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STOCHASTIC ORDER RELATIONSHIPS BETWEEN
GI/G/k SYSTEMS!

By DAvID R. JACOBs, JR.? AND SIEGFRIED SCHACH?
The Johns Hopkins University

Consider two GI/G/k queueing systems in which the second system has
stochastically larger interarrival times and/or stochastically shorter service
times than the first system. In this paper we find sufficient conditions under
which this implies stochastically shorter waiting time, virtual waiting time,
queue size, and imbedded queue size, for the second system as compared to
the first.

0. Introduction. Consider two GI/G/k queueing systems with interarrival and
service time distributions F, H and F’, H’, respectively. Assume that for all
xe R we have F(x) = F'(x) and H(x) < H'(x), i.e., the primed system has
stochastically larger interarrival times and smaller service times than the original
system. In this paper we show that this implies a corresponding ordering of the
waiting time and imbedded queue size, and in some, but not all cases, it implies
an ordering of queue size and virtual waiting time.

For the one-server queue such a result has been derived by Daley and Moran
(1968) for the waiting time distribution, by using a direct comparison of distri-
bution functions. Stoyan and Stoyan (1969) analyze more general order relation-
ships between random variables, and they obtain Daley and Moran’s results as
a special case. Our results generalize this to the many-server queue and to
queueing variables other than waiting times. They are derived from a suitable
construction of the basic probability space.

As pointed out by Daley and Moran, results of this type are useful in estab-
lishing upper and lower bounds for queueing variables in analytically unwieldy
systems. To the extent that tractable and close upper and lower bounds approxi-
mating the F and H functions can be found, the bounds to the queueing variables
can be made arbitrarily close. This follows from a recent result due to Kennedy
(1970) and Whitt (1971).

1. Notation and standard construction. We assume throughout this paper that
the interarrival times 6,, 6,, - - - and service times y;, x,, - - - are two independent
sequences of identically distributed nonnegative independent random variables.
The same assumption is to hold with respect to the primed system. We then
assume

(1.1) P(0; < x) = F(x) = F'(x) = P8, < x),
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and
(1.2) P(z; £ X) = H(x) < H'(x) = P(y/ < x), xeR,iel.

According to a well-known lemma (e.g., Lehmann (1959) page 73) there exists
a probability space (Q,, 4,, P,) and random variables §, and §,’ defined on it such
that §, =, 6,, 6, =, 6/, and G,(0,) < b/ (»,), 0, € Q, (with §, = §,’ in case F =
F'); similarly for each pair (6, 6,’) and (3, 3", i = 1,2, ... If we take (Q,
A, P) to be the product of all these probability spaces and if we define on it
random variables 6, ;" and y;, y,/ in the obvious manner (each depending on
one coordinate only), then all the distributional assumptions are satisfied. We
have thus constructed a space (Q, 4, P) and random variables 6,, 0,, - - -; 7y,
Xeo o+ o5 0505, -5 1’5 x5 - - - such that all the primed random variables are
independent and all the unprimed random variables are independent. They
satisfy (1.1), (1.2) and

(1.3) O(w) < 0;/0) weQ, iel
(1.4) (@) = 1/ (@) weQ, icl.

This particular choice of a probability space, which supports both queueing sys-
tems, will be called standard construction and will be used frequently in the sequel.

2. Waiting time. Before proving the basic result of this section we need a
lemma. Let x be an arbitrary k-vector and let Rx be the vector obtained by
arranging the elements of x in ascending order. We say that x < y if x; < y,
for all i. Then we get the following:

LeMMA 2.1. x < y implies Rx < Ry.

ProoF. Since the relation x < y is invariant under identical permutations of
the x- and y-components, we may assume that x = Rx < y. Let Ry = (.4, - -
Yzu) for a suitable permutation r of the integers 1, - . ., k. If x £ Ry, then there
exists an 7/ such that x; > y.,. We show that this leads to a contradiction: If
i=n(), then y; = x; > y.y = ;. I i <z(i), then x; < x5 < y, ) < %0 If
i > n(i), then there exists an i’ < i with z(i) = i. Hence in this case y_;, < x; <
Xoin = Yeuy = Ve Thus we must have x; < y,;, for all i, as was to be shown.

