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STEADY-STATE ANALYSIS OF RBM IN A RECTANGLE:
NUMERICAL METHODS AND
A QUEUEING APPLICATION

By J. G. Da1 anD J. M. HARRISON
Stanford University

Multidimensional reflected Brownian motions, also called regulated
Brownian motions or simply RBM’s, arise as approximate models of queue-
ing networks. Thus the stationary distributions of these diffusion processes
are of interest for steady-state analysis of the corresponding queueing
systems. This paper considers two-dimensional semimartingale RBM’s with
rectangular state space, which include the RBM’s that serve as approxi-
mate models of finite queues in tandem. The stationary distribution of such
an RBM is uniquely characterized by a certain basic adjoint relationship,
and an algorithm is proposed for numerical solution of that relationship.

We cannot offer a general proof of convergence, but the algorithm has
been coded and applied to special cases where the stationary distribution
can be determined by other means; the computed solutions agree closely
with previously known results and convergence is reasonably fast. Our
current computer code is specific to two-dimensional rectangles, but the
basic logic of the algorithm applies equally weil to any semimartingale RBM
with bounded polyhedral state space, regardless of dimension. To demon-
strate the role of the algorithm in practical performance analysis, we use it
to derive numerical performance estimates for a particular example of finite
queues in tandem; our numerical estimates of both the throughput loss
rate and the average queue lengths are found to agree with simulated
values to within about five percent.

1. Introduction. To understand the motivation for this paper, it will be
useful to consider the simple queueing network pictured in Figure 1. The
network consists of two single-server stations arranged in series, each with a
first-in-first-out discipline; arriving customers go to station 1 first, after com-
pleting service there they go to station 2 and after completing service at station
2 they exit the system. The input process to station 1 is Poisson with average
arrival rate A, except when new arrivals are blocked. Service times at station 1
are deterministic of duration 7, = 1 and service times at station 2 are expo-
nentially distributed with mean 7, = 1. There is a storage buffer in front of
station % that can hold b, = 24 waiting customers, £ = 1,2, in addition to the
customer occupying the service station. When the buffer in front of station 1 is
full, the Poisson input process is simply turned off, and in similar fashion
server 1 stops working when the buffer in front of station 2 is full, although a
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Fic. 1. Finite queues in tandem.

customer may still occupy station 1 when the server is idle because of such
blocking. (In the literature of queueing theory, this is called communications
blocking.) The steady-state performance measures on which we focus are

v = the long-run average throughput rate,
q, = the long-run average queue length at station %, £ = 1, 2.

In these definitions, queue length means the number of customers at the
station, either waiting or being served, and the average throughput rate may
be equivalently viewed as (a) the average rate at which new arrivals are
accepted into the system, or as (b) the average rate at which services are
completed at the first station, or as (c) the average rate at which customers
depart from the system.

Despite its apparent simplicity, the tandem queue described before is not
amenable to exact mathematical analysis, but as an alternative to simulation
one may construct and analyze what we call an approximate Brownian system
model. This is a diffusion approximation of the general type suggested by
heavy traffic limit theorems for queueing networks. However, no limit theorem
to justify our particular approximation has been proved thus far and we will
not try to provide such a formal justification in this paper. Instead, we will
explain or motivate the approximate model in direct, intuitive terms and then
concentrate on its analysis. As we will explain later, the two-dimensional
queue length process associated with the tandem queue is represented in our
approximate model by the reflected Brownian motion Z whose directions of
reflection are portrayed in Figure 2. The state space of Z is a 25 X 25
rectangle and in the interior of this state space Z behaves as an ordinary
two-dimensional Brownian motion, whose drift vector and covariance matrix

TN
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Fic. 2. State space and directions of reflection for Z.
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TaBLE 1
Performance estimates for the queueing model pictured in Figure 1

A=109 A=1.0 A=11 A=12
Y q; q: Y 91 92 Y q: qz Y q; q:

SIM  0.8991 5.1291 6.2691 0.9690 13.87 11.07 0.9801 20.4801 12.3801 0.9804 22.4804 12.4804
QNET 0.8995 4.8490 6.3184 0.9688 13.75 11.25 0.9801 20.5239 12.4445 0.9807 22.2688 12.4676

depend on the data of the queueing network. At the boundary of the rectangle
Z is “instantaneously reflected” (this term will be given precise meaning later)
in a direction that depends on which side of the boundary is hit; for the RBM
that models our tandem queueing system, the directions of reflection are
precisely those pictured in Figure 2. In Section 6 of this paper we will explain
why these are the appropriate directions of reflection for the tandem queue
and how one computes the drift vector and covariance matrix of Z from the
parameters of the queueing model.

