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HIDE AND SEEK, DATA STORAGE, AND ENTROPY!

By ROBERT J. MCELIECE AND EDWARD C. POSNER
California Institute of Technology

1. Introduction. In this paper we will study the relationship between games of
search and the optimum storage of information. In Section 2 we shall treat the
case of finite sets, and in Section 3 a generalization to compact metric spaces.
The result is a synthesis of the epsilon entropy theory of approximation (Lorentz
(1966)), with the theory of data transmission and compression (Posner and
Rodemich (1971)).

Let X be a set with n = | X| elements, and let & = {S,, S, ---, S,,} be a finite
collection of subsets of X, with US; = X. Regard the x € X as ‘“data points,”
and the S; as “subsets of allowed uncertainty,” such that when a data point is
selected, one is not interested in exactly which x it is, but rather in knowing an
S'; (there may be more than one) in which it lies. The class & is regarded as chosen
by the experimenter.

Under these assumptions, if m’ is the fewest number of the S';’s which are needed
to cover X, then at least [log, m'] bits are needed in order to identify an §; in
which an arbitrary x lies. The method of specification to achieve [log, m'] is, of
course, to merely specify the index j of the set S; which contains the given data
point, and one specifiesj by using a [log, m’]-tuple of zeros and ones. This problem
is considered in Balinsky (1968) pages 214-221.

However, if N data points can be stored before it is attempted to specify a
sequence of N S’s, a saving may be possible. Let X" be the cartesian Nth power
of X, and let %" be the class of subsets of X* of the form S;, x -+ xS;,. Here
[log, M7 bits are needed to specify the sequence of sets corresponding to an
unknown sequence of N data points, where M is the fewest number of sets from
&N needed to cover XV. Thus 1/N[log, M can be interpreted as the number of
bits per sample necessary to specify an S; when a “block code” of (constant)
length N is used.

Thus we are led to several definitions, which generalize those in Posner and
Rodemich (1971); here is also found more information-theory, as well as a list of
prior references for some of these concepts. The (one shot) F-entropy Hy(X) is
defined as

Hy(X) = ming .4 log|T|

where the minimization is taken over those subsets of & which cover X. (We

Received May 19, 1970.

1 This paper presents the results of one phase of research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by
the National Aeronautics and Space Administration. We are indebted to the referee for pointing
out the reference to Integer Linear Programming.

1706

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics. BINORN

WWW_jstor.org



 HIDE AND SEEK, DATA STORAGE, AND ENTROPY 1707

disregard the rounding-off of the logarithm, and the base of the logarithm.) The
limit, which can be shown to exist using an obvious subadditivity,

1
Iy(X) = limN_,w N'HyN(XN),

the absolute F-entropy of X, can be interpreted as the minimum number of bits
per sample needed when arbitrarily long block codes are used. Note that

I4(X) < Hy(X).

(This concept implicitly occurs in graph theory (Berge (1962) Chapter 4), where
X is the set of vertices of a finite graph, and & is the set of falons; a talon is a vertex
together with all the vertices to which it is connected. We shall have more to say
about this later.)

Now let us provide X with a probability measure P, and suppose the S; are
P-measurable. Define the (one-shot) &; P entropy of X, Hy p(X), as the minimum
Shannon entropy H(¥") of any partition of X by subsets of the S;; i.e., of any
&-partition: H(¥") = ZP(T,) log (1/P(T})), where X = | ), T, and ¥~ = {T,}-is the
partition. Hg p(X) is the minimum expected number of bits per sample necessary
to specify the source X using variable-length coding, when X is sampled according
to the probability distribution P. Again, the sets in & are the sets of allowed
uncertainty, and round-off is ignored. See Posner and Rodemich (1971), for a full
information-theoretic justification.

The absolute & ;P entropy I,.p(X) is likewise defined as

. 1
Iy ;P(X ) =limy., "N"H PN, yN(X N),

where P" is the produce measure on X™. Then I,,p(X) is the minimum expected
number of bits per sample necessary to describe X to within the uncertainty %
when arbitrarily many samples can be stored and optimum variable-length coding
is used.

