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ON NONPARAMETRIC ASYMPTOTICALLY MINIMAX TESTS

By STURE HoLMm
Chalmers University of Technology and The University of Goteborg

0. Summary. In this paper are studied asymptotically minimax properties of
nonparametric tests. It is shown that for two different definitions of asymptotically
minimax test, sequences of Wilcoxon tests are asymptotically minimax. The first
definition concerns asymptotic power of tests with fixed level, and the other is a
more decision-theoretic one.

1. Introduction, definitions. Minimax and asymptotically minimax properties of
distribution-free tests have been studied by Hoeffding [9], Ruist [11], Chapman [3],
Bell, Moser and Thompson [1], Doksum [5], [6], [7], and others.

Suppose X is a vector random variable, and let Q be a set of probability measures
P, P(X € A) being defined for all 4 belonging to a common o-algebra #. A test of
the hypothesis H that P belongs to a subset w of Q is a function ®,0 < ®(x) = 1,
measurable with respect to # and interpreted as the probability of rejecting H
when X = x. The power function of the test is defined as a function of P by

B(P) = Ep(®) = [®(x) dP(x).

If Q is quite general and not restricted to simple parametric sets of measures
(such as e.g. the normal measures) the set Q is often called nonparametric. When
considering power of tests in a non-parametric set Q Hoeffding [9] introduced
partitions {Q(d):d e D} of the alternative set Q—w into disjoint sets Q(d), d € D,
and defined a test @ to be of maximin power in a set I of level « tests with respect
to a partition {Q(d):d € D} if

infpeq) Ep(®) = infpequ) Ep(®)

forall®’' elandallde D.
For a nonnegative weight (loss) function W(P) defined for all PeQ—w, the
maximum risk associated with a test @ is

Riax(®) = suppeq—, (W(P)* (1 - Ep(®)))-

A test which minimizes the maximum risk within a set / of level « tests is defined
to be of minimax risk in  with respect to W(p).

It was shown by Hoeffding [9] that if a test is of maximin power in a set I with
respect to a partition {Q(d):d € D} it is also of minimax risk in /if W(P) depends
on P only through the partition parameter d. He also showed that the size « sign
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test is a maximin power (and minimax risk) test in the set / of all level a tests for
testing the hypothesis P € w against P € Q — w with respect to a partition

{Q(d):de(0,1—¢q)}

where Q = the set of all n-product measures whose component measures have a
common density f(y) satisfying

F(0) =% f(u)duz=gq
o ={PeQ:F(0) = q}
Q(d) = {PeQ:F(0) = q+d}.

Now let X, -+, X,,and Y,, ---, Y, be two independent samples with component
densities f (x) and g(y) and cumulative distribution functions

F(x) = (% f(u)du and G(y)={~,g(u)du.

For studying asymptotically minimax properties in the two-sample case we
suppose throughout this paper that we have a sequence of independent samples
X, X, Yy, -, Y,, where N = m+n tends to infinity and

0<limy, ,m/N=A<1.

We let Qy denote the set of all m + n product measures where the first m components
have density f and the second n components have density g, and wy S Qy the
hypothesis set in this case.

If we have a partition {Qu(d)} of the set Qy, where {Qy(d):d > 0} is a partition
of the alternative set Qy—wy and wy = Qy(0) or wy = (Js<0 Qy(d) it is quite
natural to define the set Qy'(Ay) = U@ an Qn(d) of alternatives separated from the
hypothesis by a “distance’” Ay, and study the minimum power against alternatives
in such sets for tests belonging to some set J of tests.

Following Doksum [5] we define a sequence {@,™} of level a tests @™ € Iy
to be (power) asymptotically minimax in a sequence {Iy} of sets Iy of level « tests
against families {Q4'(A):A € D} of alternative sets for powers f§ € B if

limy_, o, infp, c y(an) EPN((PO(N))
= SUP(,) : o ¢ 1) IM SUPy - o INfp 0 an) Epn (@)
for each sequence {Ay} satisying
limy o, o infp, c anany Epn(@0™) = B for some BeB.