If the stationary distribution of Z can be computed, then one can derive
from it approximate values for y, ¢, and g, (or whatever other steady-state
performance measures may be deemed interesting). In this paper, we will
describe a method for computing the stationary distributions of processes like
Z and the method will be applied in an approximate analysis of the tandem
queue pictured in Figure 1. The results of that analysis are summarized in
Table 1, where we give performance estimates derived from the approximate
Brownian model, identified in the table as QNET estimates, as well as esti-
mates obtained via simulation. None of the QNET estimates of average queue
length differs from the corresponding simulation estimate by more than 5%
and the accuracy of our throughput rate estimates is equally impressive: when
A = 0.9, both simulation and QNET predict a throughput loss rate below
one-tenth of 1%; when A = 1.0, simulation and QNET predict throughput loss
rates of 3.10 and 3.14%, respectively; when A = 1.1, the limiting factor on
system throughput is the average service rate of 1.0 and both simulation and
QNET predict a throughput rate 1.99% below this maximum; when A = 1.2,
the maximum possible throughput rate is again 1.0 and the simulation and
QNET estimates of y are 1.96 and 1.93% below this maximum, respectively.
Our analysis of tandem queues in series can be extended to allow an arbitrary
renewal input process and arbitrary service time distributions (the first two
moments of the interarrival and service time distributions determine the drift
vector and covariance matrix of the corresponding Brownian system model);
Table 1 shows in a concrete way how useful Brownian system models can be, if
one can compute their stationary distributions. With that introduction, we
now explain in more general terms the background and objectives of our study.

Multidimensional reflected Brownian motions, also called regulated Brown-
ian motions or just RBM’s, are a class of diffusion processes that arise as
approximate models of queueing networks. That is, such diffusion processes
constitute an alternative class of stochastic system models, sometimes called
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Brownian system models, that can be used to represent congestion and delay
in networks of interacting processors. Thus the stationary distributions of
RBM’s are of interest for steady-state analysis of the queueing systems to
which they correspond. There is now a supstantial literature on Brownian
models of queueing networks and virtually all of the papers in that literature
are devoted to one or more of the following tasks.

1. Identify the Brownian analogs for various types of conventional queueing
models, explaining how the data of the approximating RBM are determined
from the structure and the parameters of the conventional model. An
important subtask is showing that the RBM exists and is uniquely deter-
mined by an appropriate set of axiomatic properties.

2. Prove limit theorems that justify the approximation of conventional models
by their Brownian analogs under heavy traffic conditions.

3. Determine the analytical problems that must be solved in order to answer
probabilistic questions associated with the RBM. These are invariably
partial differential equation problems (PDE problems) with oblique deriva-
tive boundary conditions. A question of central importance, given the
queueing applications that motivate the theory, is which PDE problem one
must solve in order to determine the stationary distribution of an RBM.

4. Solve the PDE problems of interest, either analytically or numerically.

Most research to date has been aimed at tasks 1 through 3, and it has
concentrated on network models with a single customer type; see Harrison and
Williams [10] and Harrison, Williams and Chen [12] for recent surveys of work
on open network models and closed network models, respectively. Two even
more recent papers by Peterson [13] and by Harrison and Nguyen [8] discuss
Brownian models of networks with many customer types, but there is still
much to be done in that area. With regard to research category 4, for a
driftless RBM in two dimensions the work of Harrison, Landau and Shepp [7]
gives an analytical expression for the stationary distribution and the availabil-
ity of a package for evaluation of Schwarz-Christoffel transformations makes
the evaluation of associated performance measures numerically feasible (cf.
[18]). For the two-dimensional case with drift, Foddy [6] found analytical
expressions for the stationary distributions for certain special domains, drifts
and directions of reflection, using Riemann-Hilbert techniques. In dimensions
three and more, RBM’s having stationary distributions of exponential form
were identified in [11, 21] and these results were applied in [10, 12] to RBM’s
arising as approximations to open and closed queueing networks with homoge-
neous customer populations. However, until now there has been no general
method for solving the PDE problems alluded to in 4.

If Brownian system models are to have an impact in the world of practical
performance analysis, task 4 is obviously crucial. In particular, practical
methods are needed for determining stationary distributions and it is very
unlikely that general analytical solutions will ever be found. In this paper we
describe an approach to computation of stationary distributions that seems to
be widely applicable, but the method will only be developed and tested for
two-dimensional RBM’s with rectangular state space, and even in that limited
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setting our proof of convergence is incomplete. Our decision to test the
computational method in this particular setting was motivated by (a) the
availability of exact results for at least some RBM’s with rectangular state
space, which allows us to evaluate the accuracy of our method and (b) the fact
that RBM’s with rectangular state space include the approximate Brownian
models corresponding to finite queues in tandem, which allows us to demon-
strate the ultimate use of the computational method on an interesting and
nontrivial class of queueing systems. As a tool for analysis of queueing
systems, the computer program described in this paper is obviously limited in
scope, but our ultimate goal is to implement the same basic computational
approach in a general routine that can compete with software package like
PANACEA [14] and QNA [20] in the analysis of large, complicated networks.
Readers who would like to obtain a copy of the computer program described in
this paper should contact the second-named author by electronic mail, address-
ing the message to fharrison@what.stanford.edu.

The paper is organized as follows. Section 2 gives a precise definition of an
RBM with rectangular state space and a statement of the PDE problem that
one must solve to determine its stationary distribution. In Sections 3 and 4, an
algorithm is developed for solution of the PDE problem and then in Section 5
the algorithm is applied to some special cases for which exact analytical
solutions are available. In Section 6 we return to discussion of the previously
described tandem queue, explaining how the QNET performance estimates in
Table 1 were obtained. Finally, Section 7 contains some remarks about promis-
ing directions for future research.

2. SRMB with rectangular state space. Let S be a closed two-dimen-
sional rectangle and & be the interior of the rectangle. For i = 1,2, 3,4 let F,
be the ith boundary face of S and let v; be an inward-pointing vector on F,
with unit normal component (see Figure 3). For the purpose of this paper, we
assume that (here and later the symbol = means equals by definition)

there are positive constants a; and b; such that a,v; + b,v,, ,
(1) points into the interior of S from the vertex where F; and
F;,, meet, i = 1,2,3,4, where v; = v, and F; = F,.

