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EXPONENTIALLY BOUNDED STOPPING TIME OF SEQUENTIAL
PROBABILITY RATIO TESTS FOR COMPOSITE HYPOTHESES!

By R. A. WIsMAN
University of Illinois at Urbana-Champaign

Let N be the stopping variable of a SPRT for testing one composite
hypothesis against another, based on i.i.d. observations Z;, Z,, --- with
common distribution P. P need not belong to the model. N is termed
exponentially bounded if for every choice of stopping bounds there exists
¢ < o0 and p < 1 such that P{N > n} < cp"; if this does not hold P is
called obstructive. The main theorem presents sufficient conditions, both
on the model and on P, for N to be exponentially bounded. Under weaker
conditions the theorem proves P{N < oo} = 1. Two applications of the
theorem are given: 1. In the problem of testing ¢ = ¢, against ¢ = goina
normal population with unknown mean it is proved that N is exponentially
bounded for every P except if P{Z, = {+a} = } ({ arbitrary and a® a
given function of ¢, and a,) in which case P is obstructive. 2. In the sequen-
tial r-test it is proved that N is exponentially bounded for every P for which
Z,? has finite mgf and is not a member of a certain family of two-point
distributions.

1. Introduction. Let Z;, Z,, --- be i.i.d. random variables with common distri-
bution P. The joint distribution of the Z’s will also be denoted P. Stein [4] showed
that the stopping time N (= random sample size) of Wald’s [5] sequential proba-
bility ratio test (SPRT) for testing one simple hypothesis against another is expo-
nentially bounded, i.e. satisfies, for some ¢ < 00,0 < p < 1:

(1.1) P{N > n} < cp", n=12--

for every P except for those P under which the log probability ratio is degenerate
at 0. The reason Wald’s SPRT can be treated with such relative ease is that
{L,n=1,2,---}is a random walk, where L, is the log probability ratio at the
nth stage.

If the hypotheses to be tested are composite, Wald [5] suggested a reduction to
simple hypotheses by means of weight functions and it is then possible to define a
SPRT in terms of these simple hypotheses. A special case of this method is the use
of an invariance reduction, provided there exists a group of invariance transforma-
tions that reduces both composite hypotheses to simple ones. The resulting test
will be called an invariant SPRT. Our applications of the main theorem in this
paper will in fact be exclusively to invariant SPRT’s, but it should be kept in mind
that the theorem could also be applied to weight function SPRT’s that are not
obtained by an invariance reduction.
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Whereas in Wald’s SPRT for testing a simple hypothesis against a simple alter-
native L, is a random walk, this is no longer true for a weight function SPRT and
consequently it is much harder to try to establish (1.1). The general results that
have been obtained are still very incomplete in that they require conditions on P
that are almost certainly unnecessary while, at the same time, not demonstrating
for which P’s (1.1) fails ([7] gives a more thorough discussion of this, as well as a
list of references). In particular, for the validity of (1.1) in a large class of para-
metric problems it has been necessary to assume the existence of finite moment
generating functions (mgf) of certain functions of Z;. On the other hand, in [3] two
examples are given in which (1.1) is demonstrated to hold for all P except possibly
for a class of P’s exhibiting a certain degeneracy, thereby showing that at least in
those examples the existence of moment generating functions is irrelevant.

In the following we shall call P obstructive if (1.1) is not satisfied for all stopping
bounds. The main theorem in the present paper (Theorem 2.1) establishes (1.1)
under conditions which are admittedly again restrictive. On the other hand, thanks
to this theorem it is possible to present an example where it is possible to prove that
(1.1) holds for every P except for P in a small class of obstructive two-point distri-
butions. This will be done in Section 3.

The theorem is also applied to the sequential z-test (in Section 4). It is shown that
if Z,? has finite mgf and P is not in a certain small class of two-point distributions
then (1.1) holds. This constitutes a strengthening of certain results in [6] since it is
no longer necessary to cope with so-called ‘“exceptional” P’s (not to be confused
with obstructive P’s: the exceptional P’s are defined in terms of certain moments
and form a much larger class than the obstructive P’s). For the exceptional P’s (1.1)
could not be established in [6], only a weaker property. Thus, the results in Section
4 are essentially the same as obtained by Berk [1] following a different method.
Our method provides slightly more information about a subclass of all two-point
distributions that may contain the obstructive P’s.

