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TIGHT BOUNDS AND APPROXIMATIONS FOR SCAN
STATISTIC PROBABILITIES FOR DISCRETE DATA

By JosepH GLAz! AND JosePH I. NaUs

The University of Connecticut and Rutgers—The State University
of New cJersey

Let X, X,,... be a sequence of independently and identically dis-
tributed integer-valued random variables. Let Y;_,.;; for t=m,
m +1,... denote a moving sum of m consecutive X;’s. Let N,, 7=
max,, ., . 7{Y;_,,41,) and let 7, ., be the waiting time until the moving
sum of X;’s in a scanning window of m trials is as large as k. We derive
tight bounds for the equivalent probabilities P(r}, ,, > T) = P(N,, 7 < k).
We apply the bounds for two problems in molecular biology: the distribu-
tion of the length of the longest almost-matching subsequence in aligned
amino acid sequences and the distribution of the largest net charge within
any m consecutive positions in a charged alphabet string.

1. Introduction. Scientists in a variety of fields seek the distribution of
the maximum value of a moving average or sum. This paper derives tight
bounds and accurate approximations for this distribution for the case of a
moving sum of independently and identically distributed integer-valued ran-
dom variables. The bounds are computed and evaluated for two problems in
molecular biology.

Let X,, X,,... be a sequence of i.i.d. integer-valued random variables. Let
Y,,=Xi_ X, for t>r=>1, and be 0 otherwise. Y, ., Y, ., 1, Y5 igs---
represents a moving sum of the X’s within a window of m trials. Sec-
tion 2 provides bounds and approximations for the distribution of
max,, .; < T{Yt—m+ 1, t}'

In studying amino acid sequences, molecular biologists look at various
classification schemes: a chemical alphabet (eight letters), a functional alpha-
bet (four letters), a charge alphabet (three letters, —1,0, +1) and others
[Karlin and Ghandour (1985)]. These scientists compare sequences correspond-
ing to different species looking for long aligned subsequences that match on
most of the positions. They seek to determine what is an unusually long
match. Erdos and Révész (1975), Arratia, Gordon and Waterman (1986) and
Karlin and Ost (1988) have provided asymptotic results. These serve as rough
approximations for the null distribution of the length of the longest almost-
matching subsequence. In this application, X; takes the value 1 if the amino
acid sequences match in position i, and 0 otherwise. Section 3 specializes the
bounds and approximations of Section 2 for this problem.
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Molecular biologists also seek to determine what is unusual blocking within
individual amino acid sequences. For the charge alphabet they seek to know
what is an unusually large positive charge within any subsequence of given
length [see Karlin, Blaisdell, Mocarski and Brendel (1989)]. For this applica-
tion, X; takes the values —1,0, 1. Section 4 deals with this problem, providing
bounds and approximations.

2. Bounds and approximations. Let X, X,,...be iid. discrete
random variables with P(X;=j) =P, for j=0,1,2,...,¢c; P(X;=j)=0
elsewhere, where ¢_P, = 1.Let Y, , = L!_ X, fort > r > 1, Y, , = 0 other-
wise, let

NR,T = RriltafT {th—m+l,t}; Thym = lnf{t >1,s.t. Ymax(l,t—m+1),t = k}

Tk, m 18 the waiting time until the sum of the X;’s in a scanning interval of
length m is as large as k. We seek to find the distribution of 7, ,,. Let

Gk,m(T) = P(Tk,m > T) = P(Nm,T < k)’ fk,m(t) = P(Tk,m = t)
Abbreviate 7, ,,, Gy, (T) and f, ,.(¢) to 7, G(T) and f(¢) when k& and m are
understood. We derive the following bounds for G(T').

THEOREM 1. For c < k; i, j,n integers > 1, let
Al,n = f((n + l)m)’ Aj,n = Al,n(l - ‘4‘1'—1,n)_nm+1
and
B, ,=f(nm)/G((n+1)m—1), B,,=f(nm)(1+B,_,,)"".

ForT > im,

(2.1) G(T) < G(im)(1 -4, )" ™ forT>(n+1)m
and
(2.2) G(T) = G(im)/(1 + B, )" "™ for T > nm.