In this and all subsequent sections we assume that at time O all servers are
free, and that r = 0 is the beginning of a new interarrival interval. It is, how-
ever, easy to see that many of the results and proofs are valid under more general
conditions.

Let 7,(n,") be the waiting time (exclusive of service time) of the nth customer
in the original (primed) system. Then we get the following:

THEOREM 2.2. If F(x) = F'(x) and H(x) < H'(x) for x € R, we have
(2.1) P(p, < x) £ P(y, < x) forall xeR,nel.

Proor. Let R* be the function which reorders the element of a k-vector in
ascending order and replaces negative elements by zeros. It is an immediate
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consequence of Lemma 2.1 that if x < y, then R*x < R*y. Let 9, = (7,1, - - >
7..) be the vector of ascendingly ordered times remaining, measured from the
time of the nth arrival, until each of the various servers would first be available
to serve customer n. Kiefer and Wolfowitz (1955) have derived the recursive
relationship

(2.2) Purn = RY(m, + 200, — 0,,,1), where
e =(1,0,...,0) and
1=(1, -, 1).

We now assume that the interarrival and service time random variables are
defined as in the standard construction outlined above. For each w ¢ Q we have
7.(w) = 0 = 5,/(») because of the initial condition. Assuming that 7,(v) = 2,'(®)
we get from (2.2), (1.3), (1.4) and the above lemma that

Pni1(®) = R*(1,(0) + xu(@w)e; — 0,,1(@)1)
= RY(n,/(0) + 2./ (0)e, — 07 1(0)1) = 75, 1(w) .
Hence by induction
(2.3) 7.(0) = 7,/(0)
forallnand all w. Since7,(w) = 7,:(w)and 5, (w) = 7,,(w) we have, in particular,
(2.4) 7, (0) = 7,/ (0), for all @ and all n.
This implies (2.1), since {w: 7,(0) = x} C {0: 2,/ (0) =< x}.

REMARK. Whenever limiting distributions (n — o) of 2,, »,” exist, they are
similarly ordered. If the limiting distributions do not depend on initial condi-
tions, the asymptotic inequalities are valid for any initial conditions. Similar
remarks apply to limits of other variables to be discussed in this paper.

3. Imbedded queue size. Let &, (£,') be the number of customers in the original
(primed) system (including customers being served), at the instant immediately
preceding the arrival of the nth customer. We arrive at the following:

THEOREM 3.1. If F(x) = F'(x) and H(x) = H'(x), for x € R, then,

(3.1) PE, = x) S PE)S =X forall xeR, nel.
Proor. Assume the standard construction. Let 7,(w) = >%_,0,.(w), n = 1,
2, ... be the sequence of arrival epochs. Since 6,,(») = 0,'(w), we have 7, (0) =

z,/(w). Hence the instants of arrivals of customers are the same in the two sys-
tems. For the instants of departures we have

(3.2) T(®) + 7,(0) + xu(@) = 7,/ (0) + 7,/ (0) + 1./(®)

because of (1.4) and (2.4). For any time point the number of customers in the
primed system is not greater than the number of customers in the unprimed
systems. This then is true for the left-hand limits before arrivals. Hence,
£ (0) = &,)(0), w e Q, nel, which implies the desired result.
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The preceding proof works primarily because of z,(w) = 7,/(w) in the standard
construction. In the remaining case, F(x) > F’(x) and H(x) = H'(x), x € R, this
relationship does not usually hold. But by using a “random time contraction”,
under which arrivals occur simultaneously in both systems, a similar proof can
be set up to establish the following:

THEOREM 3.2. If F(x) = F'(x) and H(x) = H'(x) for xe R, then
(3.3) PE,=x) < PE<x), xXeR,nel.

PRrROOF. Again assume that we use the standard construction. Hence,

(34) 0,”((0) é 07»'((0) ’ Tn(w) é T”,((L)) ’ Xn(w) = Xn,(w) >

for we Q, nel. For each fixed w define the function

(3:5)  dt0) =5 (0) + (1 — 7,/@) 2D for ¢ rw) <1< o).
07 11()

Since 0, ,,(w) = 0 implies 7,’(w) = 7,,,(w), d(t, w) is well defined for each r e R,

o e Q. As a function of ¢, d(t, w) is continuous and piecewise linear, with slopes
between zero and one; hence it has the property

(3.6) 0=5d(ty,w) —d(t, ) <1, — 1, forany 1, > 1, weQ.
Furthermore
(3.7) d(z,/(»), ) = 7,(0), weQ, nel.