We now change the subject and define a finite zero-sum two person G(X; &),
called ‘“hide and seek, X;&.” Player A “hides” in X by choosing a point x € X;
player B “seeks” player 4 by selecting one of the sets S;. Player 4 must pay B
one unit if x € S;; otherwise the payoff is zero. Now if X is finite, G(X; &) has a
value v(X; &) which can be described as follows. If Y is a finite set, let /(YY) be
the class of all probability distributions on Y. The fundamental theorem of game
theory (David (1960), Theorem 6.6) implies

v(X; ) = maXQ e A(SF) minxgex Q(Stal‘ (x)) = minpe o (X) maxS €S P(S),

where Star (x) = {Se & | x e S}

This means that B can win at least v(X; &), on the average, no matter what
strategy A uses, provided he selects his sets S according to the probability dis-
tribution Q which achieves v. Conversely 4 can assure himself of losing no more
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than v(X; &), on the average, by selecting his point x according to a distribution
P which achieves v. The distributions Q and P are called optimal (mixed) strategies.
In Section 2 we shall show the surprising result

Iy(X) = log (U(X;y))—l = MaXp ¢ o(x) IS/’;P(X),

which is the main purpose of the paper. This determines /,(X) constructively,
and shows that, in the worst case when ‘“Nature’ has chosen that P which maxi-
mizes Iy, p(X) for P in &/(X), no bits can be saved in storing outcomes of X by
taking into account the distribution P of outcomes and using optimum variable-
length coding with minimum expected word length. For I, p(X) is the number of
bits necessary to describe X acceptably with arbitrarily long codewords when the
outcomes are distributed according to P and P is taken into account in coding the
outcomes; whereas I,(X) is the number of bits necessary if probability is ignored.
Thus for the P achieving the above inequality, nothing can be saved if arbitrarily
long code words can be used. (However, if words of bounded length only can be
used, arbitrarily large savings can indeed accrue, as we shall see in the closing
section.)

2. The main theorem for finite sets.
THEOREM 1. If X is finite,
Iy(X) =log(v(X;#)) ™" = maxp yx)Lgp(X).

The distribution P achieves this maximum if and only if it is an optimum mixed
strategy for the hider in G(X; &). In addition, any optimum mixed strategy Q for the
seeker in G(X; &) can be used to select a ‘““‘random code” which comes arbitrarily
close to achieving I,(X) for large enough N.

REMARK. We note that it is possible that
Hy(X) > maxp, 4x) Hgp(X).

For example, if X is the set of vertices of a pentagon, and if & consists of the pairs
of adjacent vertices of X, it is obvious that

Hy(X) =1log3
but it is not hard to show that
maxp Hy.p(X) =log5—4%log2,
which is achieved when the probability of each vertex is 1.

ProoF OF THE THEOREM. Clearly I,(X) = I, p(X) for any P, since the (Shannon)
entropy of M probabilities is always less than or equal to log M. Also, since

1
max; q;

logM =z Y q,-logq,-_1 = log
i=1
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it follows that

1
Iy;p(X) 2 log maxy. 5 P(S)’

and so
I4(X) 2 log(minp,maxs P(S))™" =log(v(X; %))~ .

To get the other inequality, we shall first show that
I4(X) < log(min, Q(Star (x))~* =logq™",

say, for any Q in &/ (¥).
For a fixed N and M, independently choose M sets S;, ---, Sy, from & according
to the distribution Q". For a fixed x € x", we have

Pr(x covered) = Q"(Star(x)) = 4", i.e.,

QV(x¢S) = 1—q".
By independence,

QM(x¢ UM 1S) = (1—g"™
Thus, since there are n" possible x’s,
QV{forsomex,x ¢ (JML, S;} < n"(1—g"™.

Hence if n"(1—¢™™ < 1, there will be at least one choice of the S; for which
XY = US,. Butif M > —Nlog n/log (1—¢"), this will be the case. Thus

1) < 11 —Nlogn 1) < 11 Nlogn .
oA )=N0g log(l—q”)+ =N©E q"(l+0(q"))+
1 Nlogn
<— -N _— gV
=7 v voe{ oty )

IS/’(X) é lqu—l,

Letting N — co, we obtain

as promised.
If we now minimize this bound over Q, we obtain

I4(X) < log (max, min, Q(Star (x))™%,

which also equals log 1/v(X; &), so that equality follows.
To complete the proof, it remains to show Iy4(X) = maxp I p(X). However,
this follows immediately from the inequality

I,(X) 2 Iy,p(X)
mentioned above, and the inequality
Iy.p(X) = log(maxs P(S))™*

when P is chosen to minimize maxg P(S).