The proof of Theorem 1 follows (2.2f).

ReEMARKs. For j = 1, the bounds (2.1) and (2.2) converge as
G(nm) » 1 and f(nm) — 0. If we let the total number of trials become
large, the bounds will be tight if (1 — f(n + Dm))""*™ is close to
1/(1 + f(nm)/G({(n + Dm — 1))T~i™ Theorem 1 can be modified to handle
the case where some of the values that the X’s take are greater than k, are
unbounded or are negative.

To apply the bounds (2.1) and (2.2) in specific cases, we need to evaluate
f(nm) and G(im) and G((n + 1)m — 1) for some appropriate integer values of
i and n. The larger i and n, the better the bounds appear, though the harder



308 J. GLAZ AND J. I. NAUS

it is to evaluate G and f. The simplest cases of the bounds are given in
inequalities (2.1a)-(2.2f).

UPPER BOUNDS.
(2.1a) G(T) < G(2m)(1 - f(2m))"™>" for T = 2m,
(2.1b) G(T) < G(3m)(1 - f(2m))T™>" for T = 3m.

The bounds (2.1a) and (2.1b) can be improved by replacing f(2m) by

A; ,, where we compute A;; by setting A, ; =f(@2m), and iterating A;, =

f@mX1 — A, )L,

LOWER BOUNDS.
(2.22) G(T) = G(2m)/(1+ (f(m)/G2m —1)))"*" for T > 2m,
(2.2b) G(T) = G(2m)/(1 + (f(2m)/G(Bm — 1)))"*" for T > 2m,
(2.2¢) G(T) = G(3m)/(1+ (f(2m)/G(8m - 1)))">" for T > 3m.
Note that since G(3m) < G(3m — 1), (2.2c) implies
(2.2d) G(T) = G(3m)/(1+ (f(2m)/G(3m)))" " for T = 3m.

We will prove below that G(2m)G(2m — 1) < G(3m — 1) and thus (2.2b)
implies (2.2e), and (2.2c) implies (2.2f).

G(T) = G(2m) /(1 + (f(2m)/G(2m)G(2m — 1)))" "

(2.2¢) for T > 2m,
0oy O 2 [G(2m)]?/(1 + (f(2m)/G(2m)G(2m — 1))) "
(2.20) for T > 3m.

To prove Theorem 1, we first prove three preliminary lemmas. We use the
known result [see Esary, Proschan and Walkup (1967)]:

Lemma 1. If X,, X,,..., X, are independent random variables, then for
any two n-variable real-valued functions f and g that are both coordinatewise
monotone increasing (or both decreasing)

E[f(Xy,..., X)&(Xp,..., X)] 2 E[ f(Xy,..., X,)]

(23) XE[g(Xp---an)]'

LeEmMMmA 2. Fort>nm,c<kandn=12,...,

(2.4) f(t) < G(t — nm) f(nm).
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Proor. For ¢t > (n + 1)m,

l

c D)) N0}
=1 1

i=

(2.5) f(t)=P(r=¢)=P[{N,,,<k—-1}n (

where
(2.6) Di=(Ymir,e-1=k—i) N (X, 217)
and

fi(t) = P({Nm,t_l <k-1}n Di).
Write

fi(8) =P({Np tonm <k =1} 0 {N; i1, 1 <k -1} N D))
(2.7 < P({Nm,t_nm <k-1}0{N_i_pymi-1<k-1}nN Di)
= G(t — nm) fi(nm),
where
fi(nm) = P({Nm,nm—l <k-1}
MY tmat,nm-1 =° = i} N {X, = l})

Substituting inequality (2.7) into (2.5) yields f(¢) < G(t — nm)X$_, f(nm) =
G(t — nm) f(nm), proving Lemma 2 for ¢ > (n + 1)m. To verify that in-
equality (2.4) holds for nm <t <(n + Dm — 1, define G(0) =1, G(t) =
P(X,+ - +X,<k—-1) for 1 <t<m; replace N, , ,, by Y;, ,, and
drOp {M—(n—l)m,t—l < k — 1} if n=1in (27) ]

(2.8)

LEmMMA 8. Fort>(n+ 1)m,c<k,n=12,...,
(2.9) f(t) = f((n + 1)m)G(t — nm).