Let £(t, w) (§'(t, ®)) be the number of customers in the original (primed) sys-
tem at time ¢, including any arrival at time . We define a pseudo-queue length
process (1, w) by

(3.8) £(t, 0) = &'(d(t, w), w),

where d~'(+, w) is, for fixed w, the left-continuous inverse of the function 7 —»
d(t, ). The points of increase of ¢ are r,, z,, - - - just as for £&. The points of
decrease of ¢ are of the form d(p,’(®), ®), where

(3-9) 0./ = /(@) + 7,/(0) + 1,/(w) .

From (36), (1.4), and (2.4) it follows easily that
d(p,') = d(z,’) + d(p,’) — d(z,’)
é d(T'n/) + lon' - Tn,
T?L + v’ﬂa' + X'n'
é T'n + 7771, + Xn ’

where we have suppressed all w. But z, + 75, + y, are the points of decrease of
¢ (departure epochs). Since departures in & are earlier than in &, we get,

(3.11) &(t, ) = &(t, ), t=>0,0eQ.

Hence, in particular, this inequality holds for the left-hand limits at arrival
epochs. This implies (3.3).
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4. Virtual waiting time and queue size. Let () (7'(¢)) be the time a customer
would wait before being served if he joined the original (primed) queue at the
instant ¢.

THEOREM 4.1. If for all x e R, F(x) = F'(x) and H(x) < H'(x), then
(4.1) P(np(t) < x) < P(y'(1) £ x) forall xeR,t=0.
Proor. Make the standard construction, so that

(4.2) O () =0, (0), t0)=71/(0), 2.(0) =2/ (v),

for w e Q, nel. The time which a customer would wait if he joined the queue
at the instant ¢ is equal to the least amount of time until a server will finish
serving all those customers whom he must serve and who arrived before time .
That is, 7(¢) is the minimum of the occupation times of the servers at time ¢. Since
by assumption the servers are all free at + = 0, we have 7(0, w) = 7(0, w) = 0.
Furthermore, (2.4) and (4.2) imply that »(z,(w) — 0, w) = 7'(z,(®) — 0, w),
nel. As long as no arrivals occur, the occupation times are either constant at
zero, or, if positive, decrease linearly with slope —1. Thus if the two virtual
waiting time processes are ordered just after an arrival, that ordering remains in
force at least until just before the next arrival. We now show that the ordering
is not destroyed by an arrival. The server who has minimum occupation time
at 7,(w) + 0 (immediately following arrival n) is either the same server as had
minimum occupation time at r,(w) — 0, or is the server who had next least oc-
cupation time then. Considering these two servers at these two epochs, in each
system, we see that

(4.3) 7(7a(®) + 0, @) = min(7,,(0) + 1,(), 7na(®))
7'(7a(®) + 0, @) = min(7;,(0) + 2,(@), 753(@)) -
(2.3) and (4.2) guarantee that 7(r,(w) + 0, ) = 7'(r,(®) + 0, ), and this com-
pletes the proof that »(z, @) = 7’(zr, ), which in turn implies (4.1).
Let £(7) (§'(7)) denote the number of customers either waiting or being served
in the original (primed) system. Using the same technique we get easily the

THEOREM 4.2. If, for xe R, F(x) = F'(x) and H(x) < H'(x), then

‘

(4.4) PE(N) < x) < PE'(1) < X), XeR, 1=0.

Proor. Using the construction and the argument of the proof to Theorem
3.1, one shows that at any time ¢ and for any o € Q the number of customers in
the primed system is not greater than the number of customers in the unprimed
system. This implies (4.4).