Also, let us define the 2 X 4 matrix R = (v, vy, U5, U,).

2,
Fy

b
\):
Fl\ LFa

(51 ) T

0 F, a A

Fic. 8. The state space S of the RBM.
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DEeFINITION 1. A semimartingale reflected Brownian motion (abbreviated
as SRBM) Z associated with data (S,T, u, R) is a continuous, adapted, two-
dimensional process with an associated family of probability measures
{P,, x € S} defined on some filtered probability space (Q, #,{.%]}) such that
for each x € S, we have P -as.,

4
(2) Z(t) =X(¢) + RL(¢) =X(t) + Y, L(t) -v,e S, t=0,
i=1
X is a two-dimensional Brownian motion with X(0) = x,
(3) covariance matrix I' and drift vector u such that {X(¢) —
ut, %, t > 0} is a martingale,

L is a continuous {.%, }-adapted four-dimensional process such that

() (a) L(0) =0,

(b) L is nondecreasing,

(c) L, increases only at times ¢ such that Z(¢) € F,,i = 1,2, 3,4.

REMARK. The previous definition of SRBM follows from Reiman and
Williams [15]. Harrison, Landau and Shepp [7] considered a more general class
of RBM’s which may not have a semimartingale representation as in (2).
However, for the purpose of this paper, we only consider the class of RBM’s
defined in Definition 1. For the notational convenience of this paper, from now
on we will not distinguish SRBM from RBM.

The RBM Z defined before behaves like a two-dimensional Brownian mo-
tion with drift vector u and covariance matrix I' in the interior & of its state
space. When the boundary face F. is hit, the process L; (sometimes called the
local time of Z on F)) increases, causing an instantaneous displacement of Z
in the direction given by v;; the magnitude of the displacement is the minimal
amount required to keep Z always inside S. Therefore, we call I', u and R the
covariance matrix, the drift vector and the reflection matrix of Z, respectively.

The following will be proved in [3], essentially by just piecing together the
results in Harrison and Williams [10], Reiman and Williams [15] and Varadhan
and Williams [19].

ProOPOSITION 1. Let there be given a covariance matrix I', a drift vector u
and a reflection matrix R whose columns satisfy (1). Then there is an RBM
associated with the data (S, T, u, R). For each x € S, let @, be the probability
measure induced on the path space C([0,x), S) = {w: [0,0) — S, w is continu-
ous} by any such RBM Z and associated measure P, Then the family
{Q,, x € S} is unique, it is Feller-continuous, that is, x = E%[ f(w(¢))] is
continuous for all f € C,(S) and ¢t > 0, and w(-) together with {Q,, x € S} isa
strong Markov process. Moreover, sup, .5 EF{[L,(¢)] <  for each t > 0 and
i=1,2,34.

For a probability measure = on S, let E™ denote the expectation with
respect to P_, where P_(A) = [P, (A)w(dx). A probability measure 7 on S is
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called a stationary distribution of the RBM Z if for every bounded Borel
function f on S and every ¢ > 0,

JESL(2)]m(d) = [ f(x)m(dx).

Because the state space S is compact, there is a stationary distribution for
Z, (cf. Dai [2]). Also, using arguments virtually identical to those in [10], one
can show that

(5) Z is ergodic and therefore its stationary distribution = is unique.
(6) 7(3S) = 0and m(dx) = py(x) dx for some density function p, in &.

For each i, there exists a finite Borel measure v; on F; such
that E™{[{1,(Z,)dL(s)} = tv,(A) for all ¢ > 0, where A is

(7 any Borel subset of F,. Furthermore, v, has a density p;,
with respect to one-dimensional Lebesgue measure do
on F,.

Let C2(S) be the space of twice differentiable functions whose first and
second order partials are continuous on S. Because S is compact, functions in
C?(S) are bounded. For f e C%S), applying It6’s formula to the process Z
exactly as in [9] or [10], one has that

2
FZ(D) = F(Z0) + T [~ F(2(s)) des) + ['77(2(s)) ds
i=1700%; 0
®) 4
+ ¥ [‘2:£(2(5)) dLy(5),
i=1°0

Where fl(t) = Xz(t) - Mit’

1 2
(9) sf=5 ¥

(10) 9;f(x) =v;- Vf(x) forx eF, i=1,2,3,4.

Again proceeding exactly as in [10], we can then take E™ of both sides of (8) to
conclude that the stationary density p, and the boundary measures v; = p, do
jointly satisfy the following basic adjoint relationship:

4
(11) f(ff-po)dx+ Y f (Z,f p;))doa=0 forall feC?S).
S i=1"F

The argument given in the previous paragraph shows that (11) is necessary
for p, to be the stationary density of Z. The following essential complement
will be proved in [3].

PRrOPOSITION 2. Suppose that p, is a probability density function in © and
Vi, ...,V are finite Borel measures on Fy,..., F,, respectively. If they jointly
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satisfy
4
(12) J(£f po)dx + ¥ [ 2;fdv;=0 forallfeCX(S),
S i=1"F,
then p, is the stationary density of Z.

In this paper we develop an algorithm for computing the stationary density
P, and the boundary densities p;, i = 1,2,3,4. The logic of the algorithm
applies equally well in higher dimensions, but in higher dimensions we have no
analog for Proposition 2. The following conjecture is useful in proving the
convergence of the algorithm that we will develop in Section 4.