Proor. Define the events
El = {Nm,t—nm <k- 1}

and
Ey;={Ni_pmi-1<k—-10{Y,_,1,1=Fk—i}.
Write
(2.10) f(t) = P(E, N Ey ) P(X, = i),
where E; depends on X,...,X,_,, and E,; depends on X, ,.1,+1

X

Let S=(X,_,,.+1--->X,_1). Condition on the set of values in S. Let
I(E,) and I(E, ;) be indicator functions, I(E) = 1 if E occurs, 0 otherwise.
Conditional on S, I(E,) and I(E, ,) are both coordinatewise decreasing func-
tions of the X’s not in S. Apply Lemma 1 to find

(2.11) P(E, N E,,|S) = P(E,|S)P(E,,|S) = P(E,)P(E,,IS).
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Average both sides of inequality (2.11) over the distribution of X’s in S to find
P(E,NE,;) = P(E,)P(E,;) = G(t — nm)P(E, ;)
=G(t—nm)f,((n+1)m)/P(X, >1i).

Substituting into (2.10) and summing over i = 1,..., ¢ completes the proof of
Lemma 3. O

(2.12)

Proor oF THEOREM 1. Use Lemma 2 to find the lower bounds (2.2) and
Lemma 3 to find the upper bounds (2.1) of Theorem 1. From Lemma 3, for
t>(n+ Dm,

f(t)=G(t—-1)—G(t) =f((n + 1)m)G(t — nm)
>f((n+1)ym)G(t - 1),
since G(¢) is decreasing in ¢. From (2.13) and letting f((n + Dm) =A, ,,
(2.14) G(t = 1)/(1- Ay, = G(8)/(1 - Ay,

so that G(¢)/(1 — A, ,)* is decreasing in ¢. Thus for T>im and T >
(n+ m,

(2.15) G(T) < Gim)(1 - A, )"~

This is the upper bound (2.1) for j = 1.
Further, from the fact that G(¢)/(1 — A, )’ is decreasing for t > (n + 1)m,

(216)  G(t—nm)>=G(t—1)(1—-A;,) ""/1-A.,) "
Substituting this into inequality (2.13) gives
(2.17) (1-A4,,)G(t-1) = G(t),

where A, =A, (1-A;,) """ Iterating in this fashion gives upper
bounds (2.1) for j =1,2,... .
For the lower bounds (2.2), use Lemma 2 to find for ¢ > nm,

(2.18) f(t) =G(t—-1) - G(¢t) < G(t — nm) f(nm).
From Lemma 1, we note that for ¢ > m,
G(t+u) = P((Np, <k = 1) N N,y sk - 1))
> G(t)G(u +m - 1),

since I(N,, , <k — 1) and I(N,,,,,, <k — 1) are both decreasing functions
of the X’s. In particular, (2.19) implies that for ¢ > nm,

(2.13)

(2.19)

(2.20) G(t —nm) <G(t)/G((n + 1)m — 1).
Substituting (2.20) into (2.18) gives
(2.21) G(t—-1) <(1+B,,)G(),

where B, , = f(nm)/G((n + 1)m — 1). Continuing as before yields the lower
bounds (2.2). This completes the proof of Theorem 1. O
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Our proof of Theorem 1 generalizes the approach of Janson (1984), who
derived bounds for a specific continuous-time process, the Poisson process.
Note that (2.19) implies that G8m — 1) > G(2m)G(2m — 1) and thus that
inequalities (2.2b) and (2.2c) respectively imply (2.2e) and (2.2f). For i.i.d.
discrete random variates, there exist computationally feasible procedures to
evaluate G(t) for ¢ < 2m. These general procedures are derived in Saperstein
(1976), and the details of adaptation are available in Glaz and Naus (1989).
Thus, in general, one can compute G2m), G2m — 1), f@Cm) = G2m — 1) —
G(@2m) and f(m), and evaluate the bounds (2.1a), (2.2a), (2.2e) and (2.2f). In
the cases studied, (2.2¢) and (2.2f) are superior to (2.2a). In certain applica-
tions, as illustrated in Section 3, one has a general formula for G(8m), and can
use the better bounds (2.1b) and (2.2d). In certain cases the bounds (2.2¢) and
(2.2f) can be improved by replacing B, , in (2.2) with an iterated value of B; ,,
given in Theorem 1, and then replacing the terms G(8m) and G(3m — 1) with
their lower bounds [G(2m)]? and G(2m)G(2m — 1), respectively.

