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ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATORS
FOR THE INDEPENDENT NOT IDENTICALLY DISTRIBUTED CASE

By BRUCE HOADLEY
Bell Laboratories, Inc.

Conditions are established under which maximum likelihood esti-
mators are consistent and asymptotically normal in the case where the
observations are independent but not identically distributed. The key
concept employed is uniform integrability; and the required convergence
theorems which involve uniform integrability, and are of independent
interest, appear in the appendix.

A motivational example involving estimation under variable censoring
is presented. This example invokes the full generality of the theorems with
regard to lack of i.i.d. and lack of densities wrt Lebesgue or counting
measure.

1. Introduction. The asymptotic properties of maximum likelihood estimates
(MLE’s) have been studied by many people under a variety of conditions. Usually
it is assumed that the observations, on which the MLE’s are based, are independent
identically distributed (i.i.d.) [see, for example, Chanda (1954), Cramér (1946),
Daniels (1961), Doob (1934), Doss (1962), (1963), Huber (1967), Kulldorff (1957),
LeCam (1953), (1966), Wald (1949), and Wolfowitz (1949)]. Some results have been
obtained for models in which the observations are not i.i.d. For example, Bradley
and Gart (1962) generalized the work of Chanda to the case where the observations
are independent but not identically distributed (i.n.i.d.). Halperin (1952) considered
the case where only the r smallest order statistics are observable; Billingsley (1961)
and Roussas (1965), (1967) dealt with Markov processes, which are stationary and
ergodic; and Silvey (1961) provided a very nice discussion of the problem for
arbitrary stochastic processes, but his conditions are too restrictive and are not
easily checked for the case considered in this paper.

The author was motivated to reconsider the i.n.i.d. case by an example which
was not explicitly covered by the conditions of Bradley and Gart. The data arose in
a study, which was designed to estimate, among other things, the cdf of nonservice
time, which is the length of time that a dwelling, where telephone service was
disconnected, is without service. The study was conducted during a fixed interval
of time [0, T']. Throughout this interval, disconnections occurred at many dwellings
and their nonservice times were observed. Of course, if the kth disconnection
occurred at time s,, and service was not reestablished by time 7, then it was only
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observed that the nonservice time was greater than ¢, = T—s,. To formalize this,
letZ,k = 1,2, -, be the random nonservice time of the kth disconnected dwelling
and assume that the Z;’s are i.i.d. If Z, < ¢, it is observed exactly; however, if
Z, > t;, then this fact is all that is observed. This problem has been studied by
Bartholomew (1957), (1963) and Bartlett (1953) under the assumption that the
lifetime distribution is exponential. If it is assumed that the nonservice time cdf,
G(z [ 0), is absolutely continuous wrt Lebesgue measure A with pdf g(z | 0), then it
can be shown (see (1.4)) that the likelihood function is

.y L,©0) = {[T}-19(Z, |OH[5=r+1 [ —G(t, |0)1},
where Z, , .-+, Z, are those nonservice times which are observed exactly. At first
sight, it is not clear how to apply the standard asymptotic theory of MLE’s to this
likelihood function; so it is now shown how this problem can be formulated as a
standard one involving i.n.i.d. observations, which have a continuous and discrete
part (a case not explicitly covered by Bradley and Gart).

Define the random variables

(1.2) Yk = Zk if Zk é tk’

=t if Z,>t, k=1,2,--;
let v be the o-finite measure on the Borel real line which assigns measure 1 to each
pointin 7 = {t,:k=1,2,---};andlet D, ={y: 0 Sy < t,, y¢ I}

(|0 =g(y|0) if yeDy;
(1.3) =1-G(t, | 0) if y=t;
=0 otherwise.