1710 ROBERT J. MCELIECE AND EDWARD C. POSNER

COROLLARY. Let X, &, Y, T, be as in Theorem 1, and let & x T denote the
collection of subsets of X x Y of the form SxT,Se &, T e T . Then

Iy (X % ¥) = I(X) +1,(Y).
Proor. By Theorem 1, we need only prove
WX Y; I xT)=v(X; ) W(Y; T).

To prove this, use for the seeker the strategy Qy x Qy, where Qy x Qy denotes
product measure, an element of /(& x J), with Qy his optimal strategy in X; &,
and Qy his optimal strategy for Y; . This proves that

W XXY; I %xT) 2 o(X; L)(Y;T).

Conversely, use for the hider Py x Py, an element of M(j( x Y), where Py is optimal
for X; & and Py for Y; 7. This shows

W(XXY; FxT)Su(X; )WY T),
and so proves the corollary.

Application to graph theory. Theorem 1 allows us to calculate the absolute
entropy of a finite undirected graph, relative either to the class of cliques or to the
class of talons. Cliques are sets of diameter 1, and talons are spheres of radius 1.
Here the metric is the one in. which the distance between two vertices is the length
of the shortest path connecting them, or one more than the number of vertices if
there is not a path connecting them. Thus the distance between adjacent vertices
is 1.

Our corollary shows that the function I has the important property of being
additive under the “Kronecker product” of graphs. Thus, the absolute entropy
of a graph can be used to decide whether a given graph is the Kronecker
product of two given graphs: if the absolute entropies can be calculated rapidly,
in some cases the Kronecker product property can be immediately ruled out.

For an example of the absolute entropies of a graph, consider the graph below:

Xy

X2 Xs

X3 Xa
The maximal cliques are C; = {x,, x,, x5}, C, = {x,, X3}, C3 = {X3, x4}, and
C, = {x4, x5}. If & is the set of (maximal) cliques, I,(X) = log 2, since the
probability assignment p, = p; = p, = ps = 4, p; = 0 makes P(S) = 4, all
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S e . And, letting C; and C, have probability 1 gives a Q with Q (Star(x)) = 1,
all x. The talons are Dy = {xy, X, X5}, D, = {X,, X1, X5, X3}, D3 = {X3, X5, X4},
Dy = {x4, x3, x5}, Ds = {xs, Xy, X4, x,}. Here I,(X) = log 2, because of the
following pair of probability assignments:

Q(D4)=0 1/3

VAN

/3 13

Q(D;)="3 Q(Ds) =3

Q(D,)="6 Q(D4)=V6
MIN Q=2/3 MAXP = 2/3

We close this section with some remarks on the connection between absolute
entropy and integer linear programming. In Balinsky (1968), page 214, an integer
linear programming problem is discussed, which arises from a minimum covering
problem. Namely, let 4 be the n x m zero-one matrix whose (i, j)th entry is 1 if and
only if the ith element of X is in S;; otherwise the entry is zero. Let e, be the
vector of k£ ones. The integer program is

® minimize (&, e,), & an m-vector of nonnegative integers, subject to

A =z e,
(= for vectors means that the inequality holds componentwise). Observe that the
minimum exists, and {; = O or 1, 1 < j < m, at minimum &.

For ¢ an m-vector, let S(£) be the subset of % containing those S; for which
¢jis 1. For & c &, let () be the m-vector whose jth component is 1if S; € %,
and 0 otherwise. Then

A = e, < S(&) covers X;

&, covers X < Ay(F)) = e,.

Thus, the integer program P is equivalent to the problem of covering X with
a subset of & of smallest cardinality ; minimizing & leads to such a minimum cover,

and conversely.
Now (Gale (1960), Section 7.1) the Fundamental Theorem of the Theory of

Games can be proved from Linear Programming Duality in the following way, with
A the same as above; A4 is also the payoff matrix in hide and seek, (X; &).
Let F be the linear programming problem (not in integers)

(F) minimize (£, e,,) in £ = 0 subject to 4¢ = e,;
its dual is

(&) maximize (1, e,,) inn = 0 subject to 14 =< e,
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From the fact (Gale (1960) Chapter 3) that the minimum for F is the maximum for
G (the value of the program, clearly positive), it is proved that the game has a value,
the reciprocal of the value of the program. Furthermore, any minimizing ¢
normalized to have sum of entries 1 by dividing by the value of the program is an
optimal strategy for the hider. Likewise, any 5 so normalized is optimal for the
seeker, and every pair of optimal strategies arises in this way. (In fact, this is usually
the way we would find the value and strategies for complicated A4.)