CONJECTURE 1. Suppose that p, is an integrable Borel function in & and
vy,...,V, are finite Borel measures on Fy,..., F,, respectively. If they jointly
satisfy the basic adjoint relationship (12), then p, does not change sign in ©.

Readers might naturally assume that it is best to convert (11) into a direct
PDE for p,, but that gets very complicated because of auxiliary conditions
associated with the singular parts of the boundary; we are just going to work
with (11) directly. We end this section by converting (11) into a compact form
that will be used in the next section. Let

_[“f(x), =x€0,
(13) "Q/f(x)_{.@lf(x), xEE,l=1,2a3’4’
_ [dx, in?®?,
n(dx) = {do" on dS,
and
_ po(x), in ﬁ,
(14) p(x) - {P;(x)’ on F‘i’i=1,2,3,4~

With these notations, the basic adjoint relationship (11) can be rewritten as

(15) [S(Mf-p)dn=o forall fe C2(8S).

REMARK. Strictly speaking, .&/f(x) in (13) is undefined at each vertex x.
However, because the vertices have no mass under the measure 7, the
definition of &/f at vertices is immaterial in this paper.

3. A least squares problem. In this section we first convert the problem
of solving (15) into a least squares problem, and then propose an algorithm to
solve the least squares problem. Our approach is similar in spirit to that of
Bramble and Schatz [1], who considered a Rayleigh-Ritz—Galerkin method for
solution of the Dirichlet problem using a subspace without boundary condi-
tions. The purpose of their method was to avoid finding boundary elements
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when the boundary of the domain is complicated. In our problem, the domain
is not complicated at all except that it is nonsmooth, but the boundary
condition is implicit in (15) and is not known to us.

We start with the compact form (15) of the basic adjoint relationship (11).
Let L? = L*(S,n) and denote by || - || the usual L? norm and by (-, - ) the
usual inner product. It is evident that .&/f € L? for any f € C%S). Hence we
can define

H = {o/f: fe C3(S)},

where the closure is taken in L?. If one assumes that the unknown density p
is in L2, then (15) says simply that /f L p for all f< C*(S), or equivalently,
p € H* . Conversely if w € H*, then w satisfies (15).

Let us assume for the moment that the unknown density function p
defined by (14) is in L2 That is, assume p, is square-integrable with respect
to Lebesgue measure in & and p; is square integrable with respect to
one-dimensional Lebesgue measure on F}, i = 1,2, 3, 4. In order to construct a
function w € H*, let

_ (1 forxe 7,
(16) ¢0(x)—<0 for x €48S.

Because p, is a probability density, we have (p, ¢,) = [s(p - do)n(dx) =
Jopodx =1, so p is not orthogonal to ¢,. On the other hand, we know from
(15) that p L A for all A € H and therefore ¢, is not in H. Let ¢, be the
projection of ¢, onto H. That is,

(17) b, = argmin|¢, — ¢l%.
$peH

Because ¢, is not in H, we know that
(18) (505(1’0_507&0-
Obviously, d;o € H * . Simple algebra gives

a = de;O(x) dx = .[S(d;o(x) “bo(x))n(dx) = (o, bo) > 0.

PrOPOSITION 3. Suppose thatp € L2 Thenw = (wgy, wy, ..., w,) = (1/a)d,
satisfies the basic adjoint relationship (15) and [qw,dx = 1. Therefore, as-
suming that Conjecture 1 is true, we have w, = p, almost everywhere.

Proor. Let w = (1/a)$,. Then, by construction, w satisfies the basic
adjoint relationship (15). Conjecture 1 asserts that w, does not change the
sign and because [qw,dx =1, w, is a probability density function. Thus
Proposition 2 can be applied to assert w, = p, a.e. O
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As we will see later, the assumption that p is in L? is not satisfied in all
cases of practical interest. However, when that assumption is satisfied, Propo-
sition 3 says that in order to find the unknown stationary density p, it suffices
to solve the least squares problem (17).

We now define some quantities that are of interest in the queueing theoretic
applications of RBM. Let q; = [(x; - wo(x))dx, i = 1,2, and §, = Jrwix)dao,
i = 1,2,3,4. Assuming Conjecture 1, ¢, = [(x; po(x)) dx, which represents
the long-run average value of Z,, and 8; = [, p(x) do, which represents the
long-run average amount of pushlng per unlt of time needed on boundary F; in
order to keep Z inside the rectangle S. That is, EP{L,(¢)] ~ 86,t as t — » for
eachxe8S,k=1,23,4.

4. An algorithm. Given Proposition 3, we will now propose an algorithm
for approximate computation of p based on L? projection. In the examples
presented later, it will be seen that the algorithm works well even in cases
where p is known not to be in L2

PROPOSITION 4. Suppose that we can construct a sequence of finite dimen-
sional subspaces {H,} of H such that H,1" H as n 1o (H, 1 H means that
H,, H,,... are increasing and every h € H can be approximated by a sequence
{h,} with h, € H, for each n). Let

¥, = argminll¢, — ¢l
$eH,

Then llpy — ¥,|I> > 0 as n — w. Furthermore, if
(19) wnEd)O_wn’
then w, — ¢, in L%(S,n) as n — .