Then the observations, {Y,, k = 1,2, ---}, arei.n.i.d.; and fi(y | 0) is a version of the
density of ¥, wrt p = v+ A. So the likelihood function is

(1.4) L) = Ii=1/(Y:|0),
the form usually dealt with in asymptotic theory. Note that if ¥, = #,. < #,, then
L,(0) = 0; however, since this happens with probability zero, no difficulty arises in

the distributional results.
Another example in which i.n.i.d. observations arise is the reliability growth

model discussed by Dubman and Sherman (1969). If Y, k = 1, 2, ---, is the waiting
time between failures (k— 1) and k, then the Y,’s are independent and

(1.5) f(y]6) = P{Y, = y |6}
=pk(0)[1_pk(0)]y_l’ y= 1’23"'7
where 0 = (p, p) and p,(0) = pp*~! is the conditional probability of failure on the
next trial, given that k—1 failures have occurred.
Observations which are i.n.i.d. also occur in any kind of regression model where

the distribution of Y, depends on the value of some concomitant vector x,. Further
discussion of these examples appears in Section 5.
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The purpose of this paper is to present for the i.n.i.d. case an alternative set of
conditions which implies consistency of the MLE and another set which implies
asymptotic normality. This extends the asymptotic theory to many additional
interesting examples. As a sequel to this paper, Chao (1970) has developed a
somewhat different set of conditions which imply strong consistency. (See Section 3
for further remarks on Chao’s conditions.)

Various convergence theorems which are needed in the proofs, and are of
independent interest, appear in the appendix. For example, a useful uniform
convergence theorem which gives conditions under which lim E[X,(s)] =
E[lim X,(s)] as s — s, uniformly in &, where {X,(s): k = 1, 2, ---; 5 in some set} is
a collection of random variables, is presented.

2. Notation and Preliminaries. Let Y,, Y,, --- be a sequence of independent
random variables, which are defined on the probability space (Q, &%, P,), and take
values in a measure space (%, &, p). % could be £™ (Euclidean m-space); and
0c® < #". Let ||- | be the ordinary Euclidean norm on 7.

Assume that Y, has density f,(y | 0) wrt u, the o-finite measure on (%, &/); so for
Ae A,

(2.1) P{Y,eA|0} =[Sy |0) du(y).
The likelihood function suitable to the above structure is given by
(2.2) L,0) = [ [i=1/(Y: | 0).

The MLE of the true parameter value (8,) is denoted by 8, and is defined to be any
point in @ satisfying

2.3) L0, = L,(0) for all 0 ©.
It is possible that for some values of # no such point exists, in which case 8, is set

equal to an arbitrary point in © (say 6,). Of course we assume that 0, € ©.
The extended random variables which are convenient to work with while proving

consistency are

R(8) = In[£,(Y, |0)/ fi(Y, | 00)] if fiu(Y, | 0o) >0
2.4 =0 otherwise.

Ry(8, p) = sup {Ry(1): ||[t—0] < p}
Vi(r) = sup {R(0): || > r}.
For any random variable X, let
2.5 X® =X if X=-B
= —B otherwise,

where B = 0. The expectations, when 0, obtains, of R,(0), R.(0, p), Vi(r), R, 2(0),
Rk(B)(09 p)’ and Vk(B)(r) shall be den0ted by rk(o)’ rk(0$ P), vk(r)9 rk(B)(0)> rk(B)(o, p),
and 0,®(r), respectively.
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For the asymptotic normality section define
(2.6) Dy(y,0) = Infi(y|0);
let @,(y, 0) be the p x 1 vector whose ith component is

. 0
2.7 (Dk,i(y’ 0) = Ed@k(y, 0);

and let ®,(y, 0) be the p x p matrix whose (i, j)th component is
2
(2.8) D, ;i(y,0) = 56,00, D(y, 0).

To simplify notation, let ), 4, denote Y 7, a;; let a, denote [Y, a,]/n; let E(-)
and P{-} denote expectation and probability wrt 8, ; and for all limits as n — oo, the
notation n — oo will be suppressed. Also, —p and —; denote convergence in
probability and law, respectively. The open sphere with center 8 and radius p will
be denoted by S(0, p), and the closed sphere by 5(8, p). Positive constants K and &

are generic so that, e.g.,
(2.9) E|X,|'" <K

shall mean that there exist positive constants K and ¢ so that (2.9) holds for
k=12,
Some of the assumptions made by Bradley and Gart which are not made for both
the consistency and asymptotic normality part of this paper are:
1. The measure u is either Lebesgue measure or counting
measure.
2. For k fixed, the support set of Y, (i.e {y: fi(y | 0) > 0})is
the same for all @€ ® (this assumption is almost
implicitly made in the asymptotic normality section of
this paper because Assumption N3 implies that
P{f(Y, | 0) > 0} =1 for all 9).

