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RANDOM WALK PROCESSES AND THEIR APPLICATIONS
IN ORDER STATISTICS

By Lajos TaAkACS

Case Western Reserve University

This paper is concerned with two stochastic processes, namely, a
Bernoulli excursion and a tied-down random walk. Three random variables
are defined for these processes, each variable representing the area of a
random set determined by one of the processes. The aim is to find the
distributions and the moments of these random variables and to determine
their asymptotic behavior. The results derived for random walks are ap-
plied to the theory of order statistics to determine the asymptotic behavior
of the moments and the distributions of two statistics which measure the
deviation between two empirical distribution functions.

1. Introduction. We shall consider two random walk processes. One is
the Bernoulli excursion process {ns,n{,...,ns,), that is, a random walk for
which 7, =714=0 and 7;'>0 for 0 <i < 2n. The other is a tied-down
random walk {ny, 7y, ..., ns,} for which n,, = n, = 0.

For these processes we define the random variables w,, p, and o, by

2n
(1) 2nwn = Z ni+

i=1
for n > 1 and w, = 0,

2n
(2) 2np, = E (m; + 82,)
i=1

for n > 1, where

(3) 8y, = —min(ng, Ny, -, Nap)

and p, = 0, and
2n
(4) 2no, = ¥ Inj
i=1
for n > 1 and o, = 0.

We shall determine the distributions and the moments of these random
variables and their asymptotic behavior as n — .

Afterwards, we apply the results derived for random walks to the theory of
order statistics. We assume that F,(x) and G,(x) are the empirical distribution
functions of two independent samples of size n in the case where the elements
of the two samples are independent random variables each having the same
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436 L. TAKACS

continuous distribution function V(x). We define two statistics ®, and A, by
(5) @,/n=[ [F(x) - G(x)]dV(x) = min [F(x) - Gy(x)]

and

(6 Ba/n= [ IF(x) = Gy(x)dV(x)

and determine the asymptotic behavior of the moments and the distributions
of these statistics.

2. A Bernoulli excursion. We define a sequence of random variables
{ng,m{,...,ms,} in the following way: Let us arrange n white and n black
balls in a row in such a way that for every i = 1,2,...,2n, among the first i
balls there are at least as many white balls as black balls. The total number of
such sequences is given by the nth Catalan number,

1
_(2n
O C. ( n )n +1°
Wehave C,=1,C,=1,C,=2,C;=5,C,=14,C, =42,....

In 1879, Whitworth [18, 19] showed that the number of ways in which a
gains and b losses can be arranged in such a way that the losses are never in
excess of the gains is

a+1-5b
) a+1

if a > b. If a = b = n, then (8) reduces to (7).

Let us suppose that all the possible C, sequences are equally probable and
denote by 7m;" the difference between the number of white balls and the
number of black balls among the first i balls in a sequence chosen at random.
We have 15, =ng=0and n;'>0for i =1,2,...,2n.

The sequence {ng,7n7,...,Ms,} is usually called a Bernoulli excursion. We
can imagine that a particle performs a random walk on the x-axis. It starts at
x = 0 and takes 2n steps. In the ith step the particle moves either a unit
distance to the right or a unit distance to the left according as the ith ball in
the row is white or black respectively. At the end of the ith step the position of
the particle is x = ;" for i = 1,2,...,2n.

As an alternative we can assume that the particle starts at time ¢ = 0 at the
origin and in the time interval (i — 1,i],i = 1,2,...,2n, it moves with a unit
velocity to the right or to the left according as the ith ball in the row of balls is
white or black respectively. Denote by 7,/ (¢) the position of the particle at time
2nt where 0 <t < 1. Then 7,/ (i/2n) =n;' fori =1,2,...,2n.

Let us define a random variable w, for n = 1,2,... by

(8) N(a,b) = (@} ?

2n
(9) 2nwn = Z ni+
i=1
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and set w, = 0. By (9),

1 1
(10) O = [ Wik dt = [ i (2) dt

for n=1,2,....
The random variable 2nw, is a discrete random variable with possible

values n + 2j, j =0, 1,...,(;). Denote by f,(n + 2j) the number of se-
quences {ng,n7,-..,Na,} in which 2rnw, = n + 2j. Then we have
(11) P{2nw,=n+2j} =f(n +2j)/C,

for j=0,1,... (

I 2 .
The distribution of 2n w,, is determined by the generating function

(2)

(12) da(2) = X fuln +2j)27,
Jj=0
which can be obtained by the following theorem.

