ASYMPTOTIC BEHAVIOR OF HIGH ORDER MEANS¹

By JAMES W. DANIEL

The University of Texas at Austin

The following simple but interesting question was suggested by S. W. Joshi. Given a nonnegative Borel measure μ on [0, 1] with $\mu([0, 1]) = 1$, the mean m_1 can be defined as the unique root in [0, 1] of the equation $\int_0^1 (x-m) d\mu(x) = 0$; the root m_r in [0, 1] of $f_r(m) = \int_0^1 |x-m|^r \operatorname{sign}(x-m) d\mu(x) = 0$, for $r \ge 1$, can be considered a generalized mean, in the spirit of the more general ϕ -means of [1] for which results similar to these being presented here can be obtained. The question arises as to how m_r depends on r and μ ; in this note we show that m_r converges to the midpoint of the interval of essential support of the measure μ as r tends to infinity.

Let $a = \sup\{l; \mu([l, 1])\} = \mu([0, 1])$ and let $b = \inf\{r; \mu([0, r]) = \mu([0, 1])\}$. Clearly then $\mu([a, b]) = \mu([0, 1]), \mu([a, a+\varepsilon]) > 0$ for every ε in (0, b-a], and $\mu([b-\varepsilon, b]) > 0$ for every ε in (0, b-a]; we call the interval [a, b] the interval of essential support of the measure μ , although one might discard an endpoint if it itself has μ -measure zero. Our result can now be stated as follows. For each $r \ge 1$, a unique m_r exists, and $\lim_{r \to \infty} m_r = m_\infty \equiv (a+b)/2$.

The proof is simple. Since $f_r(m)$ is a continuous function of m and satisfies $f_r(0) = f_r(a) \ge 0$ and $f_r(1) = f_r(b) \le 0$, at least one root exists in [0, 1]. Furthermore, by using the Lebesgue dominated convergence theorem we can show easily that $f_r(m)$ is differentiable and $f_r'(m) = -r \int_0^1 |x-m|^{r-1} d\mu(x)$ which is less than zero for all m unless a = b = m, in which case $m_r = m_\infty$ for all r and there is nothing to prove. Thus a unique root m_r exists and lies in [a, b]. Now it remains to prove that m_r tends to m_∞ when $a \ne b$. Let m be a fixed number satisfying $m_\infty < m \le b$. We shall show that for all large r we have $f_r(m) < 0$ which implies $m_r < m$ which in turn implies $\limsup_{r\to\infty} m_r \le m_\infty$ since $m > m_\infty$ was arbitrary; for this purpose let ε satisfy $0 < \varepsilon < 2(m-m_\infty)$, $\varepsilon < m-a$. Then

$$\begin{split} f_r(m) &= -\int_a^{a+\varepsilon} (m-x)^r d\mu(x) - \int_{a+\varepsilon}^m (m-x)^r d\mu(x) + \int_m^b (x-m)^r d\mu(x) \\ &\leq -\int_a^{a+\varepsilon} (m-x)^r d\mu(x) + \int_m^b (x-m)^r d\mu(x) \\ &\leq -(m-a-\varepsilon)^r \mu([a,a+\varepsilon]) + (b-m)^r \mu([m,b]) \\ &= (m-a-\varepsilon)^r \mu([a,a+\varepsilon]) \bigg\{ -1 + \bigg(\frac{b-m}{m-a-\varepsilon}\bigg)^r \frac{\mu([m,b])}{\mu([a,a+\varepsilon])} \bigg\}. \end{split}$$

Since $m-a-\varepsilon > 0$, since $\mu([a, a+\varepsilon]) > 0$, and since $(b-m)/(m-a-\varepsilon) < 1$ because $\varepsilon < 2(m-m_{\infty}) = 2(m-(b+a)/2)$, we conclude that $f_r(m) < 0$ for sufficiently

Received October 12, 1970.

1761

¹ Research supported in part under Contract Number N000-14-67-A-0128-0004 at the University of Wisconsin.

large r. By precisely similar arguments (or by replacing x by 1-y) we find that for any fixed $m < m_{\infty}$, we have $f_r(m) > 0$ for large r and hence $m_r > m$ and hence $\lim\inf_{r\to\infty}m_r \ge m_{\infty}$. Therefore the two inequalities together yield $\lim_{r\to\infty}m_r = m_{\infty}$.

REFERENCE

Brøns, H. Brunk, H., Franck, W., and Hanson, D. (1969). Generalized means and associated families of distributions. *Ann. Math. Statist.* 40 339-355.