3

3. M ®,(Y,, 0) exists, a.s. [P].
0
4, 50_f"( Y, |0)| < F(Y,) for all 0 ® a.s.[P],

where [, Fio(y) dp(y) < co.

For the nonservice time example in Section 5, Assumptions 1 and 4 are not satisfied.

If Y, has a uniform distribution on (0, ), then Assumption 2 is not satisfied (note

that asymptotic normality does not hold for this example, but consistency does).
Proofs of the main results rely heavily on the theorems in the appendix which

are numbered A.x, x = 1, -+, 6.
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3. Consistency. The approach to consistency will be similar to that taken by
Wald (1949); however, in order to handle the lack of i.i.d., the conditions will be
somewhat different. The conditions are:

Cl. @ is a closed subset of #7.

C2. fi(Y, [ 0) is an upper semicontinuous (u.s.c.) function of @, uniformly in &,
a.s. [P].
C3. There exists p* = p*(0) > 0 and r > 0 for which
() ERO,p)]'* = K, 0= p < p*;
(i) E[VO()'* < K.
C4. There exists B > 0 for which
i) 7®(0) = lim sup 7/, P(0) < 0, 0 # 0,;
(i) lim sup 7,®(r) < 0.

CS. R0, p) and V,(r) are measurable functions of Y.

Note that if the domain of f,(y f 0), viewed as a function of y, depends on 0, then
there may be a 0 for which P{f,(Y; | 0) = 0| 6,} > 0,i.e., P{R(0) = — 0 | 6} > 0.
But this should not affect the consistency of the MLE; so, for example, it should
not be required that E|R,(0)|'*® < co. However, an assumption about the right
tail of the distribution of R,(0, p) is necessary. This explains why C3(i) is stated in
terms of R,(°X(0, p) rather than R,(0, p). To prove strong consistency, Chao (1970)
assumed that for 0 < s, p < &(0), E[exp {sR(0, p)}] £ K, which is stronger than
C3(i). He also replaced C3(ii) and C4(ii) by: f,(¥; | 0)/fi( Y | 65) — 0 uniformly in
k,a.s. [P]as ||0] — co; which is not satisfied by the example given in Section 5.

Stronger but more easily applicable replacements for C3 and C4 are:

C3’. There exists p* = p*(0) > 0 and r > 0 for which

() E[R(0, p)) £ K, 0= p = p¥;
(i) E[Vi(n]* = K.
C4'. (i) lim7,(0) <0, 0 # 0,;
(i) lim 7,(r) < O.
A comment is in order for C4'(i). If for @ s 8,, the distribution of ¥, when 6

obtains is not the same as the distribution of ¥, when 0, obtains, then Wald (1949)
showed that 7,(0) < 0. Condition C4'(i) states that this is true on the average.

THEOREM 1. If conditions C1-C5 are satisfied, then
0, - »00.
ProoF. For n > 0, define @(n) = @ —S(0,, ). It then suffices to show that
(3.1) P{0,e®(n)}—0.
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Let

(3.2) R,* =sup {InTi=; [fi(Ye|0)/ S Y, |00)]: 0 O(n)}
=sup{) Ry (0):0€O(n)}.

Since {0, € ()} < {R,* = 0}, it suffices to show that
(3.3) R,* = p —co.

For the r in the conditions, let

o =0() N S0,r)
3.9 R¥ =sup{YRy(0):0cw}
R}, =sup{d, Ry (0): 6] > r}

It now suffices to show that Ry —»p —o0 and Ry, —p — co. First consider R, ;.
C2 implies that as p | 0, R,®(0, p) | R®(0), uniformly in k, a.s. [P]; and C3(i)
implies that {R,®(0, p): k = 1,2, ---; 0 £ p £ p*} is uniformly integrable (u.i.);
hence, by Theorem A.3(ii), r,®(0, p) | r'®(6) as p | 0, uniformly in k. So for each
0 € w, there exists a p(0) < p* for which

(3.5) rP(0, p(0)) < P (8)—F()/2.

Now {S(0, p(0))} forms an open cover of the compact set w; so there exist
0,, -+, 0, €  for which
(3.6) o = (Ji=1 5(8;, p(6).