THEOREM 1. We have
(13) 6u(2) = T bi_i(2)bn_i(2)2i
i=1

forn=12,... and ¢o(z) = 1.

Proor. If i =1,2,...,n is the smallest positive integer for which n,; = 0,
then in the representation

it Ang, =201+ (nf—1)
(14) + + +
tooH(ngioa— 1) F gt g,
the sum (n;{— 1) + - -+ +(n4;_; — 1) has the same distribution as 2(i — Dw,_,
and the sum ng;+ -+ +n5, has the same distribution as 2(n — {)w,_; and
these two random variables are independent. If we use the notation (12), then
by (14) we obtain (13), which was to be proved. O

By (13) we obtain that ¢(2) = 1, ¢5(2) =1 + z and ¢(z) = 1 + 2z + 2% +
2% Table 1 contains f,(n + 2;) for 0 <j < (}) and n < 10. In Table 1 the

rows are wrapped and only j (mod 10) is displayed.
Now let us define '
(3)

(15) F(z,w) =w Xo_o‘,oqbn(z)(zw)n -w i Z fuln + 2j)zn+jwn.

n=0j=0



438 L. TAKACS

TaABLE 1
faln +2j)
J
n 0 1 2 3 4 5 6 7 8 9
1 1
2 1 1
3 1 2 1 1
4 1 3 3 3 2 1 1
5 1 4 6 7 7 5 5 3 2 1
1
6 1 5 10 14 17 16 16 14 11 9
7 5 3 2 1 1
7 1 6 15 25 35 40 43 44 40 37
32 28 22 18 13 11 7 5 3 2
1 1
8 1 7 21 41 65 86 102 115 118 118
113 106 96 85 73 63 53 42 34 26
20 15 11 7 5 3 2 1 1
9 1 8 28 63 112 167 219 268 303 326
338 338 331 314 293 268 245 215 190 162
139 116 97 71 63 48 38 28 22 15
11 7 5 3 2 1 1
10 1 9 36 92 182 301 434 574 704 813

901 959 995 1003 990 958 918 862 801 734

665 598 531 466 405 348 295 249 207 171

138 111 87 69 52 40 30 22 15 11
7 5 3 2 1 1

Since |¢,(2)| < ¢,(1) = C, if |z2| < 1 and since
(16) wY Cuw"=[1-(1-4w)"?/2
n=0
if lw| < 1/4, the series (15) is convergent if |z| < 1 and |zw| < 1/4.
Multiplying (13) by (zw)" and forming the sum for n = 1,2, ..., we obtain
an [1-F(z,2w)]F(z,w) = w

for |z| <1 and |zw| < 1/4. The repeated application of (17) leads to the
continued fraction

F(z,w) = =10 .
(18) 1-—

The continued fraction (18) has been encountered by Ramanujan [10] in the
theory of partitions. (See, e.g., Hardy and Wright [6], page 295.)



RANDOM WALKS AND ORDER STATISTICS 439

3. A tied-down random walk. We define a sequence of random vari-
ables {ny, y, - . ., Ma,} in the following way. Let us suppose that a box contains
n white and n black balls. We draw all the 2n balls one by one without
replacement from the box. There are (2n") possible results and they are
supposed to be equally probable. Define 7,, : = 0,1,...,2n, as the difference
between the number of white balls and the number of black balls among the
first ¢ balls drawn (n,, = no = 0).

We can interpret the sequence {n,, n;, . . ., 15,} as a random walk on the real
line. A particle starts at x = 0 and in the ith step it moves either a unit
distance to the right or a unit distance to the left according as the ith ball
drawn is white or black respectively. Altogether n steps are taken in the
positive direction and n steps in the negative direction. At the end of the ith
step the position of the particle is x = 7,.

As an alternative we can assume that the particle starts at time ¢ = 0 at the
origin and in the time interval (i — 1,i],i = 1,2,...,2n, it moves with a unit
velocity to the right or to the left according as the ith ball drawn is white or
black respectively. Denote by 7,(¢) the position of the particle at time 2nt
where 0 < ¢ < 1. Then n,(i/2n) =9, for i = 1,2,...,2n.

Let us define a random variable p, for n = 1,2,... by
2n
(19) 2np, = ) (n; + 83,),
i=1
where
(20) 82n= _min(n07771,~--,n2n)’

and set p, = 0. By (19),

1 . 1 .
(21)  po= [ Mignydt = min mgy = [n,(¢) dt — min n,()
forn=1,2,....