Recently Hoover (1988) has derived a sequence of decreasing (increasing)
Bonferroni-type upper (lower) bounds for the probability of a finite union
(intersection) of events. Using these results gives the following lower bound for
G(T).

THEOREM 2. Form <t < T,

(2.22) G(T) = (T -t + 1)G(t) — (T — t)G(t — 1);
and if T = 2m,
(2.23) G(T) = G(2m) — (T — 2m) f(2m).

Proor. From Hoover (1988), Theorem 1, it follows that for a sequence of
stationary events E,,..., Ey,

P( GE) < NP(E,) — (N - 1)P(E; N E,)
i=1
(2.24)

n—1 Jj—1
- X (N_j)P{E1 n ( Ef,, mEj+1}7
j -1

Jj=2 i

where 1 < n <N, and E§~=kaj = 0 for I < k. In our case, (2.24) leads to the
inequality

G(T)>1- (T —m+1)P(ES) — (T — m)P(E: N E)

(2.25) n_1 . i1
- Y (T-m+1-j)P{E{n | N Ey| NEfiq),
j=2 i=1
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where E; = Z{:}"'lxi <k.Lett=n+m—1,thenfor m <t < T,

G(T)>1- (T —m + 1)P(E¢) — (T — m)P(E$ N ES)

2.26 tom 1
(2:28) —Z(T—m+1—j)P{Efﬂ(ﬂEi+1
j=2 i=1

For m <t < T, (2.26) reduces to (2.22). It is easy to verify that for T > 2m,
G(T) = G2m) — (T — 2m) f(2m). This concludes the proof of Theorem 2. O

REMARKS. For ¢ = m the Hoover bound reduces to the Bonferroni bound
and for ¢ = m + 1, it reduces to the Hunter (1976) bound. Note that for large
T(T > 2m + G(2m)/f(2m)), the right-hand side of inequality (2.23) is nega-
tive; this is a deficiency of the lower bound (2.23) relative to (2.2). Section 3
gives a comparison of the Hoover bounds with (2.2). In all our computations
the lower bound (2.2) was superior to the Hoover bound (2.23). We illustrate
the comparison in Table 1.

For applications where one can evaluate G(2m) and G(3m ), Naus (1982)
showed that the approximation

(2.27)  G(T) = G(2m)[G(8m)/G(2m)]"/™ "% for T > 3m,

is highly accurate. In cases where one can only find G(¢) for ¢t < ¢, < 3m,
Saperstein (1976), Samuel-Cahn (1983) and Glaz and Johnson (1984) suggest
approximations of the form

(2.28) G(T) = G(t - D[G(1)/G(t, - D] """

for T > t,. For an appropriate value of ¢, approximation (2.28) falls between
the lower and upper bounds in Theorems 1 and 2.

In certain applications the researcher is particularly interested in E(7), the
expected waiting time until the sum of the X’s in the scanning window of m
consecutive trials is at least equal to k. For example, in quality control one
looks at the waiting time until there is a run or an almost perfect run of
observations above the mean [Mosteller (1941)]. In acceptance sampling, plans
are based on the waiting time until there are %k unacceptable lots in n
consecutive batches [Anscombe, Godwin and Plackett (1947)]. Compute

2m—1

(2.29) E(r) = Zf,OG(t) = ;0 G(t) + i G(2).

t=2m

Substituting the right-hand side of the bounds in (2.1) and (2.2) for i = 2 into
the last sum on the right-hand side of (2.29) gives

2m—-1

(2.30) E(r)< ¥ G(t) +[G(2m)/A,; ]
t=0
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and
2m—1

(2.31) E(r)= Y G(t) +[G(2m)(1 + B, ,)/B, ,|
£=0
for any j, where A; ; and B, , are defined in Theorem 1.