Proor. We can find an orthonormal basis {¢,),.; in H, such that
{¢1,...,,} is an orthonormal basis for H,. Then

$0 = Z (¢’o,¢>i)¢i and ¢, = Z (b0, d:) ;.
i=1 i=1
Hence
ldo — wall>= ¥ (oo, 0;)> = 0.
i=n+1

Let w, = ¢, — ¢,. Then

lw, = doll> = I(do — ¥,) — (b0 — Bo)I* = llgr, — Boll> = 0. 0

Now the problem is to find the projections #,. The way to find the
projection is standard. Suppose that {¢,,..., ¢,} is a basis for H, (it need not
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be an orthonormal basis). Then

'/jn = Z aid)i
i=1

for some- a,,a,,...,a,. Let T denote the transpose operator. Then
(ay,ay,...,a,)T is the unique solution x of the normal equations
(20) Ax = b,
where
(d’l’d)l) (d’l’d)n)
(21) A= : - : ;
(¢n’¢1) (¢)n’¢n)
and
(¢O’ d)l)
(22) b=|
(¢0; d)n)

Because A is positive definite, the normal equations do have a unique solution.
Finally, we have
n
w, = d)O - Z ai¢i‘
i=1

As pointed out in Serbin [16, 17], the normal matrix A in the normal
equations (20) is generally ill-conditioned. There are many alternatives for
solving the normal equations. However, we have chosen to use Gram-Schmidt
orthogonalization to find the projections ¢, directly.

There are many ways to choose the approximating subspaces H,, each of
which yields a different version of the algorithm. We choose H, as

H, =spanof {</f), ;:k=1,2,...,n;i=0,1,...,k},
where f, ; = x{x}~*. The dimension of H,, is
(n+1)(n+2)
5 _

ProposiTioN 5. If H, is defined as before, then H, 1 H. Let w, be defined
as in (19); then a, = (w,,w,) # 0. Therefore we can define p" = (1/a,)w,.
Furthermore, if p € L?, then p™ — (1/a)$, in L? as n — o,

Proor. The proof of H, * H is an immediate consequence of Proposition
7.1 and Remark 6.2 in the appendices of Ethier and Kurtz [5]. Because
¢o & H, for each n, we know that w, # 0 and «, = (w,,w,) # 0. Hence we
can define p" = (1/a,)w,. If we assume p € L?, then a # 0. Because w, = ¢,
and a, — a, it is immediate that p” = (1/a)¢,. O
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Several considerations lie behind our choice of approximating subspaces.
First, more complicated subspaces (e.g., those used in the finite element
method) may lead to problems in higher dimensions. Second, when low order
polynomials are substituted into (11), one obtains exact relations among some
quantities associated with the stationary density p. These relations resemble
energy preserving relations in the finite element method. We believe that this
property will enhance the accuracy of our computational method. Finally, as
the following section will show, our choice seems to give reasonably good
results.

PROPOSITION 6. Suppose that p € L% Let p™ be defined as in Proposition 5.
Let ¢\ = [Ax; - p"(x))dx and q§ = [(xy - p"(x)) dx. Then ¢\ — q, and
qi" > qyasn -

Proor.

1.
p"(x) = —Gola) | da

9 1/2
dx)

g = qil < [x,lp"(x) = wo(x)ldx = [ %,
f} %?
1/2
2
< (fsxl dx) L

b\
< |—
as n — o, where the constants a and b are indicated in Figure 3. Similarly we
have ¢{™ - g, as n » . O

1.
P"(x) = =do(x)

2

1.
p" — —do|| 20
a

REMARK. If p & L2 then ¢, in (18) must be zero in L2. However, as stated
in Proposition 5, each p” is well defined. We conjecture that p” still converges
to p in the weak sense and the weak convergence would imply ¢{™ — ¢, as
n—->ooi=12

5. Comparison with SC solutions. In this section we consider a special
case of the RBM described in Section 2, comparing results obtained with our
algorithm against a known analytic solution. The special case considered has
uw=0and I' = 2T (I is the 2 X 2 identity matrix), so our differential operator
& is the ordinary Laplacian. Before going further, we introduce some addi-
tional notation. Let n; be the unit normal vector on F; and 6, be the angle
between the vector v; and the normal n,, with 6; being positive when v; lies
right of n, as one traces the boundary counter clockwise and nonpositive
otherwise, i = 1,2,3,4. Let B, = 2(0,,., — 6,)/m, i = 1,2,3,4 with 6; = 6,. It
can be shown that (1) is equivalent to 8; > —1 for all {. From the results in [7]
it follows that p, is always square integrable in & w.r.t. Lebesgue measure,
whereas p, is square integrable on F, w.r.t. one-dimensional Lebesgue



28 J. G. DAI AND J. M. HARRISON
measure if and only if
(23) B;> -3, i=1,2,34.

Hence we conclude that p € L%(S, ) if and only if (23) is true.
In addition to the restrictions mentioned earlier, we assume that 6, = 7 /4,

0, =0, 0, =0and 6, = —7/4. The corresponding reflection matrix is
_ 1 0 -1 1
(24) R- (_1 ol h

We fix the height of the rectangle at & =1 and let the length a of the
rectangle change freely. The RBM in this case corresponds to the heavy traffic
limit of two balanced finite queues in tandem. It is easy to calculate that
Bi=—1%,B,=0, B;= — % and B, = 1. Therefore (23) is not satisfied and
hence p & L*(S, n). Readers will see that our algorithm gives very accurate
approximations even in this case. This is consistent with our conjecture
explained at the end of Section 4.