REMARK. A more formal proof of the above theorem would use the represen-
tation for queue size

S(l‘) = Z:=1f(t — Tus P+ Xn)
where f(u, v) = 1 for 0 < u < v, and = 0 otherwise. The essential point of the
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argument is the monotonicity of f(u, v) in v for fixed u. Many other processes be-
sides queue length are thus amenable to similar treatment; for instance, shot noise.

In the case F(x) = F’(x) and H(x) = H'(x), xe R, we have not obtained a
complete answer to the question of stochastic ordering of virtual waiting time
and queue size. In part this question is answered as follows. For finite ¢, the
anticipated stochastic ordering for virtual time and queue size will not hold in
general. As an example set # = 2 or 6 with probability 1 each, ¢’ = 2 or 8
with probability § each, y = y’ = 3. By direct enumeration of the possible out-
comes it can be shown that

W(9.5, x) < W'(9.5, x) VxeR
W(10.5, x) = W’(10.5, x) VxeR
and also
0(8.5, x) < 0'(8.5, x) VxeR
0(9.5, x) = Q'(9.5, x) VxeR
0(10.5, x) = Q’(10.5, x) VxeR.

All the inequalities are strict for some x e R.

In Sections five and six we show that many of the anticipated order relation-
ships hold for the M/G/k and GI/M/k systems. In the remainder of this section
we get additional results for the one-server queue.

Denote by W(co, x), W,(x) the weak limit of the distribution function of (),
Na> @8 1 — 00, n — oo, respectively. Similarly for the primed variables.

THEOREM 4.3. Let the following conditions be satisfied for two queueing systems
of the type GI/G/I:
(i) F(x) =z F'(x), H(x) = H'(x), xe R,
(i) § xdH(x) < § x dF(x) < oo,
(iii) F, F' are not arithmetic distributions.
Then W(oo, x) and W'(oco, x) exist as proper distributions and

(4.5) W(co, x) £ W'(0, X), xeR.

Proor. Takacs (1963) shows that under the above conditions W(co, x) and
W'(co, x) exist as proper distribution functions. He also derives an explicit
formula:

W(oo,x):l—%[l—Wm*H(x)], x=0
:0, x<0
where
A = L5510 — H(y)dy

a
and @ = § xdH(x), B = § xdF(x). Similarly for the primed system. Assumption
(i) implies 8 < f’. From Theorem 2.2 above we know that W (x) < W, '(x),
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x e R. It is then easy to verify that
(4.6) W.x Hx) < W, H(x).
This together with a/8 = «/f’ implies (4.5).
Denote by Q(co, x) (Q'(co, X)) the weak limit of &(r) (£'(1)).

THEOREM 4.4. Under the assumptions of Theorem 4.3, Q(co, x) and Q'(co, X)
exist as proper distributions and satisfy

(4.7) Q(c0, x) < Q'(00, x), xeR.

Proor. Takacs (1963) shows that proper limits exist and are given by

(4.8) Q(c0, x) = 1 — % §o Fl"(y) dW,, « H()) , x>0

=0, x <0,
where Fr* is the rth convolution of F with itself, and F° is the distribution
function of a unit mass at 0. Similarly for the primed system. From Theorem
2.2 we get W (y) < W.'(y) and hence W, « H(y) < W.' « H()), ye R. Using
integration by parts this implies
§5 FUT(y) dW.' « H(y) < §5 F'=Y(y) dW., « H(y) .
By assumption F'(y) < F(y), and hence F'*(y) < F*(y), thus
§5 F'(y) dWo, « H(y) < §¢ FEY(y) dW o « A(y) .
Together with g < g’ this implies
By F'e(y)dW., « H(y) < P\ F=r(y) dW ., « (), x=0.
Using (4.8) this then leads to (4.7).

5. Additional results for the GI/M/k system. Whenever service times are
exponentially distributed, additional information can be obtained about the
limiting distribution of the virtual waiting time and the number of customers
queueing.

Let &,(r) = (§(1) — k)*, the number of customers queueing but not being served

at time ¢, and let Q (r) = lim,_,, P(Sq(}) < r), whenever the limit exists. Then
we get

THEOREM 5.1. Let the following conditions be satisfied for two queueing systems
of the type GI/M/k:

(i) F(x) = F'(x), Hx)=H'(x) =1 —e ", x>0,
(i) ¢ < k §xdF(x), §{ xdF'(x) < co,
(iii) F, F’' are not central arithmetic distributions.