Doksum showed that the sequence of size « Wilcoxon tests is (power) asymptotically
minimax in a sequence of large sets of nonparametric level « tests of F(x) = G(x)
against families {Qy'(A):A > 0} for powers f € («, 1] with alternative sets Qy'(A)
defined by ,

Qy'(A) = {PyeQy:G(x) S F(x) for xeR and sup,. gx[F(x)—G(x)] = A}
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which are often used in studies of power of nonparametric tests (e.g. in [1] and [3]).
In the present paper we use the partition {Qx(p):0 < p £ 1} of Qy where

QN(P) = {PyeQy: [, F(u)dG(u) = p}

and show that a certain sequence of Wilcoxon tests is (power) asymptotically
minimax in the sequence {/y}, where Iy is the set of all level « tests of the hypothesis
Pyewy = Uq§p0 Qn(q) = {PyeQp:p = po}, against families {Qy'(p,):p, > po},
where Qy'(p) = Uyzp, Qn(g) = {PyeQy:p = p,} for powers fe (4, 1]ifa < 4.

We also introduce a more decision-theoretic definition of the concept asymptotic-
ally minimax test.

Let a,, a, be the two possible actions in the test, and L(P; a,), L(P; a,) the
losses when taking actions a, and a, respectively when the probability measure is P.
The test is here interpreted as the probability of choosing action a, as a function
on the outcome space.

A sequence {@,™ 10, € Iy} of tests o™ € Iy is defined to be risk asymptotic-
ally minimax in a sequence {Iy} of sets Iy of tests when the probability measure
belongs to Qy if

. N
lim SUPpy e Qn R(PN’ Goo( )) _
N—oo: . N) —
OOlnf(q)(”):(p(N)elN} SupPN eQN R(PN’ QD( ))

where R(P; ¢) = L(P; ao)(1 — E()) +L(P; a,)E,(¢).

When the losses L(P;a,) and L(P;a,) depend on P only through p, ie.
L(P; ay) = L(p; ay) and L(P; a,) = L(p; a,), and there exists a p,, 0 < p, < 1,
such that

1

L(p;ao) =0  for  p=p,
L(p;a;)=0  for  p=p,
and some regularity conditions on L are satisfied, a sequence of Wilcoxon tests is

shown to be risk asymptotically minimax in the sequence {/y} where I is the set of
all tests when the probability measure belongs to Q.

2. Preliminaries. In this section we are going to state some lemmas, which are
used to prove the main theorems in Section 3.

For the two independent samples X, ---, X,, and Y, ---, Y, in Section 1 define
random variables

U;=1 for . Y, zX,
=0 for X;>Y;

U=Z?=127=1Uij

W = U/mn.

Other notations used are defined in Section 1.
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LEMMA 1. If W is the random variable defined above then

p(l-p) _ 1
min(m, n) ~ 4min(m, n)

SUPp, can(p Yar W =

infp, couep Var W =x(r, u, v)

-9 @
Y 12pv(v—1)

;(2(#—1)(v—1))*_u+v—2r2+r(l—r)
uv uv uy
Jor (u=1)/(v—1)z 2r

wherer = min (p, (1—p)); ¢ = min (m, n); v = max (m, n).

for (u—=1/(v—1) < 2r

— 4.
=37

PROOF. See Birnbaum and Klose [2].

LEMMA 2. For each py, 0 < py < 1,& > 0 and a = 0 there exists a 5 > 0 such
that

(= rot ) =

for all Fand G such that
® 1)
) dG) = p 2 pot =g and
Plwz 2 <
= Po™ Mmin(m, m]F) =&
for all F and G such that

® 0
[ st < pom

ProOOF. Lemma 1 gives

p(1-p) 1
: =< :
min (m, n) = 4min(m, n)

SUPp ey Yar W =

and thus according to the Chebychev inequality for p > p,+a/[min (m, n)]~*

a 1
F <W = Po* Tmin (m, n)]*> == at o= po)lmin m, )

The first part follows by making 6 = a+1/2¢*. The second part is shown in the
same way. []
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LemMA 3. For fixed F and G

