0 be given.
From (18) we know there exists an N(¢') such that

(19) P(|fi—fol >4 S ¢, n = NE),
for all f, |f| < 1. Let He# and F, = (E(ly|#,) >%). Then HAF,

(|E(y | #,)—1y| > ). Thus P(H A F,) £ ¢, n 2 N(¢). Similarly, if F,e#,,
let H = (E(1y, | #) > %).Then H A F, = (|15,—E(1y, | #)| > 4)and
P(HAF)<¢,n2 NE).

This completes the proof of Theorem 4. It should be noted that pointwise
convergence cannot be substituted for convergence in probability, as the following
example (due to Burgess Davis) shows. Let X = [0, 1), # be the Borel field and P
be Lebesgue measure on X. Let 4, be a sequence of measurable subsets of [, 1)
with lim sup 4, = [4, 1), i.e. every x € [, 1) belongs to an infinite number of 4,,
and P(4,) = 0. Let B, = [0,}) v 4,, ¥, = {¢, B,, X—B,, X} and f = 1,o,,.
Clearly D(#,, F ) — 0, where # , = {¢, [0, 1), [}, 1), X}, but E(f| F ,) does not
approach E(f] F ) for any x €[4, 1), since E(f| Feo)=f=0o0n [41), but
E(f| #,) > %for x € 4, when nis so large that P(4,) < 4. Thus

limsup E(f| #,) 24 for xe[},1).

Though the main point of defining D was in relation to finding sufficient con-
ditions for equiconvergence of martingales, D may well be worthy of interest in its
own right and, hopefully, will be of value in investigating other probabilistic
questions.
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