The random variable 2np, is a discrete random variable with possible

valuesn + 2j, j=0,1,..., ('2') Denote by 4 ,(n + 2j) the number of random
walks {79, 11, .-, Ng,} in which 2np, = n + 2j. Then we have

(22) P{2np,=n+ 2j} =h,(n +2j)/(2nn)

for j = 0,1,...,(;).
For the purpose of finding the distribution of 2np,, let us introduce the

generating function
n
()

(23) Un(2) = X ho(n +2j)2.
Jj=0

This generating function is determined by the following theorem.
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THEOREM 2. We have §,(z) = 1 and
(24) ‘!'n(z) =2 Z i(ﬁi—l(z)d)n—i(z)zi_l
i=1

forn=1,2,..., where ¢,(2),n =0,1,2,..., is determined by the recurrence
formula (13).

Proor. Let n > 1. In the random walk {n,, 7, ..., n,,} it may happen that
8y, =0, that is, 7, > 0 for 0 <s < 2n. Then 2np, simply has the same
distribution as 2rnw,. If §,, > 1, then let s = i be the first subscript for which
My = —8,, and let s =i + 2(n — 1 — k) be the last subscript for which 7, =
—8,,. Then i may be 1,...,2k + 1 and k£ may be 0,1,...,n — 1. Now let us
consider a new random walk defined by

(25) (ni + 82n7""172+n—1+ 62n7770 + 62n7""77i + 62n}'

That is, in the original random walk we transfer the first i steps from the
beginning to the end and shift the zero level to —§,,. For fixed i and k, the
random walk (25) has the same stochastic properties as the Bernoulli excur-
sion {ng,n{,...,ns,} in which ng, ;_, = 0and />0 for 2(n — 1 — k) <
s < 2n, and 2np, has the same distribution as n§ + 0+ -+ +n4,. Under the
aforementioned conditions ng + ‘- +mgy,_;_;, has the same distribution as
2(n —1-Rkw,_;_ 4 and 15, _;_,+ ** +75,_; has the same distribution as
2k + 1 + 2kw,, and these two sums are independent random variables. Obvi-
ously, n5, = 0. By the above considerations,
n-12k+1

Ua(2) = dn(2) + L L du(2)dn1x(2)2"

k=0 i=1
n—1
=23 (k+1)du(2)d, 1 4(2)2"
k=0

for n > 1, where ¢,(2) is defined by (12) and determined by (13). By definition,
¥o(2) = 1. This completes the proof of (24). O

(26)

It is worthwhile to point out the significance of formula (24). To find the
distribution of 2nw,, we should determine the generating functions
bo(2), d(2),...,d,(2). If these functions are known, then the distribution of
2np, can immediately be calculated by (24). No extra calculations are needed,
although the random variable 2np, is much more complicated than 2rnw,,.

By (24) we obtain that ¢(2) = 1, ¢(2) = 2, ¢¥(2) = 2 + 42 and ¢P4(2) =
2 + 6z + 622 + 62°. Table 2 contains h,(n + 2j) for 0 <j < |5) and n < 10.
In Table 2 the rows are wrapped and only j (mod 10) is displayed.

Let us define

()

(27) Wzw) = L (2w = X ¥ ha(n + 2j)z/w,
n=0

n=0,=0
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TABLE 2
h,(n+2j)
J

n 0 1 2 3 4 5 6 7 8 9
1 2
2 2 4
3 2 6 6 6
4 2 8 12 16 8 8
5 2 10 20 30 40 40 40 30 20 10

10
6 2 12 30 52 78 96 114 120 108 96

72 60 36 24 12 12
7 2 14 42 84 140 196 252 308 336 350

336 308 266 224 168 140 98 70 42 28

8 2 16 56 128 236 368 512 672 816 944
1032 1072 1064 1008 928 816 720 592 496 384
304 224 176 112 80 48 32 16 16
9 2 18 72 186 378 648 978 1368 1782 2202
2610 2952 3222 3366 3402 3330 3186 2952 2700 2394
2106 1800 1530 1260 1044 810 648 486 378 270
198 126 90 54 36 18 18
10 2 20 90 260 580 1084 1770 2640 3660 4780
5980 7180 8340 9360 10170 10720 11020 11040 10810 10400
9790 9120 8320 7520 6680 5900 5080 4380 3680 3100
2540 2080 1640 1320 1000 780 580 440 300 220
140 100 60 40 20 20

Since [¢,(2)] < ¢,(1) = (zn") for |z| < 1 and since

(28) y (2n”)w" = (1 - 4w) 2
n=0
for lw| < 1/4, the infinite series (27) is convergent for |z| < 1 and |w| < 1/4.
If we multiply (24) by w" and form the sum for n = 1,2, ..., we obtain