By (3.5) and C4(i), lim sup 7,%%(0,, p(8,)) < 0. Also it follows from C3(i) that
E|R.®X0;, p(0)|' *° < K (remember that K is generic); so Theorem A.4 applies to
give

(3.7 Zk R(0;, p(6,)) > p — 0.
That R, —p — oo follows from (3.7) and the fact that
(3.8) Ry < max {Zk R0, p(0)):1 <i<g}.

Conditions C3(ii) and C4(ii) along with Theorem A.4 insure that
Zk Vk(r) —>p — 0,

which implies R}, »p —c0. []

4. Asymptotic normality. The approach to asymptotic normality will be related
to that taken by Roussas (1968). The conditions are:

N1. @ is an open subset of Z?.

N2. 0, -5 0,.

N3. ®(Y,, 0) and ®,(Y,, 0) exist, a.s. [P].



MAXIMUM LIKELIHOOD ESTIMATORS 1983

N4. &,(Y,, 0) is a continuous function of 0, uniformly in &, a.s. [P], and is a
measurable function of ¥,.

N5. E[®(Y;,0) |01 =0 k=1,2, -

N6. I,(0) = E[®(Y,, O)®(Y,,0) | 0] = — E[D(Y,, 0) | 0].

N7. T(0) —» I(0), and I(0) is positive definite.

N8. For some § > 0, Y, E|JA®D(Y, 0,)]*+°/n2*9/2 - 0 for all 4 e 2”.

N9. There exist ¢ > 0 and random variables B, ;(Y,) such that
(i) sup {I(.I.)k,ij(Ymt)I: ||t—00|| Se < Bk,ij(Yk)'
(i) EIBk,ij(Yk)|1+6 <K

Some comments on these conditions are in order. Conditions N5 and N6 are
standard conditions for the asymptotic normality of MLE’s, and they are implied by :

NS a% J iy |0)du(y) = E%-ifk(y |6) du(y)
0 0*
NG6'. ijk(y |0)du(y) = J 56,3074 10) du(y).
A stronger, but more easily applicable, replacement for N8 is:
N8 E|®, (¥, 00)|* < K.
THEOREM 2. If conditions N1 to N9 are satisfied, then
n%(én —00) > N0, T~1(0,)).

Proor. By N1 and N2, there exists # > 0 such that S(6,, ) = ®, and
P{B, € S(0,, n)} = 1—¢,, where ¢, — 0. So with probability 1—e¢,,

- 0 -
N InL,(0)
4.1) 0=
O L 0}
—In
_.,aep " A0=0,
= Zk d)k( Yk, én)
Define

4.2) Vi(y) = Oy, 0 +7(t—0)).
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Then, by the fundamental theorem of calculus,

(4.3) YD) —¥(0) = fo ¥’ (&) d¢;
or
. . td
(4.4) D (y, 1)~ Dy(y,0) = L o @,(y,0+7(t—0)) |, dé

= [ By, 0+ E(t—0)) dE](t—0).

Now by settingy = Y, ¢ = 0,, 8 = 0,, summing over k from 1 to n, and recalling
(4.1), one gets

(4.5) nTEY DY, 00) = I,[n*(0,—0,)],

where ‘

(4.6) I, = fon ™' Tul = Bu(Yio 00 +£0,— )] dC.
The next step in the proof is to show that

4.7) I, - T(0,).

To do this, it suffices to proceed with one component at a time. Conditions N4,
N6, and N9 allow the application of Theorem A.5(ii) to — fli,(,i (Y, s)withse S =
S(0,, ¢). The result is

(4.8) SUP{|"_IZk[—dik,ij(Yk, S)]_rn,ij(s)l: HS_OOH = 3} —p0,

where T, ;(s) is the (ij)th component of I',(s). Letting s = 0,+ &(t—0,), where
0 < & <1, it is clear that |s—8| < |[t—0o]|; hence, with the aid of N7, (4.8)
becomes

4.9) n=! Y[y (Ve 00+ E(t—06)] = Ty (80 + E(t—05)),

uniformly for 0 < £ < 1 and |t—0,] < e.

Now since N4 and N9 hold, Theorem A.5()) can be applied to give
lim I, ;;(0o+ &(t—0,)) = Ty ;;(8,) as t — 6, uniformly in k. This, along with N7
is enough to insure that

uniformly for 0 < ¢ < 1.
Combining (4.6), (4.9), and (4.10) with the fact thatd — 6, we obtain the desired

result stated in (4.7).
The next step in the proof is to show that
(4.11) n~1Y, D,(Y, 00) = LN(O, T(8)).