Then Q (r), Q,/(r) exist as proper distributions and
(5.1) o, =0/, r=20,1,2,....
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Proor. It follows easily from Takacs [(1962) Theorem 2, page 153] that the
limits exist and are given by
1 ©o
o,(n=1- 3 2i5=rtk P
where § = { xdF(x)and P; = lim,_, P(§, =j),j=10,1,2, ---. Since 8 < A,
the desired result follow directly from Theorem 3.2.

Before we state the result about limiting virtual waiting time distributions,
we derive the following:

LEMMA 5.2. Let U, U,, ...; U, U/, --. be two sequences of independent non-
negative random variables with G, (x) < Gy .(x), x€ R, iel. Let N, N’ be integer-
valued random variables, independent of the sequences and such that G y(x) = G y.(x),
x€R. Then

(5.2) P(YM, U, < x) < P(ZY, UL < x), xeR.

Proor. Assume that the random variables are jointly defined on a probability
space (Q, 4, P) in such a manner that for @ € Q, N(w) = N'(») and Ufw) =
U/(w),i=1,2,.... Such a space may be constructed by using the independ-
ence and stochastic ordering properties of the two sequences. Then it follows
that for each w € Q

Uiz 25U
which implies (5.2).

THEOREM 5.3. Under the conditions of Theorem 5.1 W(oo, x) and W’(co, X)

exist as proper distribution functions and the relationship

(5.3) W(co, x) < W'(c0, X) xeR,
holds.

Proor. In the present queueing system the virtual waiting time is a random
sum of independent, exponentially distributed random variables, each with pa-
rameter kp. The number of terms is given by & (), €,/(f), resp. Hence the result
follows directly from Theorem 5.1 and the preceding lemma, letting t — co.

6. Additional results for the M/G/k system. Assume in this section that all
interarrival times are exponentially distributed. For such systems a suitable
construction of a probability space, somewhat different from the one used above,
will enable us to make a comparison of distribution functions by making a reali-
zation-by-realization comparison of two queueing systems with stochastically
ordered interarrival times. It turns out that in such systems the anticipated
ordering of queue size and virtual waiting time holds for any ¢.

The basic idea of the construction is this: If arrivals in the original queueing
system are recorded with probability p, the recordings being independent of each
other and of the (Poisson) arrival process, then the recorded arrivals form a new
interarrival process with stochastically larger exponential interarrival times.
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Thus we can construct the primed arrival process by thinning out the original
process. For convenience, customers recorded are called type I customers, the
others are type II customers. By a suitable rearrangement of the sequence of
service times we are then able to get inequalities for each w of the basic prob-
ability space.

To come to the specifics of the construction, let A(4") be the arrival rates
(4 > 4') of the two systems to be compared and let H(x) be the common distri-
bution function of the service times. Forn =1,2, ... form probability spaces
(Q,, 4,, P,) and independent random variables ¢,, ,, v, defined on them such
that P,(0, = x) = 1 — e, P,(1, < x) = H(x), P,(3, = k) = p(1 — p)*, k = 1,
2, ..., where p = /2. Then set (Q, 4, P) = (IIQ,, I14,, IIP,) and define on it
random variables 6, y,, v, by

(9,”(([)) = 97»((07&) ’ Xn(w) = Xn(wn) ’ ”n(w) = Dn(wn) ’ ne I.

Obviously 6,, 6,, - - -; x5, xs» - - - are independent random variables. They will
serve as interarrival and service times for the unprimed queueing system. Fur-
thermore, define random variables M, =0, M, = >\"_,v,, 0,/ = Z?;»Mn_lﬂﬁj,
X, = X, Then it is easy to see that 6,/,6,, ---; %/, x), - - - are independent
random variables with P(#,” < x) =1 — e=%*, P(y,/ < x) = H(x). They will
serve as interarrival and service times of the primed system. This particular
construction implies that for fixed » the nth type I customer in the unprimed
system arrives at the same time as the nth customer in the primed system and
has the same service time.