Throughout this paper R, denotes the probability ratio at the nth stage. For
invariant SPRT’s, under some additional conditions, a more or less explicit ex-
pression for R, is given in [7] (2.1) but will not be used until Section 4. We define
L, = log R,, L, being slightly more convenient to work with. The stopping time
N of aninvariant SPRT is then defined in the usual way:

(1.2) N =smallest n = 1 such that I; < L, < I, is violated.

where —o0 < I; < I, < oo are the chosen stopping bounds for {L,}.
We shall assume that there exists a function s from the range of Z, into Euclidean
k-space, E*, for some k = 1, such that, with the notation

(1.3) . Xi = S(Zi), i= 1,2’

(1.4) X, =) Yi-i X,
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R, (and therefore L,) is a function of Z,, -+, Z, only through n and X,. The domain
of applicability includes therefore exponential models but not such nonparametric
tests as, for example, sequential rank tests.

2. The main theorem. Theorem 2.1 below consists of two parts, the second part
proving (1.1) and the first proving termination with probability one, i.e.

2.1) P(N < 0) =1,

under weaker conditions on P. Even though we are mainly interested in (1.1), most
of the labor that goes into proving (1.1) can also be used for (2.1) so that we obtain
the latter at no extra cost. The method of proof utilizes an idea used by Stein in [4].

In the assumptions below the existence will be assumed of a certain real-valued
function ® on E* possessing certain properties. There is a natural candidate for @,
asisclear from[7, Section 2], butin this section it is immaterial where ® comes from.
We shall make the following two sets of assumptions, the first used to prove (2.1)
and both to prove (1.1). (Notation: vectors will be understood to be column vectors
and prime denotes transposition.)

AsSUMPTION A. (i) EpX,; = ¢ exists and-is finite; (ii) there exists a neighborhood
V of ¢ and a real-valued continuous function @ on ¥ and a finite constant B; such
that

(2.2) |L,—n®(X,)| <B, if X,eV, n=1,2,-;

(iii) @ has continuous first partial derivatives on V; let grad ® be the vector of first
partials and A = grad @ evaluated at £, then

(2.3) P{A(X,—&) =0} < 1.

AssumpTiON B. For all components X;; (j=1,--,k) of X; we have
Epexp [tX;;] < oo for t in some neighborhood about 0.
Clearly, Assumption B implies Assumption A(i).

THEOREM 2.1. Let —oo < I, < I, < oo be arbitrary and N defined by (1.2). Then
(2.1) is true if Assumption A is satisfied and (1.1) is true if Assumptions A and B are
satisfied. Assumption A(iii) is not needed if ®(£) # 0.

PROOF. Put B = B, +max (||, |l,]), and
(2.4) @, = nd(X,).

Comparison with (1.2) and using (2.2) shows that if, for some n, X, €V and
|®,] = B then N < n. We distinguish two cases: ®(¢) # 0 and ®(¢) = 0. In case
1 suppose @(&) > 0 (the case ®(&) < 0 is treated entirely analogously). Choose
0 < ¢ < ®(¢) and reduce V, if necessary, to ensure ® > ¢ on V (this can be done
since @ is continuous at ¢). For any n > Ble, if X, € V then n®(X,) > B so that
N < n. Let N' = first n > BJe such that X, € V. By the above we have N < N'.
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By Assumption A(i), X, — ¢ a.e. P so that X, e V eventually a.e. P. That is,
P(N' < ) =1 and so a fortiori P(N < o) = 1. If also Assumption B holds,
then it follows essentially from [3] Theorem 1 (see also [6, Section 3]) that

(2.5) P{X, ¢V} <cp

for some ¢; < o0, 0 < p,; < 1. Since n > B/e and X, € V imply N £ n it follows
that P{N > n} < ¢;p," for all n > Ble, and (1.1) follows.