The whole point of this discussion is that the integer program P and the program
F differ only in that in P, & is required to have integral components. And P was the
program for determining the one-shot #-entropy of X, whereas F determined the
absolute S -entropy. Rarely does the unrestricted version of an integer program
have such a nice interpretation related so neatly to the interpretation of the original
problem. )

The program F can be thought of as the problem of extracting a minimum
subcover of #, where each S; in & can be counted fractionally, but each x in X
is to be covered, in the sense that the sum of the fractional coefficients given to each
of the S containing the given x is at least 1. The fact that the log of this minimum
is also the absolute entropy is the content of Theorem 1.

3. Compact metric spaces. In this section, we shall briefly consider the problem
of calculating I,(X) where X is an arbitrary compact metric space, and & is either
the class of closed subsets of X of radius at most ¢/2, or the class of closed subsets
of diameter at most ¢. Our results are incomplete, in that we shall prove the ana-
logue of Theorem 1 only for all but a countable number of ¢ (depending on X).

Thus, let R(e) be the class of closed subsets of X which have radius at most &/2
(the radius of a set is the radius of the smallest sphere containing the set), and
D(e) be those closed sets of diameter < e.

As in the finite case, we can define the two games “hide and seek (X; &)
where & = either R(e) or D(g). However, to define the set «7(<%) of probability
distributions on the set & it is convenient to make & itself into a compact metric
space by means of the Hausdorff metric (Hausdorff (1957), page 28). Thus if F,
G ¢ &, define

dy(F, G) = max (max, . pmin, . ¢ d(x, y), max, . ¢ min, . g d(x, y)).
It is shown in Hausdorff (1957) that under this metric ¥ does indeed become a
compact metric space. And it can also be shown (McEliece and Posner (1971))
that the game G(X; &%) does have a value v(X; &) which is given by
) (X ;&) =inf, . gy maxp, o u(F) = max, . ) inf,  x fi(Star (x)).
If & = R(e) or D(e), we abbreviate v(X; &) as v(e), call lim,, v(e—1n) = v(e—),
and write I,(X) as I,(X) or even as I,.

REMARK. One may wish to define the situation for R(g) by measures on X, where
the payoff to the seeker is 1 if and only if the distance between the hider’s chosen
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point and that of the seeker is at most ¢/2. However, that the two approaches
are equivalent follows from a known selection theorem (Parthasarathy (1967)).

THEOREM 2. For all ¢ > 0,
logu(e)™! = I, < logu(e—)~".

Consequently, with at most countable many exceptions, I, = log 1/v(e). In any case,
Sor every ¢ we have 1og1/v(e) = supp. 4x)I#.p(X), and v(e) is continuous from
above in e.

Proor. We treat only the case & = R(e), the case & = D(e) being entirely

analogous.
First of all we note that the inequality
(1) logu(e)"' <1,

remains true in the infinite case; the proof is the same as in Theorem 1.

The given ¢ is fixed. Next, fix #n with e—# > 0. Let J be a partition of X into a
finite number of subsets, each of which can be enclosed in a sphere of radius
n/2. Let S#(J) be the collection of subsets of X which are unions of J-sets and are
also in R(¢) = &. Then & (J) can be regarded as a collection of subsets of the finite
set J. Denote the absolute entropy of this finite space by I, ;, and the value of the
corresponding game by v(J). Then

) I, = Iy,

since the sets in & (J) are also in &.
Next we claim

(3 o(J) 2 v(e—n).