3. The longest matching subsequence allowing mismatches. Let
(Y, Y,,...,Yp)and (Z,, Z,, ..., Z;) be two amino acid sequences of an r-letter
alphabet. The Y and Z sequences are said to match in position i iff Y, = Z,.
Let X; =1if Y, = Z;, and X; = 0 otherwise. Then X,, X,,... is a sequence of
0’s and 1’s, where a long run of 1’s represents a long match between the Y and
Z sequences. The simplest null model is where a match in position i is
independent of matches in other positions, and P(Y;=Z2,)=P(X, =1 =p
for i =1,2,...,T. Note that this case does not require all letters in the
alphabet to have the same probability of occurrence, nor do the probabilities of
a given letter have to be the same for the two sequences.

The distribution of the length of the longest run of 1’s in a Bernoulli
sequence is well known, and both exact and asymptotic results are available.
Molecular biologists not only seek to gauge the significance of long perfect
matches between amino acid sequences, but also that of almost perfect matches.
Allowing up to ¢ mismatches means there can be up to ¢ 0’s among the 1’s (in
the scanning interval). Let V, denote the length of the longest subsequence of
0’s and 1’s containing c¢ or fewer 0’s. The event V, > m is equivalent to the
event that there exists a subsequence of length m that contains at least m — ¢
1’s. Let & = m — c. The probability of the occurrence of this generalized run in
T trials is 1 — G(T). For this case, G(T') is given exactly [Naus (1974)),
asymptotically [Gordon, Schilling and Waterman (1986)] and by a highly
accurate approximation [Naus (1982)].

The microbiologist’s intuitive focusing on large near matches makes sense
in a situation where they seek to distinguish between the following hypothe-
ses.

NuLL HyPOTHESIS. P(X;,=1)=pfori=1,...,T.

ALTERNATIVE HYPOTHESIS. There exists some trial ¢ such that for i = ¢, ¢ +
1,...,t+m—-1, P(X;,=1)=p* for i=1,2,...,t—1 and for i=1¢+
m,...,T, P(X;=1) = p; and p* > p.

The generalized likelihood ratio test rejects the above null hypothesis in
favor of the alternative hypothesis whenever N, r, the maximum number of
I’'s in any m consecutive trials, is large. This follows because the likelihood
ratio can be written as proportional to

(P*(1 = p)/p(1 — p*))Te-mer

and the generalized likelihood ratio rejects whenever max,, ., {(r.)} > C.
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Since p* > p this is equivalent to rejecting whenever max,, _, r{Y,_,,.;J =
C*.

Recall from Section 2 that G(T) gives the distribution of N,, r, as well as
yielding that of 7. To get the bounds (2.1) and (2.2) for G(T'), we need at least
G(@2m) and f(2m). The following theorem gives simple expressions for the
present application in terms of binomial probabilities.

THEOREM 3. Let X,, X,,... be ii.d. random variates with P(X; = 1) = p;
P(X;=0)=1-p=gq. Let b,=0blk;m,p)= (’;‘)pkqm‘k; b, , = bk — 1
m — 1, p) and Fy(r;s,p) = Li_,b(i;s, p). For k > 2,
a1 Grn@m) - F2(k - 1;m,p) — (k — 1)b, Fy(k — 2;m, p)

' + mpb,Fy(k — 3;m — 1, p)

and
(8:2) f(2m) = (p/k)by_y[kgbs_, + (k — mp)Fy(k — 2;m — 1, p)].

Proor. Equation (3.1) is equation (4.2) in Naus (1982). [Equations
(4.3)-(4.7) in that paper give G(3m) = @4.] To prove (3.2), write

f(zm) = P{Nm,2m—1 < lem = O’ X2m = 1’ Ym+1,2m—1 = k - 1}
Xqpb;, ;.