W—
“rl’lN_.00 (WI‘)':F Y x> =<D(x)

where ® is the Gaussian (0, 1) distribution function.
The convergence is uniform in x and in F and G belonging to a set where 0 < a <
p<b<l

Proof. The first part is an immediate consequence of the Chernoff-Savage
theorem [4]. The uniformity follows from Govindrajulu, Le Cam and Raghavachari
[8] Theorem 1 and the observation that for 0 <a<p <b <1 and A—6 <
Ay = m|N £ A+ withafixed §,0 < & < min (1— 4, 2) the variance 652 = Var W
stays bounded away from zero, since k(r, u, v) of Lemma 1 is bounded away
from zero in this case. []

3. Asymptotically minimax properties of the Wilcoxon test. In this section we are
going to prove that the Wilcoxon test is asymptotically minimax in two different
senses. The notations are the same as in Section 1 and Section 2. Let oo™,
N = m+n, be the sequence
an

oM =1 if W> po+m
=0 otherwise,

of Wilcoxon tests of the hypothesis P € wy = Uqépo Qn(g) where ay is a sequence
of numbers given in the proof of Theorem 1, having the limit

limy_, , ay = [po(1— Po)]%q)_ 1(1 —a).

THEOREM 1. The test sequence ¢, is (power) asymptotically minimax in the
class of all level o tests of the hypothesis P € wy = Uq< »o S2N(q) against the family
{Q'(P1):p1 > po} where Qy'(py) = |y ,, Q(q) for powers fe (3, 1) if a < 4.

Proor. By Lemma 3 we have for all x and for p € (@, b), wherea > 0,6 < 1,
Y ided S TP
Varw S )70

where limy._, , €,(N¥N) = 0. We here chose a < p, and b > p, and thus have for
a<p=p,

= 81(N)

W—p
<
P<[Va1 Wt > x> 1—®(x)+¢,(N).
Now by Lemma 1

p(1-p)

SUPpeayp) Var W = min (m, n)
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and thus for p € (a, py] and ay = 0

P<W > 1o o n)]*>
Q) .
ay (Po - p)[mln (m, ")]%
= 1“"(@(1 S L~ (W )“‘(N)'

If ay is determined by the equation

@) 1—®<m>+sl(N) —«

then limy_,, ay = [po(1—po)*® (1 —a) because ®~' is continuous, and for
o < %isay = 0.
Further there exists an L > Osuch that

ay
S\ E—
P(W > p°+[min (m, n)]*) =@

for p e [0; po] and min (m, n) > L.
To see this, we first observe that by the second part of Lemma 2 there exists a &
such that

P> 1o+ Gt

for pe[0; po—o[min (m, n)]"*] and min (m,n) = L, for some L,. But for
min (m,n) = L,, for some L, , the function

ay__ . (po—p)[min (m, n)]*
[p(1-p)]* [p(1—p)]*

is decreasing in the interval (po—d[min (m, n)]*; po] and thus by (1) and 2

ay
—_— 1<
P(W ~ Po [min (m’ n)]%> =
for min (m,n) 2 L = max(L,;L,), and the tests ¢, are of level « for

min (m, n) = L. Now consider the power Ep(¢,™) of the ¢,™ tests.
For a fixed f, « < < 1, there exists by Lemma 2 ad > 0 such that

infp§p0+6[min (m, n)]~ % Ep((PO(N)) 2 (1 +B)/2.

By Lemma 1 and Lemma 3 we get

s N
infp, canip) Epy(@0™)

(- oG tminon i+ )J*))lé“(”)'

for (po—p)[min (m, n)]* +ay < 0.
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Again there exists an L' > 0 such that

Po— an
[p(1— )]* (p(1-p)I*

is a monotone decreasing function of p in the interval [py; po+d[min (m, n)]~*]
for min (m, n) = L', and it follows that

—2 = __[min(m, n)]*+

: N
infp, e ay'(ow) Epn(®0™)

for min (m, n) = L’ and (p, —pN)[min (m,n)]*+ay < 0.
In order to get
limy_, o infpy c anowy Ern(@0™) = B for some >4

the sequence {py} must satisfy
limy_, ¢, [(Po— py)[min (m, n)]*] = [po(1 — po) (@~ '(1 — f) =@~ *(1—)).