To see this, let P be a probability distribution on J which achieves v(J) =
minp maxs . &;,P(S). We extend P to a probability on X by choosing a point s in
each set j of the partition J which is the center of a sphere of radius ¢/2 containing j,
and assigning this point s the probability P(j); the desired measure is the atomic
one concentrated at these points. If Y is any set in R(¢ —#), then the union of those
J-sets containing the points of positive probability in Y will be a set in #(J).
Consequently maxs . ¢;,P(S) = supy ¢ gce-nP(Y), and so

U(J) = minPEM(J) maXSey(J) P(S) ; infped(x) SquER(e_,,) P(Y)
= (e—n),

since the right-hand “inf” is over a larger set of probabilities. Combining (1),
(2), and (3), we find

(4) logu(e)™! S I, < Iy, =logo(J)™! < logu(e—n)~'.
Let #]0 to obtain the inequality I, < log 1/v(e—).
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To prove the last sentence of Theorem 2, note that as in the proof of Theorem 1

1
Iyp(X) 2 log sups P(5)

for every P ¢ &/(X), so that
1 1
supplyp(X) 2 IOg@ = supp logm-

Let us abbreviate this as r(¢) = s(¢); both r and s are decreasing functions of .
Then (4) implies

s(e) = r(e) S I, < s(e—).

We shall prove r(¢) = s(¢) by showing that r(¢) is continuous from above in e.
Then if 8, is any sequence of positive reals which decreases to zero such that for
all n, r(e+0,) = s(e+9,), then as n - oo we see that r(¢) = s(e+) = s(¢), which
implies r(¢) = s(¢).

Thus it remains to show that r(e) = supp I. P (e); (X ) is continuous from above in ¢.
First of all, it is known (Posner and Rodemich (1971), Parthasarathy (1967),
Corollary 1) that for fixed P, I.p is continuous from above in &. Now for a fixed
n > 0 pick P such that

(5) Ie;P > SupIs;P_n/Z
where I,,p = I 4(,),p. Next pick 6 such that for ¢’ < ¢
(6) Ie+6';P > Ie;P_rl/Zs

using the continuity of I,, p from above. Combining (5) and (6) we have
I, i5p>supplyp—1n
for all 6’ £ 8. A fortiori, for §' sufficiently small depending on # we have
Suppl,ss.p > supplop—1,

which proves the continuity of suppl,. p from above. This completes the proof.
Note that Theorem 2 implies I = log 1/v(e) if and only if 7, is continuous from

above in n at n = &. This is a special case of the open conjecture we discuss in the

next section, which implies the result for metric subspaces of a Hilbert Space.

4. Concluding remarks.

1. We conjecture that I, = log 1/v(e), and point out that there is no hope of
proving this in general by showing that v(e) is continuous from below, since
v(e) frequently fails to be continuous from below. However, v(¢) is continuous
in ¢ for many interesting choices of X: if X is a compact homogeneous space
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under an invariant metric and the invariant probability, the invariant probability
of a sphere of radius ¢/2 is continuous in ¢, and that probability measure is easily
seen to be an optimal strategy. Here v(¢) = Pr (sphere radius ¢/2). Thus n-spheres
in Eulidean space, Lie groups, etc., are all included here. We can also prove our
conjecture if X can be embedded isometrically a normed linear space with the
property that every point on the boundary of the unit ball is an extreme point of
the unit ball (e.g., a Hilbert space). We omit the proof because it seems to shed no
light on the general case. (Such spaces are called strictly convex.)

2. We can now give an example of a sequence of X, such that

I(X,)—log2
but

H/(X,)— c.
Furthermore, the example has the property that
1(X,) = maxpI,p(X,).

Thus, although Nature can prevent us from taking advantage of knowledge of P if
arbitrarily long blocks of data are allowed to be encoded, we can still take
advantage of P if no storage is allowed, that is, if we are forced to use one-shot
entropies. For by Posner and Rodemich, Theorem 2,

H, o(X) < I,5(X)+1log* I.p(X)+C,

C a universal constant (this result is crucial in proving the continuity from above
in¢of I, p(X), used in Section 3). Thus, H,, p(X,) is bounded, whereas H,(X,) — .

The example can be modified using techniques of Section 3 to make each X, a
finite set.

Here is the example. Let X, be an n-sphere, with geodesic metric and invariant
probability. Let ¢ be such that the sphere of radius ¢/2 has surface area (3)—§, say,
where 0 = 6, < 4 and 6, — 0; the surface area of X, is normalized to 1.

An easy lemma gives

H(X,) 2 log(n+2)

(also, H(X,) = log 2n). Furthermore, the above remarks on homogeneous spaces
give
I(X,) =log(3-9,)"",
and so
I(X,)—log2,
as promised.
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Note added in proof. The conjecture in 1 above is false, but true for subspaces of normed
linear spaces.
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