Now consider case 2: ®(¢) = 0. By making a translation in E¥ we may assume
& =0,50®(0) =0, and A = grad ® evaluated at 0. By Assumption A(iii) A’ X is
not degenerate at 0. Choose any 6 > 0; then there exists a positive integer r and
¢ > 0 such that P{|A'(X;+---+X,)| = 2B+26} > 2¢. Denote S, = X,,;+--+
X, n=0,1,, so that the above inequality may be written P{|A’S,| =

n

2B+268} > 2e. Then there exists 4 such that P{|A’S,| = 2B+26, ||S,| < 4} > &,
which is equivalent to :

(2.6) P{|A'SO| <2B+2§ or ||So|| > A} <1—e.
According to (2.4) we can write
(27) cI)n+r _(Dn = (n + F)[(D()?" +r) _(D(Xn)] + rq)()?n)

Put u = grad®—A so that w(0) =0 and u is continuous on V. Provided
X,, X,+r € V we can then write

(2'8) (D(Xn) = (A+L£1)IX",

(2'9) q)()_(n+r)_q)()—(n) =(A+u2),(Xn+r—Xn)

in which the random variables u, and u, (the dependency on » has been suppressed
in the notation) are the values of u at intermediate points: u; = u(o;X,), u, =
w(e, X, +(1—)X,1r), 0 < oy, 0, < 1, oy depending on X,, «, on both X, and
X, .. Multiply (2.9) on both sides by n+r and observe that on the right-hand side
(n+r(X,4r—X,) = S,—rX,. Then substitute together with (2.8) into the right-
hand side of (2.7):

(2.10) Dy =@y = (A+1,)'S, +7(uy —11y) X,

We may choose ¥ convex and so small that if x,, x,, X3, x, € E* the following
implication holds:

Q211 [xp %0, x3€ V, ||xa]| £ AT = [rl(u(xy) —u(x,)) %3] < 6, |u(x,)'x4] < 8]
If X,, X+, € V then so are u; and u,. Then by (2.11):
(212) [X,eV,X, s, eV, |S| < A= [r|(uy—uy)'X,| <8,|uy’S,| <]
so that, using (2.10),
(2.13) [X,eV, X, eV, [S,] £ 4,|®,4,—P,| <2B]
=>[X,eV, X, €V, S| £ 4,|A'S,| <2B+26].
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From (2.13) follows

(214) [‘YnEV;Xn+rEV;

@, ~,| < 25]
=[|S.| >4 or |A'S,|<2B+2§]=C,  say.

Since the S,, n = 0, 1, ---, are equidistributed, we have from (2.6)

(2.15) PC,<1—¢, n=0,1,--

By Assumption A(i) X, — ¢ a.e. P, so that X, € V eventually, with P-probability
1. This implies that given any &; > O there exists an integer n, such that PD < ¢,
where D is the complement of {X,, € V, n = n,}. For the event that the test never
terminates we have now the following string of inclusions:

{N=ow}cDu{X,eV,|®,| <B,nzny},
(2.16) cDu{X,eV,|®,,,—®,| <2B,n = n,},
cDuU{X,eV,|®,,,—®,| <2B,n =no+ir,i =0,1,---},
CDUﬂﬁoCmHn

where in the last inclusion we have used (2.14). Now the C, 4;, i = 0,1, -+, are
independent, and PC, ,; < 1—¢ by (2.15). Therefore, P ()2 C,y+ir =0 so that
by the last inclusion in (2.16) P(N = ) < PD < ¢&,. Since ¢, was arbitrary,
P(N = o) = 0, thereby proving the first part of the theorem in case 2.