29 1 2w oF(z,w)
( ) lp(z,W)— + l_F(z,w) dw
for |z| <1 and |w| < 1/4, where F(z,w) is defined by (15) and determined
by (17).
We shall consider also a random variable o, defined by
2n
i=1
for n = 1,2,... and o, = 0. By (30) we have
1 1
(31) % = [ ianaldt = [ Im.(6)ldt

forn=1,2,....
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The random variable 2no, is a discrete random variable with possible
values n + 2j, j=0,1,..., (’2‘) Denote by q,(rn + 2j) the number of random
walks {ny, 71, ..., Ng,} in which 2no, = n + 2j. Then we have

(32) P{2no, = n + 2j} =q,(n + 2j)/( 2nn)

n

for j =0,1,...,(3)-
The distribution of 2r o, is determined by the generating function
(2) |
(33) ta(2) = X q.(n +2j)2/,
j=0
which is given by the following theorem.

THEOREM 3. We have
(34) t(2) =2) ¢;_1(2)t,_i(2)z" !
i=1

forn>1,t(2) =1and ¢,(2) forn=0,1,2,... is determined by the recur-
rence formula (13).

Proor. If in the random walk {ny, ny,...,m5,}, ¢ = 1,2,...,n is the small-
est positive integer for which n,, = 0, then in the representation

(35) 2no, = Inql + - +lngl + Ingpql + -+ Fing,l,

the sum [n;| + -+ +|n,;| has the same distribution as 2(i — Dw,_; + 2i — 1,
where w;_, is defined by (1), and |ny;, ;| + -+ +In,,| has the same distribu-
tion as 2(n — i)o,,_;, and these two random variables are independent. Conse-
quently, (34) holds for n > 1 where #,(z) = 1. In (34) the factor 2 should be
included because of the symmetry property of the random walk

{770, LSTERER 772;;} a

By (34) we obtain that ¢(2) = 1, t,(2) = 2, t,(z) = 4 + 2z and #,(z) = 8 +
8z + 22% + 22°. Table 3 contains g,(n + 2j) for 0 <j < (5) and n < 10. In

Table 3 the rows are wrapped and only j (mod 10) is indicated.
If we introduce the generating function
n
()

(36) T(z,w) = ¥ t,(2)w" = Y ¥ q.(n+2j)z/w",

n=0 n=0j=0
which is convergent if |z| < 1 and |w| < 1/4, then by (15) and (34) we obtain
(37) T(z,w) =1/[1 - 2F(z,w)]

for |z| < 1 and |w| < 1/4, where F(z, w) is defined by (15) and is determined
by (17).
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TABLE 3
g, (n +2j)
J
n 0 1 2 3 4 5 6 7 8 9
1 2
2 4 2
3 8 8 2 2
4 16 24 12 10 4 2 2
5 32 64 48 40 26 14 14 6 4 2
2
6 64 160 160 144 116 74 68 44 30 22
18 10 6 4 2 2
7 128 384 480 480 440 328 290 226 164 132
106 80 56 44 30 26 14 10 6 4
2 2
8 256 896 1344 1504 1520 1288 1148 986 772 646
534 438 340 278 216 184 138 104 80 60
44 34 22 14 10 6 4 2 2
9 512 2048 3584 4480 4928 4640 4288 3912 3290 2838
2434 2074 1722 1444 1196 1022 852 684 570 460
376 306 242 182 146 108 84 60 48 30
22 14 10 6 4 2 2
10 1024 4608 9216 12800 15232 15680 15232 14560 13028 11610
10308 9048 7850 6768 5818 5046 4384 3694 3176 2692
2296 1958 1652 1362 1144 938 774 628 516 406
320 250 194 150 112 84 64 44 30 22
14 10 6 4 2 2

4. The asymptotic distribution of w,.

First, let us consider the mo-

ments of 2nw,. If we form the first r derivatives of (17) with respect to z at
z = 1, we can determine the generating functions of the first r moments of
2nw,,. Our calculations show that

(38) C,E{(2nw,+2n+1)}=

c,Q.(n), ifr=20,2,4,...,
4"Q.(n), ifr=13,5,...,

where @ (n) is a polynomial of degree 3[r/2] in n. In particular, we have

Qo(n) =Q(n) =1,

(39)
(40)

(41)
and

(42)

3Q,(n) = 10n® + 21n® + 14n + 3,
4Q4(n) = 15n% + 27n% + 18n + 4,

+ 10702n% + 2844n + 315

+ 103012 + 280n + 32.