But this follows from the multivariate form of Liapounov’s theorem (Theorem A..6),
because the required conditions are granted by N5, N6, N7, and N8.
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Finally, it is clear that (4.7), (4.11), and the fact that (4.5) holds with probability
1 —¢,, where ¢, — 0, imply the conclusion of Theorem 2. []

5. Examples. Consider the nonservice time example mentioned in the introduc-
tion, and assume that t, 2 M >0 k=1,2, -,

0
(5.1) 9(z|0) =30.222%020;
so that
0 .
(5.2) L]0 =Ly = T10y)? if yeDy;
1 ,
= L,(0 I ty) :—(T—ITI,() if y=t.

Ordinarily one would assume that 6 > 0, but then ® would not be a closed set; so
we interpret 6 = 0 to mean that P{Y, = ¢, l 0 = 0} = 1 and (5.2) still holds. The
assumption that t, = M > O insures that the amount of information in the kth
observation does not tend to zero. Clearly this could be relaxed for finitely many
k’s and probably even for infinitely many. For example, it might be possible to
construct a decreasing sequence of ¢,’s whose limit is 0, but for which the results are
applicable.

First the conditions for consistency are checked. Condition Cl holds, because
0 = 0. To establish C2, it suffices to show that L,(0 | y) and L,(6 | ¢) are u.s.c. at §
uniformly in y and ¢ respectively. For 6 > 0, it is clear that continuity holds
uniformly in y and ¢; but for 8 = 0, it does not. However, u.s.c. does hold uniformly
at 0 = 0, because: Ly(¢| 1) £ Ly(0]|7) = 1; and for y = 1/4e, Li(e|y) S &=
L,(0|y)+e; and for y < 1/de, L(z] ») = L,0|5)+L, 0| y)e+L,"0* [ )e[2 <
L,(0]|y)+e, because 6* < ¢ < 1/4y < 2/y and L, "(0* |y) < 0 whenever 6* < 2/y.

For C3 and C4 note that

Ry(6) =0 if Y.eD, 0, =0
(5.3) =1In <50—> <11+ L 1,/")2 if Y.eD, 06> 0
o/ \ 1+0Y,
=In <1T——t|—%%) if Y, =t;
R(6) <0 if 6, =0
(5.4) <In(0,/0) if 0<6<0,

<In(0/0,) if 0<0,<0;
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if 8, > 0,
p\[(1+60Y,\* .
R0, p) = ln<00>< T p7, if Y,eD, Y, <1/p
(5.5) =In ( ! )(1+0 Y)? if Y,eD Y, =1/
. i eD,, =
40,, oLk k€L k P
=111(1+90tk) lf Yk = tk;
and
Vk(r) =0 if YkEDk, 00 =0
1
(5.6) =In <40 Y>(1+0° Y)? if Y.eD, Y, <1/r,6,>0
oLk
r\[/1+0,Y,\? )
=1In (-9; T, if Y,eD,, Y, =21/r,0,>0
1401, .
=In (m) if Y, =t.

Now if 8 > 0, C3(i) follows from (5.4); and if 6 =0, 0 < p < p*(0) < 8, then
manipulation of (5.5) yields

(5.7) R©(0,p) <2In(1+6,Y,) if Y,eD,
<In(1+0t) if Y, =t,

and a direct integration shows that E[R,(°(0, p)]* < K. If r > 0, and 1/r < M,
then

1 ©
V,Or) < [ln <40 Y>(1 +0,Y,) ] if Y,eD,Y,<l1/r, 0,>0
r
(5.8 <In <—0-;) if Y,eD,Y, =1]r, 0,>0
<0 if YeD, 0,=0 or Y, =¢t;

and a direct integration shows that E[V,(°(r)]> £ K. So C3 holds.

Now if 8, # 6 > 0, then by Lemma 1 of Wald (1949), r(6) < 0; so for 0 fixed,
r,(0) is a negative continuous function of #, on [M, o] for which it is easily shown
that lim r,(0) < 0 as #, > co; therefore, r(f) < r(0) <0, k =1, 2, -, and C4(i)
holds. It also holds for 6, = 6 = 0, because r,(0) = —oo. Using (5.6), a direct
integration shows that for r sufficiently large, v,(r) < v(r) < 0; so C4(ii) holds.