Let ¢, and ¢, be any two fixed numbers with ¢, < ¢,, and f* and g* any
probability density functions satisfying

f¥x)=0 for ¢;<x=<c,
g*x)=0 for x<c¢, and x=c,
jc—loof*(x) dx = F*(c;) = po.
Further let P, be the probability measure corresponding to N = m+n indepen-
dent random variables, the first m having the density f* and the last n having the

density g*, and Py™ the probability measure corresponding in a similar way to
random variables having densities

Iu(x) = E')\if*(x) for x=<¢
Do

pr*(x) for x>¢,;, and

gn(x) = g*(x)-
Then P,™ e Qu(po) and Py™ e Qy(py). The most powerful level « test of
P = P,"™ against P = P, is given by the Neyman-Pearson lemma. It has a
test function of the form
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where Z is the number of the variables X,, ---, X,, which are <c¢; and k and y are
chosen to give the test the size a.

But in this case Z = /< U = I n< W = I/m and the test function may be
written in the form

Yy =1 for W > kim
=7 tor W =k/m
=0 for W < kim.

Now according to Lemma 3
kim—p,

[poa—po)(l/m)]*)‘g‘(’v)

and if By* denotes the power of the test for P = Py™ then

@ = Ep m(¥y) = Po™V(W > kim) 2 1—<D<

By* =Ep,m(¥Yy) S P (N)(W>lc—_—1><1—(l>< (k—1/m)— Py >+g (N)
N TR M= m )= [PN(I_PN)(ll’m)]& !

from which follows that
. _ A _ _
limsupy, ., By* < 1-D(d (1 —cx)+m((l) '1-p)—0"'(1-w))).

If min (4, 1 — 1) = A thisequals § and the theorem is proved since for each sequence
{@"™} we have

ianNeQN’(AN)EPN((P(N)) < By*

and
limsupy., ,, infp c ayan) EPN((P(N))
é lim SUPyN - ﬁN*'
If min (4, 1—21) = 1—21 the theorem is proved in the same way by introducing
instead of Py™ and Py™ the measures Qo™ and Qy™ corresponding to densities

f*, g*, fy and gy satisfying
f¥x)=0 for x=<¢; and x2=c,
g*(x)=0 for ¢;<x=<e¢,
[0 g*(x)dx = G*(cy) =1—p,
Ia(x) =f*(x)

1—
gN(x)=1 p:g*(x) for x<¢,

=£)-vg*(x) for x=e¢, []
Po
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THEOREM 2. The sequence {p,™} of Wilcoxon tests
e =1 if  Wzpg
=0 if W < po
is risk asymptotically minimax in the sequence {Iy} of the sets Iy of all tests when the

probability measure belongs to Qy if L(P; a,) = L(p; a,) and L(P; a;) = L(p; a;)
depends on P only through p, and L(p; ao) and L(p; a,) satisfies
(A) L(p; a,) and L(p; a,) are nonnegative continous functions of p.
(B) L(p; ao) = 0 for p < poand L(p; a;) = 0 for p 2 po for some p,.
L(pi a0) _ . L(p; a,)

C) lim —— =1im
() Pl po P—Do Pl po Po—DP

=k where 0<k< 0.