315Q,(n) = 4420n® + 15912n° + 24883n* + 21564n®

32Q,(n) = 565n° + 1695n° + 2485n* + 2105n°
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Furthermore, we obtain
(43) Q,(n) = M(8/m) "/ 2alr/Apdr/a 4 ...

for r=0,1,2,... . In (43) only the leading term is displayed. The neglected
terms have smaller order than the displayed one. In (43),

4 r!
(44) M =K

r ’r 3r—1 g7/
=]
for r=0,1,2,...,where K, = -1/2, K, =1/8and K,,r=2,3,..., can be
obtained by the recurrence formula
3r—4 r-1
= '(———’)‘Kr_l + E KjKr—j’
4 jo1

(45) K,

The asymptotic behavior of the moments of 2nw,, is given by the following
theorem.

THEOREM 4. We have
(46) lim E{(w,/V2n)"} = M,
forr=0,1,2,..., where M, is determined by (44) and (45).
Proor. Since
(47) CA™ ~ 1/(nPm) "
as n — o, by (38) and (43) we obtain (46). O
THEOREM 5. There exists a distribution function W(x) such that
(48) r}iﬂop{wn/‘/ﬁ < x} = W(x)

at every continuity point of W(x). The distribution function W(x) is uniquely
determined by its moments

(49) fo “xmdW(x) = M,

forr=0,1,2,..., where M, is defined by (44) and (45).

Proor. By (45) we can prove that

50 li 4)r————K’ !
(60) r‘l’l(E (r—-1)! 27
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TaBLE 4

r K, M

[o—y
N | =]~
-

64 12
s 15 15 /7
128 32V 8
. 1105 221
4096 1008
5 1695 565 [
2048 2048 V 8
o 414125 82825
131072 576576
. 59025 19675 [
4096 98304 V 8
1282031525 256406305
16777216 2234808576
o 242183775 16145585 [
524288 92274688 V 8
10 1683480621875 304702375
536870912 2790982656
This implies that
r r/2
51 M _~3/2r ( — )
( ) r 12 e
as r — o, and
52) Y —
T
T .
r=1 M r/r

By (46) the sequence {M,} is a moment sequence. Since (52) is satisfied, a
theorem of Carleman [2] implies that there exists one and only one distribution
function W(x) such that W(0) = 0 and (49) holds for r = 0,1,2,... . By the
moment convergence theorem of Fréchet and Shohat [4], we can conclude that
(46) implies (48). O

Table 4 contains K, and M, for r < 10.

5. The distribution function W(x). We can easily prove that the
finite-dimensional distributions of the process {n,(¢)/V2n; 0 <t < 1} con-
verge to the corresponding finite-dimensional distributions of a Markov pro-
cess {n*(¢); 0 <t <1} which is called the Brownian excursion process.
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Moreover, the process {n,(t)/V2n; 0 < ¢ < 1} converges weakly to {n*(t);
0 <t <1} as n » ». For the weak convergence of stochastic processes, we
refer to Gikhman and Skorokhod [5], pages 438-495.

In the Brownian excursion process, n *(¢) has a density function f(¢, x) for
0 <t < 1. Obviously, f(¢,x)=0for x <0.If0<¢<1and x > 0, we have

2x2
A e

If 0 <t <u < 1, the random variables 1 *(¢) and 1" (x) have a joint density
function f(¢,x;u,y). We have f(¢t,x;u,y) =0if x <O0or y<0.If0 <t <
u <1land x > 0, y > 0, we have

e~ *2/@1-1)

(53)

Ve
0 f(t,x;u,y) = T _St):i' — ¢(%)¢( 1{ = )
| <leli=r) -7 )
where
(55) &(x) = 1/21_7Te_x2/2

is the normal density function. Since {n*(¢#); 0 < ¢ < 1} is a Markov process,
the density functions f(¢,x) and f(¢,x;u,y) completely determine the
finite-dimensional distributions of the process.

Let us define the random variable w™* by the integral

(56) w*= [Oln+(t) dt.

THEOREM 6. We have
(57) Plo*<x} = W(x),
where W(x) is defined by (49).