As for the asymptotic normality, if one assumes that 8 > 0, and the #,’s are such
that N7 is satisfied, then the conditions associated with Theorem 2 are easy to

verify for this example.
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For the reliability growth model discussed in the Introduction, Theorem 1 holds,
but Theorem 2 does not, because n*(p,—p,) and n*(B,—f,) are asymptotically
jointly normal. The reason is that as k — o, Iy ,,(0) — o0, so that N7 is violated.
An intuitive way of looking at it is that as k — o0, p,(0) — 0, so that the waiting
times to faiture (the ¥,’s) become stochastically longer and longer and hence contain
more and more information. If one assumes that as k — oo, p,(0) | p(0), where
0 < p(0) < 1, then it can be shown that Theorems 1 and 2 both apply.

APPENDIX

This appendix contains various convergence theorems which are used in the main
body of the paper. The notational conventions adopted in Section 2 hold here. All
random variables in the appendix are defined on the probability space (Q, #, P).

The concept of uniform integrability (ui) is fundamental to the approach adopted
in this paper to the asymptotic theory of MLE’s for i.n.i.d. observations. A nice
discussion of uican be found in Neveu (1965), pages 49-54. The results from that
book needed in this paper are now presented.

DEerINITION. (Neveu, page 49). A family {X;: i € [} of integrable random variables

is said to be uniformly integrable (ui) if
limsup {f|x,>um |Xi|dP:iel} =0 as M — oo.

THEOREM A.1 (Neveu, page 54). A sufficient condition for {X;: i € I} to be ui is that
E[X|'" < K

THEOREM A.2 (Neveu, page 52). The following are equivalent:

(G {X,:n=12,---}isuiand X, »p X.

(i) X is integrable and E|X,— X |- 0.

Theorem A.2 is now applied to obtain a uniform convergence theorem, which is

used often in both the main body of the paper and the remainder of the appendix.

THEOREM A.3. Let U be a subset of %P.
If{X,(w):k=1,2, -, uec U}isui, andlim X,(u) = X, as u - u,, a.s. [P], then

() {X: k= 1,2, ---}isul If in addition, lim X,(u) = X, as u — u,, uniformly in
k, a.s. [P], then

(i) As u - up, lim E| Xy(w)— X,| = 0, uniformly in k, so that lim EX,(u) = EX,,
uniformly in k.

ProoF. (i) Choose M so large that
(A.l) slxk(“)|>M IXk(u)| dP <eé.

Holding & fixed, let

A={limX,u)=X, as u—uy}
(A2) B(u) = {|Xu(w)| > M}

B ={|X,| > M}.



1988 BRUCE HOADLEY

For any F € &, let I(F) denote the indicator random variable associated with F. It
is then clear that as u — u,

liminf I(A  B(w))| X, ()| = I(A " B)| X,;
so by Fatou’s lemma,
j|Xk|>M |Xk| dP = E[I(An B)IXkI]
(A.3) < E[liminfI(4 n B(w))| X, (w)|]
< liminf E[I(A  B(w))| X (w)|]
= liminf [|x, (> »r | Xs(u)| AP as u - u,.

But, by (A.1), the last expression in (A.3) is <¢; thus, the result is established. []
(ii) If not, then there exist ¢ > 0 and sequences, k, — 0, §, — U, for which

(A4 0<e<EZ,
where
(AS) Zn = |Xk,.(sn)_Xk,.|'

Now {X; (s)): n = 1, 2, ---} is ui by assumption, and {X, :n = 1, 2, ---} is ui by
part (i); hence,
(A.6) {Z,,n=1,2,---} isui

Also, since X, (v) = X, as u — u,, uniformly in k, a.s. [P], it is clear that

(A7) Z,—0as.[P].
Now by Theorem A.2, (A.6) and (A.7) imply that EZ, — 0, which contradicts
Ad. [

Next, a sufficient condition for ), X; —p — oo is established. This is useful in the
proof of consistency given in Section 3.

THEOREM A.4. Let {X,: 1, 2, ---} be a sequence of independent random variables.
Let X,'® = X, when X, = —B, and = — B otherwise; and let 4 ® = EX,®. If
E|XO"*? < K and y® = lim sup ,® < 0, then ), X, —=p — 0.