For various values of the length parameter a, Table 2 compares two
different estimates of gy, qq, 61, 85, 85, 8,. The QNET estimate is that obtained
with our algorithm (see Sections 3 and 4), using n = 6. The SC estimate is
that obtained by Trefethen and Williams [18] using a software package called
SCPACK: For the special case under discussion (the restriction to two dimen-
sions and the assumption of zero drift are both essential), Harrison, Landau
and Shepp [7] used complex variable methods to compute the stationary
density function p, in terms of a certain Schwarz-Christoffel transformation
and then SCPACK allows numerical evaluation of these formulas. The SC
estimates on our Table 2 are taken from Table 2 on page 244 of [18] and the
rows labelled DIFF give the absolute differences between those SC estimates
and our QNET estimates. It should be mentioned that our algorithm also
applies to problems with nonzero drift and its basic logic extends readily to
higher dimensions; neither of those statements is true of the methods used in
[7] and [18]. Incidentally, the QNET estimates in Table 2 were obtained using
n = 6 and double precision on a VAX machine; about 32 seconds of CPU time
were required to generate all the figures in the table.

6. Analysis of finite queues in tandem. This section is devoted to an
analysis of the particular tandem queueing system pictured in Figure 1. A
similar treatment of open queueing networks (without buffer storage limita-
tions) has been given by Harrison and Williams [10] and from that earlier work
it should be clear how one may extend the current analysis to allow general
interarrival and service distributions. Let A = {A(¢), ¢t > 0} be a Poisson
process with intensity parameter A, let S, = {S,(¢), ¢ > 0} be another indepen-
dent Poisson process with intensity parameter 1 and let S; be the determinis-
tic counting process defined by S{(¢) =n for n <t <n+1land n=20,1,....
(The letter A is mnemonic for arrival, whereas S, is a service process
associated with station %.)
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TaBLE 2
Comparisons with SCPACK whenn = 6

a q: q:z L 32 33 5y
QNET 0.5 0.258229 0.380822 1.848991 2.413695 2.413695 0.564704
SC 0.258585  0.380018 1.871418 2.412890 2.412890 0.541472
DIFF —0.000356 0.000804 —0.022427 0.000805 0.000805 0.023232
QNET 1.0 0.5561325  0.448675 0.805813 1.611625 1.611625 0.805813
SC 0.551506  0.448494 0.805295 1.610589 1.610589 0.805295
DIFF —0.000181 0.000181 0.000518 0.000036  0.000036 0.000518
QNET 15 0.878800 0.471640 0.466710 1.340876  1.340876 0.874166
SC 0.879534 0.471624 0.446669 1.340225 1.340225 0.893557
DIFF —0.000734 0.000016 0.020041 0.000651 0.000651 —0.019391
QNET 2.0 1.238442  0.483103 0.292077 1.206981 1.206981 0.914904
SC 1.239964  0.482830 0.270736 1.206445 1.206445 0.935709
DIFF —0.001522 0.000273 0.021341 0.000536  0.000536 0.020805
QNET 25 1.625775  0.489845 0.1888642 1.131142 1.131142 0.942499
SC 1.628342 0.489146 0.171214 1.130587  1.130587 0.959373
DIFF —0.002567  0.000699 0.017428 0.000555 0.000555 —0.016874
QNET 3.0 2.036371  0.494084 0.122836 1.085136  1.085136 0.962300
SC 2.040075  0.492970 0.110891 1.084582  1.084582 0.973691
DIFF —0.003704 0.001114 0.011945 0.000554  0.000554 0.003308
QNET 35 2.466108 0.496881 0.079113 1.056112 1.056112 0.976999
SC 2.471022  0.495381 0.072873 1.055585 1.055585 0.982712
DIFF —0.004914 0.001500 0.006240 0.000527 0.000527 —0.005713
QNET 4.0 2.911243  0.498826 0.048974 1.037364 1.037364 0.988391
SC 2.917572  0.496936 0.048334 1.036868 1.036868 0.988534
DIFF —0.006329 0.001890 0.000640 0.000496 0.000496 —0.000143

Let @,(?) be the total number of customers occupying station £ at time ¢,
either waiting or being served (k2 = 1,2) and let

By(t) = measure{s € [0,¢]: Q,(s) < 25},
. By(t) = measure{s € [0,¢]: @,(s) > 0and Q,(s) < 25},
B,y(t) = measure{s € [0,¢]: @,(s) > 0}.

Thus B(t) represents the amount of time in the interval [0, ¢] that the arrival
process to station 1 is turned on, By(¢) is the amount of time in that interval
during which server 1 is busy and B,(¢) is the amount of time in the interval
during which server 2 is busy. Assuming for convenience that there are no
customers in the system at time zero, we then have

(25) Q1(¢) = A(By(t)) — Si(By(2)), ¢t=0,
(26) Qy(t) = Sy(By(2)) - Sy(By(t)), t=0.
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Next define centered processes A, S, and S, via AG) = A®t) — AL, S,(t) =
S,(t) — ¢t and S,(¢) = Sy(¢) — ¢. Then the representations (25) and (26) can be
rewritten as

(27) Q:(?) =A(Bo(t)) — Sy(By(t)) + AB,(t) — By(2),
(28) Qu(t) = Sy(B,()) — S5(By(t)) + By(t) — By(t).