Proor. Since {n,/(t)/V2n; 0 <t < 1} converges weakly to the process
{n*(#); 0 < ¢t < 1} and since the integral (56) is a continuous functional on the
process {n*(#); 0 < ¢ < 1}, (48) implies (67). O

The distribution function W(x) has a density function W'(x) and both W(x)
and W’'(x) can be calculated explicitly by using the confluent hypergeometric
function U(a, b, x). If 0 <a < b and x > 0, then

1

(58) U(a,b,x)‘= F—(;)—

[er= e 1+ 1) de,
0
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TABLE 5
Ai( —-a k) =0
k a; k a;
1 2.33810741 6 9.02265085
2 4.08794944 7 10.04017434
3 5.52055983 8 11.00852430
4 6.78670809 9 11.93601556
5 7.94413359 10 12.82877675

and, in general, we have
(59) U(a-1,b,x) =(a—-b+x)U(a,b,x) —xU'(a,b, x).
See Slater [14]. We also need the definition of the Airy function

1 = (28
(60) Ai(2) = —1;-/0 cos(—g + tz) dt.

The function Ai(z) has zeros only on the negative real axis. We arrange the
zeros z = —a,, k=1,2,...,s0that 0 < a, <a, < ‘- . The derivative Ai'(z)
has zeros also only on the negative real axis, and we arrange them so that
z=-a), k=1,2,...,and 0 <a) <a’, < --- . Tables 5 and 6 contain the
first 10 zeros of Ai(z) and Ai’'(z). The first 50 zeros of Ai(z) and Ai'(2) can be
found in Miller [9], page 43, for eight decimals. See also Abramowitz and
Stegun [1], page 478.

THEOREM 7. Ifx > 0, we have

(61) W(x)=— Z e~ v2/3U(1/6,4/3,v;)
x =
and
' 2 N —2/3
(62) : W' (x) = e 23U (-5/6,4/3,v;),
TABLE 6
Ai'(-d}) =0

k a) k aj,

1 1.01879297 6 8.48848673

2 3.24819758 7 9.53544905

3 4.82009921 8 10.52766040

4 6.16330736 9 11.47505663

5 7.37217726 10 12.38478837
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TABLE 7
x W(x) x Wi(x)

0.05 0.00000000 0.80 0.86427925
0.10 0.00000000 0.85 0.91153523
0.15 0.00000000 0.90 0.94430335
0.20 0.00000000 0.95 0.96610624
0.25 0.00001007 1.00 0.98005322
0.30 0.00071659 1.05 0.98864280
0.35 0.00858774 1.10 0.99374158
0.40 0.04027493 1.15 0.99666130
0.45 0.11029731 1.20 0.99827530
0.50 0.21745116 1.25 0.99913710
0.55 0.34719272 1.30 0.99958179
0.60 0.48159861 1.35 0.99980363
0.65 0.60641841 1.40 0.99991065
0.70 0.71328366 1.45 0.99996060
0.75 0.79906372 1.50 0.99998317

where

(63) v, = 2a%/(27x?),

U(a, b, x) is a confluent hypergeometric function and z = —a,, k=1,2,...,

are the roots of Ai(z) = 0 arranged so that 0 <a; <a,< -+ <@, < *--

Proor. From (49) or from the results of Darling [3] and Louchard [8], we
can deduce that

(64) fwe‘s"W(x) dx = V27 Y, e~aws™?/27?
Y k=1

for Re(s) > 0, where z = —a,, k = 1,2,..., are the zeros of the Airy function
Ai(z) arranged so that 0 < a; <a, < --- . We obtain (61) and (62) from (64)
by inversion. O

Tables 7 and 8 contain W(x) and W'(x) for 0 < x < 1.5.

6. The asymptotic distribution of p,. Equation (29) makes it possible
to determine the moments of 2np,. If we form the first r derivatives of (29)
with respect to z at z = 1, we can determine the generating functions of the
first » moments of 2np,. Thus we obtain

(2nn)P,(n), if r=0,2,4,...,

65 2n El(2 " =
(65) (n) (@npy +n)) 4"P(n),  ifr=1,3,5,...,



RANDOM WALKS AND ORDER STATISTICS

TaBLE 8
x W'(x) x W'(x)
0.05 0.00000000 0.80 1.11391248
0.10 0.00000000 0.85 0.78816801
0.15 0.00000000 0.90 0.53444938
0.20 0.00000071 0.95 0.34809189
0.25 0.00113999 1.00 0.21811909
0.30 0.04549111 1.05 0.13165761
0.35 0.33036908 1.10 0.07662545
0.40 0.99108575 1.15 0.04303415
0.45 1.80425970 1.20 0.02333689
0.50 2.42954788 1.25 0.01222620
0.55 2.69798891 1.30 0.00619087
0.60 2.63013465 1.35 0.00303102
0.65 2.33507134 1.40 0.00143530
0.70 1.92967395 1.45 0.00065756
0.75 1.50379914 1.50 0.00029152
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where P.(n) is a polynomial of degree [3r/2] in n. In particular, we have

Py(n) =1, P(n) =n,

(66) 3P,(n) = 10n3 + 2n?,

(67) 4P,(n) = 15n* + n3,

(68) 315P,(n) = 4420n° + 332n° + 404n* — 11613
and

(69) 32P4(n) = 565n" — 165n° + 177n° — 75n* + 10n°.