Before we prove the main theorem of this section we need a lemma. For fixed
t let ;(r) be the amount of time that the jth server would still remain busy, if
the arrival process were to be shut off at the instant . Let 5(t) = (9,(¢), - - -,
7,(1)) and define »’(r) similarly.

LEMMA 6.1. For some t, let 9(t)) = %'(t,). Assume that after time t, customers
arrive at times t, < t, < -+ < t, in the unprimed system, with service times s,,
Syy + v+, 8,. Assume also that the first customer after t, in the primed system arrives
at time t,, requiring s, time units of service. Then 9(t) = '(t) for t, <t < t, and
Rip(r) = RYy'(1,).

Proor. Obviously 5(r) = /(1) for t, < t < 1,, since 7(f) may have points of
increase whereas »’(f) will not. Inparticular9(r, — 0) = '(¢, — 0). »(,) [%'(1,)]
is obtained from (s, — 0) [5’(z, — 0)] by adding s, to the minimal component
of (t, — 0) [%’(+, — 0)]. Let the minimal component have index j[;']. If j =,
then 9(z,) = %’(r,) and thus the result follows from Lemma 2.1. If j # j/, then
it follows from the definition of j and ;’ that

77J',(tu - 0) = nj,(tu - 0) é 77.7'(’!/ - 0)

7;/(t, = 0) = 7;(t, = 0) = 7;.(r. — 0).
Hence if we interchange the jth and j’th component of #(z,) to get 7(t,), then

and
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7(t,) = %'(t,) and hence R*%(r,) = R*%'(t,), again by Lemma 2.1. But since R*x
is invariant under interchanges of components of x, we have R*5(¢) = R*9'(¢).

THEOREM 6.2. In the system M|G/k, if F(x) = F'(x) and H(x) = H'(x) for
x € R, then

(6.2) P(n(t) < x) < P(r/(1) < %), xeR, 120.

Proor. Use the construction given above as the basic space with random
sequences {0,}, {6,’}, {x.} and {y,’} defined on it. Tt follows from that construc-
tion that if we fix w € Q, then we have the situation of Lemma 6.1 with 7, = 0,
v = y(w), t; = t(w), and s5; = y(w), i =1, -, y(w). Also n(0) = %'(0) =0,
from our initial conditions. Hence the lemma applies and we have (¢, w) =
7'(t, w)for0 < 1t <7, (@) = 7,(w). Since () [7(r)] is the minimum component
of n(1) [9'(¢)], we get 5(t, w) = 7/(t, w) for 0 < 1t < 7,/(w). At time 7,/(w) we
relabel the servers in the primed and unprimed systems, so that without loss of
generality we may assume %(r,'(w), ®) = R*p(r,/(»), ) and 2'(r/(v), 0) =
R*9'(7/(w), w). Hence by Lemma 6.1 5(z,/(»), ) = %'(z,/(w), w). Taking this
as the initial condition we can apply the previous argument to the r-interval
[z/(®), 7/(@)], and, by induction on the subscript, to the entire positive real
line. Hence for the minimum components of 3(t), '(z),

(6.3) 7t 0) = 7/(1, ), 0weQ, 120,
which implies (6.2).
THEOREM 6.3. If in the system M/G/k F(x) = F'(x) and H(x) = H'(x) for
X € R, then
(6.4) PE() £ x) S PE'() £ x), xeR,t>0.
PrROOF. Assume the construction given at the beginning of this section. Let

{1,’} represent the sequence of type I arrival epochs. Since (6.3) holds for every
value of ¢ we have

(6.5) 0t (@) — 0, w) = 7/(t,/(0) — 0, ), nel.
In the unprimed system, the departure epoch of the nth type I arrival is

6/ (@) + 7(t,/ (@) = 0, ) + 2,'(®) ;
whereas in the primed system it is

(@) + 7'(1,/(@) — 0, 0) + 2,'(0) -
Therefore, using (6.5) the nth type I arrival departs sooner in the primed system
than in the unprimed. Thus for every ¢, there will be at least as many type I
customers in the unprimed queue, as there are customers in the primed queue.
Furthermore, there may be type II customers in the unprimed system, but there

can be none in the primed system. Hence &(1, w) = &'(t, w), t = 0, w € Q. This
implies (6.4).
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