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ESTIMATES OF THE RATES OF CONVERGENCE IN
LIMIT THEOREMS FOR THE FIRST PASSAGE
TIMES OF RANDOM WALKS

By DouGLAs P. KENNEDY
University of Sheffield

Let 7, be the time of first passage to the level r > 0 by a random walk
with independent and identically distributed steps and mean v = 0. Esti-
mates are given for the rate at which the distribution of T;, suitably scaled
and normalized, converges to the stable distribution with index } when
vy = 0 and to the normal distribution when v > 0 as r — co.

1. Introduction. Let {X,, n = 1} be a sequence of independent and identically
distributed random variables defined on a probability triple (2, .5, P) with
EX, = v >0, Var X, = ¢* and assume for some p > 2, E|X;, — v = M < co.
Set S§,=0, S, =X, + -+ + X,, k=1, and for r > 0 define T, by T, =
min{k =1: 85, = r}, where the minimum of the empty set is co. It is well
known that if v = 0 then

lim,_,, P{o’T,[r* < x} = Gy(x) for x>0
=0 for x < 0,

r-—»oo

where G, is the stable distribution with exponent 4. The distribution G, is given
by G,(x) = 2{1 — ®(x~*)}, where @ is the standard normal distribution ®(x) =
(1/27)t {*.. e~***dy. When v > 0 we have

lim,_,, P{(T, — r|v)/(e’rv=?)} < x} = @(x), for xeR.

Here we prove the following two results.

1’—>°°

THEOREM 1. If v = O there exists a constant C depending only on p, ¢ and M
such that for all x > 0 and r > 0,

P10 <} — o) s crn ),

where
fr, p) = 1/potoen for pz3
— l/rp<p—2>/(p2+2p—2) for 2<p< 3.

THEOREM 2. If v > O there exists a constant C depending only on p, v, ¢ and M
such that for all xe R and r > 1,

Pl = 5} 0| = cop)

where g(r, p) = {(log r)?[r=irp=22/A /2R,

Received September 14, 1971; revised March 1972.
Key words and phrases. Rates of convergence, first passage times, random walks.

2090

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2

The Annals of Mathematical Statistics. BINORN
WWw.jstor.org



RATES OF CONVERGENCE FOR FIRST PASSAGE TIMES 2091

The proof of Theorem 1 is given in Section 2 while that of Theorem 2 is in
Section 3. We first state an inequality (1.1) which will be needed later and which
is a special case of results of von Bahr and Esseen [9] and Dharmadhikari, Fabian
and Jogdeo [2]. For ¢ > 1 there exists a constant R, depending only on ¢ such
that for all k > 1

(L.1) E|S, — ky|? < R kmexbamE|X, — |7,
Thus Kolmogorov’s inequality implies that for 6 > 0
(1.2) P{max,_;., |S; — jv| > 0} < 079E|S, — kv
< R, 07 %mexLamE| X, — |7,

2. The case v = 0. Since the distribution G, has a bounded density, in the
proof of Theorem 1 we may assume that xr?/o® is an integer, i.e., x = kg?/r* for
some integer k > 1. Then

(2.1 Plo’T,[r* £ x} = P{max, ;9,25 = r}.
When p = 3, Nagaev [5] has shown that there exists a constant K such that
(2.2) |P{max,z;z, S; > ynio} — 2(1 — @(y))| = K/n*

for all y = 0 and n = 0. Thus in this case from (2.1) we have for all x > 0
|P{a*T,[r* < x} — 2(1 — O(x7}))| < K/rxt
that is
(2.3) |P{o®T,[r* < x} — Gy(x)| < K[rxt.
Now if x = r~¢, a > 0, the right-hand side of (2.3) is O(1/r'~*?) while if 0 <
x < r~ the left-hand side of (2.3) does not exceed
P{o®T,|r* < x} + Gy(x) < P{o’T,[r* < r™°} 4 G(r™)
< 2P{o’T, < r*=°} 4+ O(1/r'=*/%)
= 2P{maxl§i§7,2_a/02 Si ; r} —+ O(l/rl~u/2)
by (2.1). Using inequality (1.2) with ¢ = p we have
P{max, g 20,02 8; = 1} < O(r~?r?®=9%) = O(1[r**?) .
Thus for all x > 0 the left-hand side of (2.3) is bounded by terms O(1/r**%) +
O(1/r*-*/?) so setting ap/2 = 1 — aj2 we get ap/2 = p/(p + 1) and the result of
Theorem 1 follows for the case p > 3.
When 2 < p < 3, using a result of Sawyer [7] we may replace the right-hand

side of (2.2) by K/n»-2/2@+1, Now, making the appropriate changes in the above
argument, the proof of Theorem 1 for this case follows in the same manner.