PROOF. Let x,, be the unique nonnegative solution of the equation
D(—x0) =X @(x0) = 0

and R, = xo-®(—Xx,) where ® and ¢ are the Gaussian (0, 1) distribution and

density functions.
From conditions A and C of the theorem it follows that there exists a constant K

such that L(p; ap)/(p—po) < K for po <p =1 and L(p;a,)/(po—p) = K for
0 < p < poand then by the Chebychev inequality and Lemma 1

R(p; 0o™) = L(p; ao)* P(W < po)
<K-( ) Var W < K
= KAP=Po) =532 = & min (m, n) - (p— po)

for p > po. A similar inequality holds for p < p,, and thus there exists a 6 > 0
such that

k[po(1— po)1*Ro
R(P;9o™) < %_[[%i%(?p,i])_]*—

if |p—po| = &[min (m, n)E.
Now by the uniform convergence stated in Lemma 3, the risk function
R(p; 9o™) = L(p; ap)- P(W < p,) in the interval (po; po + d[min (m, n)]~?) satisfies

SUPpy e anRip) (Py; ™M) —k(p—po)® ([p_o(plo_:—i_)]—% [min (m, ")P)
‘ < ¢&,(min(m, n))

where limy_,,, [min (m, n)]* - &;(min (m, n)) = 0.
The unique maximum for p > p, of

000 (2 minm. )
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is k[po(1 —po)I*Ro/[min (m, n)]* which is attained for

[po(1- po)l*
P = PotXo [min(m, n)]*

and thus both the supremum risk for p > p, and the supremum risk for

[Po(l _Po)]*
pP=py= Po+xom

are in the interval

I _[k[l’o(l _Po)]%Ro_g . k[po(1—po)]*Ro c ]
N7l [min(m,n)]* "% [min(m,n)]* "2

In the same way it is shown that the supremum risk for

P = Gy = po—Xo[po(1—po)I*/[min (m, n)]*

and the supremum risk for all p < p, are in the interval Iy too.
If min (4; 1 —4) = A we introduce as in the proof of Theorem 1 densities f* and

g* satisfying
f¥(x)=0 for ¢;=x=e¢c,

g¥(x)=0 for x<c¢, and x=¢,
jﬂ‘wf*(x) dx = F*(c,) =q,
for some ¢, and ¢,. Let Qy denote the probability measure corresponding to those
densities and Py the measures corresponding to the densities

f'(x) = L f*(x) for x=¢
qn

1—
= pr *x) for x=e,
1—gy

and g'(x) = g*(x). The minimax test ¥y when we take into consideration only
the measures Qy and Py is given by the Neyman—Pearson lemma if the constants
are chosen to give R(Py; Wy) = R(Qy; ¥y) (see e.g. Hogg and Craig [10]). As in
the proof of Theorem 1 we get

Wa(x,y) =1 for W > by
=7yy for W =by
=0 for W < by

for some by and yy. }
But for P € Qy(py), Var W attains its maximum for P = Py, and for P € Qy(gy),
Var W attains its maximum for P = Qy when m = min (m, n).
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Now R(Py; ¥y) = R(Qy; ¥y) and depending on if & > p, or b < p, we have
either

R(Py; ¥y) £ R(Py; (PO(N)) and R(Qy; Wy) = R(Qy; (PO(N))
or R(Py; ¥y) 2 R(Py; o) and R(Qn; ¥n) < R(Qn; @o™).
Since R(Py; po™)ely and R(Qy; 9™ ely it follows that R(Py;¥y) =

R(Qy; ¥y) € Iy which proves the theorem when min (A; 1—4) = 4.
If min (4; 1 — 1) = 1—A4, the theorem is proved in the same way using densities

f*, 9% f' and ¢’ satisfying
f*(x)=0 for x<c¢, and x==c,

g*(x)=0 for ¢;<x=Zec,

[20g*(x)dx = G¥(c,) =1—qy

F'(x)=1*x)
1—py
§'() = Ty () for xS,

g'(x) = z—Ng*(x) for x=¢,. [
N

If the conditions C in the theorem is replaced by

L(p; ao) L(p; a;)
lim —=k, and lim —l =k
Pl po P—Do (] Pl po Do—DP 1

where k, > 0, k; > 0 and k, # k, the sequence {¢p,™} of Wilcoxon tests
™M —1 if W > _a—_.
$o "= ! = p°+[min (m, n)]*

a
[min (m, n)]*
where a is determined by k; and k, is risk asymptotically minimax. The proof of

this is essentially the same as the proof of Theorem 2, only a little more complicated
at some points, and will not be given.

=0 if W <pe+
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