For the proof of the second part of the theorem in case 2 we use Assumption B
to obtain (2.5), asin case 1. We have then

(2.17) P{N = (V+1)n} é ZT=0P{Xn+lr¢ V}
+P{Xn+ireVa ‘(I)n+ir‘ <B,i=0, -..’n}‘

Using (2.5), the sum on the right-hand side of (2.17) is bounded by ¢,(1—p,") " 'p,"=
c,p,", say. The remaining term on the right-hand side of (2.17) is < P{X, €V,
Xosir €V, | Pps—Ppii—1y| < 2B, i = 1, -+, n}. This, in turn, using (2.14) and
(2.15), is < P()iZ¢ Cyrir < (1—e)". Therefore, P{N > (r+1)n} < c,p,"+(1—¢)".
This establishes (1.1) for » running through integral multiples of r. To establish
(1.1) for all nis then a trivial matter and follows along the lines of [4].

3. Complete characterization of distributions P for which N is exponentially
bounded in a special example. In Example 1 of [7] a certain class of obstructive P’s
was exhibited. In this section we shall complement the result in [7] by showing that
the obstructive P’s in that example are the only ones.

Let Z,, Z,, --- beii.d. normal with mean ¢, variance o2, both unknown. We want
to test H,:0 = o,, against H,:0 = o,, where the ¢, are given and distinct (thus,
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{ is a nuisance parameter). Under the transformations Z; - Z,+b (i = 1,2, ---),
{ > {+b,06 >0, —0 < b < o0, the problem is invariant, and it was shown in
[7] (4.1) that

(3.1) L, =(20,") "' =(20,)" ) Yi=1(Zi=Z,)* +(n =D log(0,/a,)

in which Z, = (1/n) }.," Z;. For the purpose of exponential boundedness we may
multiply L, by any nonzero constant. We may pretend then that

(3.2) L,=Y!-1(Zi~Z)*—(n—1)a®
in which
(3.3) a? = (logo, —loga)/((20,%) ™" —(265,%) 7).

Now let the actual common distribution of the Z; be P and try to establish (1.1),
with N defined in (1.2).

Case 1, P unbounded. We shall prove that (1.1) holds for every —oo </, <[, < 0.
This will be accomplished by showing—following the Stein method [4]—that there
exists ¢ > 0 such that for all »

(3.4) P{L"+1>lz|zl,“',zn,ll <L"<lz}%8.

An elementary computation, using (3.2), shows that

n ZF\2_ 2
(3.5) Ln+1—Ln=m(Zn+1_Zn) —a.

Now put d = /,—1,, then given I, < L, < [, the event L,,, > /, is implied by
L,.1—L, > d, ie., using 3.5), (Z,+1—Z,)* > ((n+1)/n)(a®*+d). This, in turn, is
implied by |Z,.,~Z,| > ¢, where ¢* = 2(a*>+d). Therefore, the left-hand side
of (3.4) is =

(36) P{|Zn+1_zn| >clzl""szn’ll <Ln<12}‘

It suffices therefore to find a positive lower bound for (3.6). Since Z, ,  isindependent
of (Z, -+, Z,), the value of (3.6) depends on the conditioning only through Z,.
Furthermore, P{|Z,+,~Z,| > ¢ | Z, = z} = P{|Z,,,—z| > ¢} = P{|Z,—z|>¢}.
We shall show that there exists ¢ > 0 such that

3.7 P{|Z,—z|>c}2¢ forall —oo<z< 0.

Since P is unbounded, there is anumber z, such that P{Z, < zy—c} =
g > 0and P{Z; > zy+c} = &, > 0. Since P{Z, < z—c} is non-decreasing in z,
P{|Z,~z| > ¢} = & if z 2 z,. Similarly, P{|Z,—z| > ¢} Z &, if z < z;. Then
taking ¢ = min (g, ¢,) gives (3.7).
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Case 2, P bounded. In this case Theorem (2.1) will be used. The function s in (1.3)
will be chosen: s(z) = (z2,z)', —0 < z < oo (thusk = 2),sothat X; = (Z2, Z)'.
Now choose the function ® on £ as follows:

(3.8) D(x;,x,) = x,—Xx,° —a?
with a? given in (3.3). We compute
(39) nd)(/\—,n) = Z?=1(Zi—zn)2—na2

and comparing this with (3.2) we see that Assumption A(ii) is satisfied, with
B, = a?, no matter what neighborhood ¥ is chosen. The boundedness of P guaran-
tees the validity of Assumption B. For convenience we shall write E,Z, = {,
EpZ\> = 062+ (2 Then ¢ = EpX, = (6> +(2, ). From the form of L, given by
(3.2) it is obvious that all distributions P obtained from a single one by translation
produce the same stochastic behavior of {L,}. It suffices, therefore, to assume { = 0
so that ¢ = (a2, 0)'. Substituting & for x into (3.8) we get ®(¢) = o*—a? so that
®(¢) # 0 provided ¢ # a. For any such P we can therefore conclude, by Theorem
2.1, that (1.1) holds.

Now suppose P is such that ¢ = a, so that ®(¢) = 0. In order to conclude
(1.1) we now also need Assumption A(iii). From (3.8) we compute grad ® =
(I, =2x,)" so that A = (1,0)" and A'(X,~¢&) = Z>—0? = Z,*—a*. Hence if
P(Z,2—a* = 0) < 1 Assumption A(iii) is satisfied and we can conclude (1.1). On
the other hand, if P(Z,?>—a? = 0) = 1 then in order that { be equal to 0 we must
have P(Z, = +a) = 4. In this case it was shown in [7, Section 4] (for a = 1, but the
extension to arbitrary a is trivial) that (1.1) fails for sufficiently wide stopping
bounds. On the other hand, (2.1) is still valid.

Summarizing, in the present example N is exponentially bounded for every P
except if

(3.10) P{Z, =({ta} =% forsome —o0 <{<o0

with a given by (3.3). The distributions defined by (3.10) are obstructive, but for
every such P we still have P(N < o) = 1.

4. Another application: the sequential #-test. Let Z,, Z,, --- be i.i.d. normal with
mean { and variance 2, both unknown. Put y = (/o and test y = y, againsty = 7,
where y; and 7y, are any two distinct finite numbers. The problem is invariant under
the transformations Z; —» ¢Z,;(i = 1, 2, --+), { = ¢{,0 — c¢a,c¢ > 0. Thus, the group
G of invariance transformations consists of the positive reals ¢ under multiplication.
As right invariant (= left invariant) measure on G we shall take v;(dg) = dc/c.
Put 8 = (¢, o), then the orbit of 6 under G is GO = {gh:g € G} = {(c{, ca):c > 0}.
Taking, in particular, 8; = (y,, 1),j = 1, 2, the two orbits G0; are the two compo-
site hypotheses that are to be tested. From [7, (2.1)] we take the representation for
the probability ratio at the nth stage

(4.1) R, = J,(0,)/J,(0,)
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in which

(4.2) J,(0) = [T 1i=1 Peo(Z:)ve(dg)

and p, is the density of Z, with respect to Lebesgue measure
(4.3) po(2) = (2m) "o~ texp [~ (20°) "1 (z = 0)’].

It is seen that (4.2) depends on the Z; only through Y Z;* and Y} Z;. Thus, in (1.3)
we shall take s as in Section 3: s(z) = (z2, z)’ so that X; = (Z,2%, Z,)'. After setting
g9 = (ye, ¢), vg(dg) = dc[c and making a change of variable of integration:
¢ = 1/t, we can write (4.2) as

(4.9) J,0) = [§ exp[ny(1, X ,,;7)]t ™ dt
in which .
(4.5) Y(t,x;9) = —x,1% +yx,t+logt—3y* — 1 log(2m)

and x = (x,, x,). For fixed y, x; > 0, x,, Y as a function of # has a unique maxi-
mum. Put

(4.6) @(x3y) = max, o Y(t, x;7)
and
4.7) D(x) = @(x;72)—0(x;71).