To evaluate the conditional probability on the right-hand side of (3.3), condi-
tion further on Y; ,,_, = i. Apply Corollary 1, equation (3.7) in Naus (1974)
letting (k, m, n,, ny) there be (k, m — 1,i, & — 1) here (the key idea being that
when x,, =0, we can find the distribution of N,, ,,_; by looking at the
corresponding problem of scanning 2m — 2 trials with a scanning window of
m — 1 trials). We then average over the binomial distribution of Y, ,,_; to
find (3.2). Note that

(3:4) f(2m) = Gy, ,(2m — 1) = Gy ,(2m)
and conditioning on X,,,
(35) Gy m(2m — 1) =qGy p_1(2m — 2) + pGy_q n—1(2m — 2);

one can use (3.1) and (3.5) to evaluate f(2m) through (3.4). Use of (3.2) is
simpler. O

(3.3)

Exampie 1. k =8, m = 10, p = 0.5. From (3.1), G 1,(20) = 0.802806854.
From (3.2), fg 10(20) = 0.01323509. From Naus (1982), (4.3)-(4.7), G 1,(30) =
0.682788968.

Now suppose we seek to estimate (and bound) the probabilities Gg ;,(T') for
T > 30. From Theorem 1, A, = f(20) = 0.01323509; A;, = A, (1 —
A;_,,)7° which after 10 iterations stabilizes to A;q; = Ay =
0.0151898841. One can use any A, ; but the largest value gives the best
bound. We use the approximation based on G(83m). From the bounds (2.1b),
iterated version, (2.2d) and approximations (2.27) and (2.28), we find the
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TaBLE 1
Bounds and approximations for G(T') fork =8, m = 10, p = 0.5

Lower bound . Approximation

Upper
T Hoover (2.23) (2.2d) (2.28) (2.27) bound (2.1b)
40 0.538 0.564 0.580 0.581 0.586
50 0.406 0.465 0.492 0.494 0.503
60 0.273 0.384 0.418 0.420 0.431
70 0.141 0.317 0.355 0.357 0.370
80 0.009 0.261 0.301 0.304 0.318

values in Table 1. Table 1 also compares the lower bound (2.2d) with the
Hoover bound (2.23).

4. The largest possible charge in a scanning interval. For the charge
alphabet classification of amino acids, there are three letters (acidic, neutral
and basic) with three possible charges X; = —1,0 or +1. Let P(X; = —1) =
P, P(X;,=0)=P, and P(X;,= +1)=P3=1- P, — P,. The variable
Y, .41, represents the combined net charge in the m trials ending at trial ¢.
N, r is the largest net charge within any m consecutive trials, anywhere in a
sequence of T trials (letters). Microbiologists are interested in determining
whether large net charges within a window of length m in a given sequence
are unusual, and seek the null distribution of N,, 5. See, for example, Karlin,
Blaisdell, Mocarski and Brendel (1989), page 167, and Brendel and Karlin
(1989).

Here the X;’s can take negative values. Let X* = X; + 1, and let N.* ; be
the corresponding quantity in the sequence of X*’s. Since N.¥ r = N,, r + m,

(41) G{(T)=P(Nyr<k)=P(N,r<k-—m)=GCp n(T).

Thus we can apply Theorem 1 for ¢ = 2. To apply Theorem 1 requires that we
evaluate f(2m) and G(2m). The combinatorial argument used to evaluate
f() and G( ) for the case in Section 3 breaks down because the counting
method [based on either the reflection principle or the Karlin-McGregor
theorem, see Naus (1974)] does not permit jumping over states. We use an
alternative computational procedure due to Saperstein (1976). For special
cases we can use a direct combinatorial procedure to evaluate G(2m), G(3m)
and f(2m). We first illustrate this direct procedure.

ExampLE 2. m =3, P, = P, = P3. To find G, 4(6), note that each of six
trials can take any of three p0531ble equally likely values. There are 36 = 729
equally likely sampling points, and a simple counting program will find for
each k& how many of the points lead to N; ¢ < k. The ratio of this number of
points to 729 gives G2m) = G,, 5(6). A similar direct counting approach finds
G(@2m — 1) (there are 35 = 243 arrangements to check) and G(8m) (there are
39 = 19,683 arrangements to check). Note that to find G(T') by this procedure
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TABLE 2
Gy, o(T) form =3;T=2m — 1,2m,3m — 1,3m,4m;
P, = P, = P; for charged alphabet

k 35G(2m - 1) 3%G(2m) 38G(8m - 1) 3°G(3m) 312G(4m)

3 222 648 5,524 16,128 401,392
2 172 466 3,444 9,358 187,826
1 99 233 1,316 3,124 41,842
0 40 76 287 556 4,057
-1 9 13 28 41 129
-2 1 1 1 1 1

for T large is not practical as there are 37 arrangements to check. Even for
G(4m) = G(12) there are 531,441 arrangements to check. However, to bound
and approximate G(T') for large T only requires G(2m — 1) and G(2m), and
for a better approximation and bounds, G(3m) and G(3m — 1).