To establish the connection between our two-dimensional queue length process
Q(t) and the RBM’s studied earlier, it will be convenient to define nondecreas-
ing processes I,(¢t) =t — B,(¢) for £k = 0,1,2 and ¢ > 0. One interprets I,(¢)
as the total amount of time during the interval [0, ¢] that input to station 1 is
turned off and I,(-) and I,(-) are the cumulative idleness processes for server
1 and server 2, respectively. Thus we have that

(29) I,(+) increases only when @,(-) = 25,
(30) I,(-) increases only when @,(-) = 0 or @,(*) = 25,
(31) I,(-) increases only when @,(-) = 0.

Setting i, = A — 1, g = 0, £(8) = ACBo(1) — $(B,(#)) and £,(1) = S,(By(t)) -
S,(B,(t)), we observe that (27) and (28) can be rewritten as

(32) Q1(t) = [fl(t) + :U~1t] + Il(t) - )‘Io(t),
(33) Qx(t) = [£x(8) + pat] — Ii(2) + Ix(2).

Let us now set L4(¢) = AI(¢) and L(¢) = I(¢) and split I,(+) into two parts
via

t
(34) Ly() = [ Tiguer <29 Ai(5)
and

t
(35) La(8) = [ Tiguer-a20 A1(s)-

Let S be the 25 X 25 rectangle pictured in Figure 1 and let Fy,..., F, be the
four line segments that make up the boundary of S as in Figure 2. From (30)
we see that I, = L, + L, and (29)-(31) and (34)-(35) together imply that

(36) L, increases only at times ¢ when Q(t) € F, i=1,2,3,4.

Defining a two-vector u, a two-dimensional process £(¢) and a four-dimen-
sional process L(¢) in the obvious way, we can then write (32)-(33) in
matrix-vector form as

(37) Q(¢) = [£(t) + ut] + RL(¢), t=0,
where
@ re(4 0 ) )

Comparing (36) and (37) with (2)-(4) we see that if ¢ were a Brownian
motion, then @ would be an RBM of the type defined in Section 2. Thus, to
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form an approximate Brownian system model, it remains only to determine
the natural Brownian approximation for ¢. The processes B, B; and B, are
continuous and nondecreasing, and using regenerative process theory, one can
show that there exists a constant y > 0 (the system throughput rate) such
that

(39) ABy(t) ~ vt, B,(t) ~yt and B,(t) ~ vyt almost surely

as t — «. From this and familiar properties of the Poisson process, it follows

that the processes {n~'/2(nt), t > 0}, indexed by n =1,2,..., converge
weakly as n — » to a Brownian motion with zero drift and covariance matrix
(40) I'=qyl,

where [ is the 2 X 2 identity matrix. Thus the natural Brownian approxima-
tion for ¢ has drift zero and covariance matrix yI and we are led to

approximate @ by a reflected Brownian motion Z whose
drift vector is u = (A — 1,0)7, whose covariance matrix is
I' =yI, whose state space S is a 25 X 25 rectangle and
whose reflection matrix R is given by (38).

(41)

An obvious problem with the proposed approximation (41) is that the through-
put rate y is unknown; in fact, a central purpose of our analysis is to
determine y. The obvious remedy for this problem is to adopt the iterative
procedure described in the following paragraph.

Suppose for the moment that the covariance matrix I' is given and let
Z(t) = X(t) + RL(¢) be the RBM that approximates @(¢) in accordance with
(41). Recall from that last paragraph of Section 2 that §, is the constant such
that

(42) E[L,(t)] ~8,t ast—>o, k=1,234.

If one puts the linear test functions f(x) =x; and f(x) = x, into the basic
adjoint relationship (11), specializing this relationship to the particular drift
vector and reflection matrix proposed in (6), one obtains

(43) (A=1) + (8, +8,) —8;=0,
(44) — (8, +68,) +8,=0.

Now how does one estimate the throughput rate y for our tandem queue from
the steady-state performance characteristics of the Brownian system model? In
the definition of RBM in Section 2, the boundary processes L, are primitive,
but to arrive at the ultimate representation (37) for our queue length process
Q(t) we defined L(?),..., L,(¢)in terms of Iy(2),..., I5(t), which were defined
in turn via I,(¢) = ¢t — B,(¢), k = 1,2,3. Thus, given the boundary processes
L, of the Brownian system model, one naturally defines an associated triple
of processes B,(?), By(t), B5(¢) by inverting those original relationships,
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~ eventually arriving at
1

(45) Bo(t) =t- ‘/\‘L3(t), B2(t) =1t — Ly(t),
By(t) =t — [Ly(¢) + Ly(t)].

Given (39), (42) and (45), any of the following three equations provides an
equally attractive estimate of the throughput rate y in terms of the constants
5, associated with the reflected Brownian motion Z:

(46) ’y=A _63,
(47) Y= 1- 527
(48) y=1-(8; +8,).