As explained in [7, Section 2] we may expect R, to behave asymptotically as
exp [n®(X,)] so that ® defined in (4.7) is the natural candidate to try for the applica-
tion of Theorem 2.1. The basis for this phenomenon is the application of Laplace’s
method (see e.g. [2]) which gives the result

(4.8) (2n)"*n¥(x,+1t, D, exp[—no(x;y)]
(& exp[ny(t,x;y)]t7dt>1 as n- oo,

where ¢,, = t,(x, 7) is the value of ¢ that maximizes Y(z, x; 7). However, there is a
difficulty in applying (4.8) to (4.4) which stems from the fact that on the right-hand
side of (4.4) there is a random X, rather than a fixed x, and there is a priori no
guarantee that in (4.8) the convergence is uniform in x. On the other hand, in order
to satisfy Assumption A(ii) we only need the convergence in (4.8) to be uniform
for x € V, where V is any neighborhood of &. Thus, what is needed is the following:

THEOREM 4.1. (uniform Laplace). Let
4.9) J(x,n) = |2, exp(ny(t, x)h(r)dt,  xeV,

with V some set, and assume that the following conditions are fulfilled: There is an
interval T = [t, t,] with —o0 < t; < t, < 0, and there are finite numbers B,, B,
and a nonnegative integer n, such that for all x e V:
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() ¥(t,x) > By, te T, h continuous and > 0 on T; h = 0 everywhere;

(ii) [2,exp[noy(t,x)]h(t)dt < By;

(i) (-, x) attains a maximum at t,, = t,(x) € (t;, t;); put o(x) = Y(t,, x);

(iv) given any 6 > 0 there exists a(d) > 0 such that Y(t, x) < @(x)—a(d) if
|t—t,,,' > J;

(V) there exists b = b(x) > 0 such that given any ¢ > 0 there exists 5 > 0 such
that "p(f’ x)—(p(x)+(b/2)(t—t,,,)2| é s(t_tm)z If ,t_tml é J.
Then (21) ™ *(nb(x))*[h(t,,(x))] " exp (—no(x)), J(x, n) = 1 as n — oo, uniformly in
xeVl.

The proof is essentially the same as for the standard theorem when there is no
extra variable x (see e.g. [2]) and will be omitted. The theorem will be applied with
Y(t, x) = Y(t, x; y) given in (4.5), with y = y, or y,, h(t) = 0 or t ! according as
t < 0or >0, Vany compact subset of {x = (x,, x;):x; >0},0 <t <1, < ®©
chosen suitably so that ¢, < #,(x) < t, for all x € V, and n, any positive integer,
e.g. 1. It is obvious from (4.5) that for fixed x, ¥ - — o0 ast — 0 or - o0, so there
must be at least one maximum ¢, and oY/t = —xt+yx,+t ' =0att=1,.
The latter equation has exactly one positive root:

(4.10) tw =X, Falyx,x, F)
in which
(4.11) a(u) = Hu+wu*+4)¥], -0 <u < oo,

and condition (iii) of Theorem 4.1 is therefore fulfilled. To check (iv) and (vj
observe that 0%y/dt> = —x,—t 2 which is continuous on T (verifying (v) with
b= x,+t, % and < —c for some ¢ > 0 for all x € V (verifying (iv)).

Next we shall investigate Assumptions A and Bof Section 2. Since X, = (Z,%,Z,)/,
in order to satisfy Assumption B it suffices to require of P that £, exp [tZ,?] < o0
for ¢ in a neighborhood of 0. The function ® in Assumption A(ii) is taken to be the
@ defined in (4.7). The inequality (2.2) is verified by using the conclusion of Theorem
4.1, applied once for y = y,, once for y = y,, and observing that [A(z,(x; y))]~' =
t(x;7)€T if xeV so that |logt,(x;y,)—logt,(x;y)| < log(t,/t,), while
log b(x; y,)—log b(x; y,) is similarly bounded. It remains to verify Assumption
A(iii). Substitution of (4.10) into (4.5) yields for (4.6):

(4.12) @(x;7) = Byxox, ) —flogx, — 4y’ —Llog(2n)—%
in which
(4.13) B(u) = Jua(u)+loga(u).