PrOOF. Y, X, < Y X,®, and since E|X@|'*? < K, E[XP|'* < K (re-
member, K is generic). Hence, it follows from Markov’s weak law of large numbers
[see Loéve (1960) page 275] that

(-8 X, — 1”0
Now for sufficiently large n, 1,® < 42 hence
P{YX,® < nu®|4} = P{X,® < u®)4}
> P(X,® B < —u®4 51 by (AS8).

Therefore, Y ; X;,® —p —c0. []
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The next theorem is a weak law of large numbers which holds uniformly over a
compact set. It is needed in the proof of asymptotic normality found in Section 4.

THEOREM A.5. Let {Y,: k =1, 2, ---} be independent random variables which
assume values in some set % endowed with the o-field s/. Let H,: ¥ x S — &',
where S < 9P is compact; and let h(s) = EH(Y,,s). Assume:

(a) For eachs€ S, H(y, s) is & measurable.

(b) H(Y,, s) is continuous on S, uniformly in k, a.s. [P].

(c) There exist measurable B,: % — R* for which |H(», s)| < B,(y) for alls € S,

and E[B(Y))|'** < K.
Then
(i) h(s) is continuous on S, uniformly in k.
(ii) sup {|[X4 H(Yi 9)n—h,(s)]: s € S} - 0.

ProoF. (i) By assumption (b), for each s, € S, lim H(Y,, s) = H(Y,, so) as
s — sy, uniformly in k, a.s. [P]. From assumption (c), it follows that {H(Y,, s):
k=1,2,-;seS}is ui. The result follows from Theorem A.3(ii).

(ii) Because of part (i), it can be assumed without loss of generality that /,(s) = 0.
Let

(A.9) H,*(y,s, p) = sup {Hy(y,1): [[t—s| < p}
H(y,s, p) = inf {H(y,1): |[t—s| < p}.

These functions are &/ measurable, because S is separable, and H,(y, s) is continu-
ous on S. From assumptions (b) and (c) it follows that

(A.10) lim H, *(Y,, s, p) = H(Y,, s)
lim H y(Yis 5, p) = Hy(Y;, 8), as p—0,
uniformly in %, a.s. [P]; and
(A.11) E|HX(Y,s,p)|' "’ <K
E|H u(Y, s, p)|' " < K.
Theorem A.3(ii) now applies to give
(A12) lim EH, *(Y,s,p) =0

lim EH ,( Yy, s, p) =0, as p— 0,

uniformly in k.
Equation (A.12) insures that for each s € S, there exists p(s) so small that

(A.13) —& < EH (Y, s, p(s)) < EH*(Yy, 5, p(s)) < &.

The collection {S(s, p(s))} forms an open cover of the compact set S’; hence, there
exist s, -+, s, € S for which S = (J{=, S(s;, p(s).
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Now, it can be said that
(A14) min{[Y H (Y s p(s))]n:1 S0 < g}
é [Zka(Y;(, S)]/I’l é max {[zka*(Yk’Si’ p(si))]/n:1 é i é g}’

for all s € S. By (A.11), the Markov weak law of large numbers can be applied to
each term in the brackets following min and max in (A.14). This, combined with
(A.13), insures that with probability 1—e¢,, & — 0, D« H(Yy, s)]/n lies between
—2¢ and 2¢ for all s € S. The result follows. []

Finally, the Liapounov form of the multivariate central limit theorem is presented.
Of course this plays the dominant role in proving that MLE’s are asymptotically
normal in the i.n.i.d. case.

THEOREM A.6. Let {X,: k = 1, 2, ---} be independent p-dimensional random
vectors for which EX, = 0, Cov (X = I. Assume:

(@) T, » T; and T is positive definite.
(b) For some § > 0, Y, E|JXX,|**°[n?* P2 - 0 for all A€ %"
Then n™* Y, X, =1 N(0, ).
PROOF. The assumptions allow the application of Liapounov’s theorem [see

Loéve (1960) page 275] to Y, 4'X, for all 4 # 0.
The result is

(A.15) [y 4 X, J/[nA'T,2]* — L N(O,1).
But A'T,A - A'T4 # 0; therefore
(A.16) [T X ] L NO,A'Th),

for all 4 # 0. This implies the desired result [see Rao (1965) page 109]. []
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