From (43) and (44) we see that (46)—(48) are equivalent relationships, which is
as it should be. Then the following iterative procedure naturally suggests
itself: Start with a trial value of y (say, y = 1), set ' = yI to complete the data
set of the RBM, from that data compute the steady-state performance charac-
teristic &, of the Brownian system model, use (47) to determine a new value of
vy, and repeat the process until convergence is obtained. Table 3 shows the
results that we obtained with this procedure using data for the tandem queue
with A = 0.9 and using the algorithm described in Section 4 (with n = 7) to
compute the value of §, for each trial value of y. The QNET estimates for
q1,q, and y that we reported earlier in Table 1 for A = 0.9 are those in the
final column of Table 3. The other QNET estimates reported in Table 1 were
obtained in identical fashion, except those corresponding to A = 1.0. The
tandem queue with A = 1.0 gives rise to an approximate Brownian system
model with zero drift, and in that special case one can use a scaling argument
to determine the QNET estimate of y in a single pass, without iterative
computation. The scaling argument is of interest in its own right, so we will
explain it in detail. To begin, consider a standardized RBM Z*(¢) = X *(¢) +
RL*(t) with covariance matrix I'* = 2] and drift vector u* = 0, whose state
space S* is a 1 X 1 square and whose reflection matrix R is given by (38).
The steady state performance characteristics of Z* were computed and dis-

TABLE 3
Iterative calculation of y for the case A = 0.9

Iteration number 1 2 3
Trial value of y 1.0 0.898706 0.899547
Computed value of g, 5.3243 4.8450 4.8490
Computed value of g, 6.7470 6.3146 6.3184
Computed value of 8, 0.10294 0.100453 0.100459

Computed value of y 0.898706 0.899547 0.899541
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played earlier in Table 2, where we found that
(49) 8 =1.61, qF¥=0.55 and gqJ = 0.45.

Given constants a > 0 and 8 > 0, one can define three new processes X, L
and Z via

(50) X(t) = aX*(Bt), L(¢) =aL*(Bt) and Z(t) =aZ*(Bt).

Obviously Z(¢) = X(¢) + RL(¢), and one can easily verify that Z is an RBM
with covariance matrix I' = 2a?B1 and drift vector & = 0, whose state space S
is an a X a square and whose reflection matrix R is the same as that for Z*.
Recall that the constants 87 (associated with Z*) and §,; (associated with Z)
are defined so that

(51) E[L#*(t)] ~éxt and E[L,(t)] ~§;¢
ast — o, 1 =123 4. Thus, from (50) and (51),
(52) 85, =aBér, i=1,2,34,

whereas the constants g * (associated with Z*) and ¢, (associated with Z) are
related by

(53) q; =aqf, i=1,2.

When A = 1.0, the reflected Brownian motion Z that approximates our
two-dimensional queue length process @ has covariance matrix I' = yI and
drift vector u = 0; its state space S is a 25 X 25 square and its reflection
matrix R is given by (38). Thus, to represent this process Z in terms of the
standardized process Z* via (50), we must have a = 25 and 2a?BI = yI; so
that required scaling is

(54) a=25 and B =y/2(25)°.

As explained earlier, we want to find a value for y such that the corresponding
value of 8, satisfies

(55) 1-68,=y.

Thus, combining (49) with (52) through (55), one concludes that
(56) y=1-8,=1-aBsf =1 - 25[y/2(25)%] 55
and hence

(57) y=[(1+65/2(25))] ' = (1 +1.61/50) " = 0.9688.
Of course, (49) and (53) together give

(58) q; = 25(0.55) = 13.75 and qF = 25(0.45) = 11.25

and (56) and (57) are the QNET estimates reported in Table 1 for A = 1.0.

7. Concluding remarks. Let us return to the setting of Section 3, where
the problem of computing the stationary density p was cast as a least squares
problem. The treatment given there can be generalized in the following way,
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which may be important for both practical and theoretical purposes. (In this
section the letter ¢ will be reused with a new meaning, but that should cause
no confusion.) Let g, be a strictly positive function on the interior & of the

rectangle S and let g4, ..., g, be strictly positive functions on the boundary
surfaces Fi, ..., F,, respectively. Defining
qO(x) in ﬁ ’
59 =
(59) 1 {qi(x) on F,,i=1,2,3,4,

we call ¢ a reference density and we define a corresponding reference measure
v via

qo(x)dx in O,
q(x)do on F,,i=1,2,3,4.

If we work in the Hilbert space L2%(S,v) rather than the space L%(S,n) used
in Section 3, then the focus is on the unknown function r defined by

r(x) = Po(x)/qo(x) in o,
pi(x)/q,(x) onF,i=1,238,4.

That is, with the inner product defined by (f, g) = [s(f g)dv, our basic
adjoint relationship (11) says that 2/f L r for all f & C,(S) and hence one
may proceed exactly as in Sections 3 and 4 to devise an algorithm for
approximate computation of r by projection in L%(S, v). Of course, the final
estimate of r is converted to an estimate of p via p = rq, where ¢ is the
reference density chosen.

A different computational procedure is obtained depending on how one
chooses the reference density g and the functions fi, f5,... that are
used to build up the approximating subspaces H,, H,,... via H, =
span{o/f,, ..., f,}; recall that in Section 4 we took fi, f5,... to be polyno-
mial functions, but other choices are obviously possible. One wants to choose g
and fi, f5, ... in such a way that the inner products (2/f,,, &/f,) can be
determined analytically and in such a way as to accelerate convergence of the
algorithm. From a theoretical standpoint, the freedom to choose g is impor-
tant because one may have r € L%(S, v) even though p & L%(S, n) and thus a
judicious choice of reference density may enable a rigorous proof of conver-
gence in L% S, v). From a practical standpoint, one may be able to choose g in
such a way that convergence is accelerated, taking g to be a best guess of the
unknown density p based on either theory or prior computations. In a future
paper [4] we will discuss computation of stationary distributions on un-
bounded regions, where a proper choice of reference dens1ty is essential to
efficient computation.

(60) v(dx) = {

(61)
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