Furthermore, we obtain

(70) P.(n) = M (8/m) *nlr/2nBr /2 4 ...

for r =0,1,2,.... In (70) only the leading term is displayed. The neglected
terms have smaller order than the displayed one. In (70), M, has the same

meaning as in (44).

Similarly to Theorem 4 we have the following result.

THEOREM 8. We have

(71)

ProoF. Since

(72)

(2,11)4-" ~1/Vnw

as n — , by (65) and (70) we obtain (71). O

lim E{(pn/\/ﬁ)’} =M,
forr=0,1,2,..., where M, is determined by (44) a1d (45).
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THEOREM 9. We have
(73) lim P{p,/V2n <x}=W(x)

at every continuity point of W(x), where W(x) is the distribution function
defined by (49) in Theorem 5.

Proor. The proof follows along the same lines as the proof of Theorem 5.
O

We can easily prove that the finite-dimensional distributions of the process
{n,(#)/V2n; 0 < ¢ < 1} converge to the corresponding finite-dimensional dis-
tributions of a Gaussian process {n(¢); 0 < ¢ < 1} for which E{n(¢)} = 0 for
0<t<1and En(®)n(u)} =t1 —u) for 0 <t <u < 1. The process {n(?);
0 < ¢ < 1} is called the Brownian bridge or the tied-down Brownian motion
process. Define

(74) p= [ n(t)de — min m(2).

THEOREM 10. We have
(75) P(p <z} = W(x),
where W(x) is defined by (49).

Proor. We can prove that the process {n,(¢)/ vV2n; 0 <t < 1} converges
weakly to the process {n(¢); 0 < ¢ < 1}. Since the integral (74) is a continuous
functional on the process {n(¢); 0 < ¢ < 1}, (73) implies (75). O

By Theorems 6 and 10 we can draw the interesting conclusion that
(76) P{p <x} = Plo*<x},

that is, p and w™* have exactly the same distribution. For a direct proof of (76),
we refer to Vervaat [16]. The variables p and w™* are defined for different
processes. The random variable p is a functional on the Brownian bridge,
while w* is a functional on the Brownian excursion.

By (76) the problem of finding the distribution function of w™ can be
reduced to the problem of finding the distribution function of p. But this is not
a great advantage because p is a complicated functional on the Brownian
bridge. However, as Darling [3] showed, p can also be expressed as

(77) p = max {(t),
where
(78) () = ['n(u) du = n(2).

In 1961, Watson [17] observed that {{(¢); 0 < ¢ < 1} is a Gaussian process for
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which E{{(#)} = 0for 0 <t <1 and
(79) E{{()i(u)} =r(t—u)

for0 <t <1and 0 <u <1, where

1 1y 1
(80) I’(t) = E(ltl - 5) - ﬂ

for |t| < 1. By using the representation (77), Darling [3] proved that the
Laplace transform of P{p < x} is given by (64). In 1984, Louchard [8] proved
directly that the Laplace transform of P{w*< x} is given by (64) and he also
calculated the moments of w™.

7. The asymptotic distribution of o,. We can determine the moments
of 2no, by (37). If we form the first r derivatives of (37) with respect to z at
2z = 1, we can determine the generating functions of the first 7 moments of
2na,. Thus we obtain

2n e
Gy (2)Blne) - (27) 7.2, =024,
4T, (n), ifr=1,3,5,...,

where T.(n) is a polynomial of degree [37/2] in n. In particular, we have
Ty(n) =1, T(n) =n/2,

14 . 1, 2
(82) To(n) = " + T
21 , 1 3 9 , 1
(83) Ts(n)= 32" R T
76 6 8 5 409 | 88 s 8 . 8
(84) Ty(n) = T + =" 33" + 5" + =" T 105"
and
(85) Ty(n) = %ﬂ - %ne - —i—znf’ + g—Zn“ + 2—Zn3 - %nz + %n

Furthermore, we obtain

(86) T.(n) = Mra=7,.[r/2]—r/223r/2n[3r/2] 4 .-

for r=0,1,2,... . In (86) only the leading term is displayed. The neglected
terms have smaller order than the displayed one. In (86),

(87) M* =D !
r ’F(3r+1

)2r/2
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for r=0,1,2,..., where D, =1, D; = 1/4 and

(3r —2) !
=—7 D1—3 ingiDr-i

(88) D,
for r > 2.