Substitution into (4.7) then gives

(4.14) D(x) = ﬁ(72X2x1_%)—ﬁ()’szxl_%)—%)’zz +’17712-
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From this we compute (using f'() = a(u))

o

(4.15) OTx—l = —%xle_%(gz(x)—gl(x)),

od s
g; =x; *(g2(x)—g,(x))
in which
(4.16) g(x) = yja(ijleu’i‘), j=12.

From (4.15) and (4.16) it is seen that grad @ is continuous. If x, = 0, g,(x) —g,(x)=
yo—7y1 # 0.If x, # 0, g,(x)—g,(x) is also # 0 because the function ua(u) is strictly
increasing. We shall determine now for which P’s (2.3) is not satisfied, i.e., for
which P’s .

4.17) AN(X;—&) =0 with P-probability 1.

Writing EpZ, = {, EpZ,;> = 0*>+{* so that & = (¢®+(?, {), and observing that
in (4.15) g,(x)—g:(x) # 0, we compute from (4.15) that A" is proportional to
(= /(6% + (), 2). After substitution into (4.17) we have with P-probability 1:

(4.18) (Z,2~20* +{*)Z, +{(0* +{*) = 0.

If { = 0, (4.18) has as its only solution Z; = 0. But if P(Z, = 0) = 1 then also
P(X, = 0) = 1 so that X, = O for all n with P-probability 1, and after consulting
(4.5) we see that the integral on the right hand side of (4.4) does not converge for
any 7. In that case the sequential z-test is undefined and we shall therefore exclude
the possibility P(Z, = 0) = 1 from consideration. (Note that for all other one-
point distributions the sequence {R,} is well-defined by (4.1) even though with
probability 1 the #-ratio at each n is co0.) If { # 0, (4.18) has exactly two distinct
solutions and the probabilities in these two points can be determined from the

equation EpZ; = (. The result is
(4.19) P{Z, = (*+ N (@*+ ) to)) =3 1Fa(0*+)7F] 6> 0,{ #0.
In summary, we have shown that in the sequential #-test, when Z, has distribution
P, the stopping time N is exponentially bounded if Z,? has a finite mgf and if P is
not one of the two-point distributions defined by (4.19). If we do not require Z,>
to have a finite mgf but only a finite expectation, then P(N < o) = 1 if P does not
satisfy (4.19). Berk [1], by a different method, obtained the same conclusions except
that his method necessitates the exclusion of a family of two-point distributions
different from (4.19) (and the family depends on (y;, ¥,)). (Assumption 2.4 (¢) in [1]
at first seems to imply that all two-point distributions have to be excluded. How-
ever, after the publication of [1] it was noticed by Berk that the proofs of various
theorems only use Assumption 2.4 (c) with 6 = 6, 6" = 0,. For the normal distri-
bution the assumption then is equivalent to the exclusion of a certain two-parameter
subfamily of all two-point distributions.)
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REMARKS. 1. Under the assumption that Z,2 has finite mgf a distribution P is
not obstructive unless both ®(¢) = 0 and (4.17) holds. It can be shown from (4.14)
that the equation ®(£) = 0 has exactly one solution for {/s, its value depending
on y, and y,, and (/o = 0iff y,2 = y,2. With this value of {/o (provided it is # 0)
(4.19) defines a one-parameter family of distributions obtained from a single one
by scale transformations. This same family is also obtained as the intersection of
(4.19) and Berk’s two-parameter family of distributions mentioned above.

2. In*the sequential #-test it is not known whether there are any obstructive
distributions at all. In the light of the results of Section 3 and of [7, Examples 2
and 3] one may conjecture that the distributions mentioned in Remark 1 are indeed
obstructive and that they are the only ones (the latter would be proved if it were
shown that any unbounded P is not obstructive, as in Section 3).

3. Other classical invariant SPRT’s, such as the sequential F-test, etc., are
amenable to the same treatment as afforded the sequential #-test in this section.
However, to this end it is necessary to extend Theorem 4.1 and permit ¢ to be
vector-valued as well as cope with functions 4 that are not > 0 at ¢,, but instead
behave as a product of powers of some of the components of 1 —¢,,.

Acknowledgment. I am indebted to R. H. Berk for valuable discussion and
comments.
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