Table 2 gives the entire distribution of these quantities [and also G(4m) for
checking purposes] for this example.For example, for £ = 2, m = 3,

G(2m) = G, 4(6) = 466/3° = 0.639231824,
G(2m — 1) = 0.70781893,  G(3m) = 0.475435655.

A, =fCm)=G2m — 1) — G2m) = 0.0685871061; iterating, A, =
A20 1 = 0.0812555472. B, 5 < B, so use B, , = 0.130662. Use bounds (2.1b)
and (2.2¢) to find 0.329 < G, 4(12) < 0.369. From Table 2, the exact value is
G, 4(12) = 187,826/3' = 0. 3534. From approximation (2 27, G, 4(12) =
G@Cm)G(Bm)/G2m)) = 0.3536. Table 3 compares approx1mat10ns (2.27)
and (2.28) with simulations (based on 100,000 trials), and with bounds (2.1b)
iterated, and (2.2¢) for larger T. Approximations (2.28a) and (2.28b) are
approximation (2.28) with ¢, = 2m,3m.

Glaz and Naus (1989) extend Table 2 for the cases m = 4,5. The same
approach can be used for the cases m = 6,7. For larger m, or unequal P
more efficient computational procedures are needed, and these are provided by
a method of Saperstein (1976), who derives a recursion formula for evaluating
G () for m +1<i<2m.

TABLE 3
Gy 5(T') for charged alphabet, P, = P, = Py

Lower Approximation Upper bound
T bound (2.2¢) (2.28a) (2.28b) (2.27) Simulation (2.1b)
18 0.157 0.188 0.195 0.196 0.193 0.222
21 0.109 0.139 0.145 0.145 0.143 0.172
24 0.075 0.102 0.108 0.108 0.108 0.133
27 0.052 0.075 0.080 0.080 0.081 0.103

30 0.036 0.055 0.059 0.060 0.061 0.080
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TaBLE 4
Probability of a positive net charge of k or more
m =30, T = 968, P, = 114/968, P, = 754/968, Py =1 — P, — P,

Lower bound Approximation Simulation Upper bound
k (2.1a) (2.28) (10,000 trials) (2.2e)
8 0.1777 0.1779 0.1771 0.1787
9 0.0584 0.0584 0.0578 0.0585
10 0.0161 0.0161 0.0160 0.0161
11 0.003828 0.003828 0.0039 0.003828

Saperstein’s iterative procedure yields G(2m — 1), G(2m) and thereby
f(2m) and thus enables us to bound G(T) via (2.1) and (2.2). We follow this
approach to use (2.2e) and the iterated form of (2.1a) to derive lower and upper
bounds for the null tail probabilities P(N,, » > k) = 1 — G, ,(T). Glaz and
Naus (1989) table bounds for selected values of T, m and k.

Karlin, Blaisdell, Mocarski and Brendel (1989), page 167, give an example of
a sequence of T = 968 X’s (residues of the adenovirus type 2 hexon pro-
tein), and fit a model of independent X;’s, with P(X; = —1) = 114 /968,
P(X,=0)="754/968 and P(X;= +1)=100/968. They take a window
length of m = 30. They estimate that a net positive charge of at least 9.7
anywhere within a window length of 30 is required for significance at the 0.01
level. Table 4 gives the iterated bounds (2.1a) and (2.2e), and approximation
(2.28). For this example, the bounds and approximation give the probability of
a net positive charge of 10 or more as 0.0161. Note that the bounds in Table 4
are very tight for small (and even moderate) values of 1 — G(T).

Acknowledgment. The authors would like to thank Samuel Karlin for
introducing them to the charged alphabet problem and many other molecular
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