3. Thecasev > 0. The proof of Theorem 2 involves representing the sequence
{S,» k = 1} in terms of a Brownian motion using the well-known result of
Skorokhod ([8] page 163). By that theorem there exists a Brownian motion ¢ and
a sequence of independent and identically distributed stopping times {z,, n = 1}
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for & such that the sets of random variables {§(z+ -+ + 1), k= 1} and
{(Sy — kv)/o, k =z 1} have the same joint distributions. Without loss of generality
we may assume that £ and {z,, n > 1} are defined on (Q, &, P). Furthermore
Er; = E(X, — v)’/o* = 1 and by ([6] Lemma 1),
ErP? < ME|X, —y[f6? = N, < o0,
for some constant M, depending only on p. Hence
(3.1 E|r, — 1] < 20-9/(Erp2 4 1)
< 2(p—2)/2(Np + 1) .
For r > 0 define a random variable U, by
U, ,=minfk > 1:0(t, + -+« + 7.} + kv =1}

Then U, and T, have the same distribution. Set Y, = Sy, — r and Y, =
08(2Vr ;) + vU, — r, then Y, and ¥, have the same distribution and Y, < X,
Before proceeding to the proof of Theorem 2 we need the following result.
LeEMMA. If v > 0 and {a,} is a sequence of positive constants tending to infinity,
a, < O(r) then
PT, — rp| > a,} < O(r*"a,?)
asr— oo.
Proor. Set b, = [a, + r/v], ¢, = [r/v — a,], then
P{|T, — rfv| > a,} = P{T, > b,} + P{T, < c,}
= P{S,,T <r}+ P{maxlékgcr S, =r}.
Now {S, < r}<{S, —vb, < (1 — a,)}, soby Chebychev’s inequality it follows
that
P{S, <r} = P{|S, —vb,| > v(a, — 1)}
< EIS,, — vb,[?}7(a, — 1)
and this term = O(r**/a,?) by (1.1) and the fact that @, < O(r). Similarly
P{max,g,c, S, = r} < Plmax,g,., S, — kv > r —vc,}
= P{max,gg,, |Sy — k| > va,},

and the result follows from inequality (1.2).
Notice that the Lemma implies that

(3.2) P{T, > 2rjv} < O(r—*7).

Proor or THEOREM 2. Let {a,}, {8,}and {7,} be sequences of positive constants.
Now —(v/r)¥&(r/v) has a standard normal distribution and ®(x + a,) — O(x) <
a,[/(2z)t for all x e R; since T, ~ U, a standard argument (cf. [4] Lemma 2.5)
gives
(3.3) {P{u < x} - d)(x)’ < a,/(27)} + P{pU, — r + o&(rl)] > B.}

(oPrv=3)r =
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where £, = orta,/v}. From the definition of ¥, the second term on the right-
hand side of (3.3) is

(G4 P, + of(Tin ) — ob(rfy)| > B}
= PY, > B2} + P{lE(Zin ) — &(rl)| > B,/20} .
Now
P{Y, > B,[2} = P(Y, > B,/2}
= P{X;, > B,/2}
= P{T, > 2rjv} + Pmax, g, X, > B,/2}.
By (3.2) and a standard argument this is
= O(r™*") + 2n7'PLX, > B,/2}
< 0@ 4 O(r]B,7) , by Chebychev.
The second term in (3.4) is
= PIZine — rpl > 1.} + P{SUp_y cisy, [E(y + 1) — E(2)] > B,[20)
(3.6)  =PU, — 1| > 71./2} + U, — Zinel > 1./2)
+ 2P{suposs,, [§(1)] > B./20} .
3.7 The Lemma shows the first term in (3.6) is O(r*”*/y,”).
From ([1] page 258 and [3] page 166), we have for ¢ > 0, x > 0,
P{supog,<, [€(1)] > ¢} = 2P{|E(x)] > ¢}
=< de7lexp {—&*2xH{x/2x}} .
Thus the last term in (3.6) is

(38) = 0(7‘7.'} exXp {_ABr/802TT}/18r) .
The second term in (3.6) is
(3.9) = PU, > 2rp} + PmaXigco,, | D @ — k| > 7,/2}

§ O(r—p/2) + O(rmaX(l,p/4)/TTp/2)

by (3.2), (3.1) and inequality (1.2) with ¢ = p/2 applied to the sequence
{Ziato k= 1}

Now set a, =(log r)?/***V[re and y, = $,%/8¢*log r, then B, = ori=<(log ry»/2+1 [yt,
The terms in (3.5), (3.7), (3.8) and (3.9) are then respectively,

< O(1/rw-2-warmy O((log ry/ @+ | pe=twerrz) |
o(rY) and O((log r)»2w+b) [pimin=2.0/m-20112)

Choose ¢ so that e=(min (p — 2, p/2) — 2pe)/2 thatise = min (p — 2, p/2)/2(p + 1);
this choice of ¢ gives p — 4pe > 2¢ so the result follows from the definition of
9(r, p)-
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