The asymptotic behavior of the moments of 2n o, is given by the following
theorem.

THEOREM 11. We have
(89) lim E{(o,/V2n)"} = M}
forr=0,1,2,..., where M}* is determined by (87) and (88).

Proor. By (72), (81) and (86) we obtain (89). O

THEOREM 12. There exists a distribution function H(x) such that
(90) lim P{o,/V2n <x} = H(x)
n—o

at every continuity point of H(x). The distribution function H(x) is uniquely
determined by its moments

(91) [ % dH(x) = M}
0
forr=0,1,2,..., where M* is defined by (87) and (88).

Proor. By (88) we can prove that

(92) lim (4/3)'D,/(r — 1)!=1/m.
This implies that
. \/__ r r/2
(93) M7~ 233,
as r - o, and
* 1
(94) Y =

=N Ra

The remaining part of the proof follows along the same lines as the proof of
Theorem 5. O

Table 9 contains D, and M} for r < 10.

8. The distribution function H(x). We have already mentioned that
the process {n,(¢)/ V2n; 0 < ¢t < 1} converges weakly to the Brownian bridge
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TaBLE 9
r D, MF
0 1 1
1 1 1 T
4 2V 2
) 7 7
32 60
3 21 21 T
64 512V 2
. 1463 19
2048 720
5 2121 101 /7
1024 8192V 2
. 495271 70753
65536 7001280
; 136479 45493
4096 7864320 V 2
o 1445713003 206530429
8388608 36714712320
o 268122561 89374187 f
262144 23991418880
" 1838183317201 1256447927
268435456 305663155200
{n(#); 0 < ¢t < 1}. Let us define
1
(95) o= [In(t)ldt.
0

THEOREM 13. We have
(96) P{o <x} = H(x),
where H(x) is defined by (91).

ProOF. Since o is a continuous functional on the process {n(¢); 0 < ¢t < 1},
(90) implies (96). O

In 1982, Shepp [13] proved that
(97) [T Ele=?)s~ /2 ds = — i Ai(2)/Ai(2)
0
for Re(z) > 0, where Ai(z) is the Airy function defined by (60), and Ai'(2) is the

derivative of (60). From (97) Shepp [13] derived a recurrence formula for the
determination of the moments of o and calculated E{o"} for r < 5. He did not
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TaBLE 10
x H(x) x H(x) x H(x)
0.05 0.00000000 0.55 0.93414905 1.05 0.99971169
0.10 0.00056919 0.60 0.95725659 1.10 0.99985542
0.15 0.04345562 0.65 0.97285278 1.15 0.99992950
0.20 0.19556463 0.70 0.98315714 1.20 0.99996658
0.25 0.38791766 0.75 0.98980435 1.25 0.99998460
0.30 0.55745483 0.80 0.99398356 1.30 0.99999311
0.35 0.68822816 0.85 0.99654135 1.35 0.99999700
0.40 0.78389833 0.90 0.99806403 1.40 0.99999873
0.45 0.85228267 0.95 0.99894527 1.45 0.99999948
0.50 0.90052193 1.00 0.99944089 1.50 0.99999979

give details of his proof, but merely indicated that he used asymptotic expan-
sions and let z — «. By inverting (97), Rice [11] calculated the density function
of o by using numerical integration. An explicit expression for the distribution
function P{o < x} has been given by Johnson and Killeen [7]. By the results of
Johnson and Killeen [7], we have the following theorem.

THEOREM 14. We have

o

Y e viu;t/® Ai((3uj/2)2/3)
1

(98) H(x) = (18)1/6x b

for x > 0, where
(99) u; = (a;)’/(27x?)

and 0<a)<dy< -+ <a;< -+ are defined such that z= —a;, j=
1,2,..., are the roots of Ai'(z) = 0.

Table 10 contains H(x) for 0 < x < 1.5.

9. Applications in order statistics. There are several known statistics
to test the hypothesis that the elements of two independent samples have a
common distribution function. Here we consider two such statistics and find
the asymptotic behavior of their moments and distributions. ;

Let F(x) and G,(x) be the empirical distribution functions of two indepen-
dent samples of size n in the case where the elements of the samples are
independent random variables having a common continuous distribution func-
tion V(x). Define ©,, by A

(100)  ©,/n = [" [F,(x) - G(x)] dV(x) = _min_[F,(x) - Gy()]
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and A, by
(101) 8,/m= [ 1 (x) - G,(x)|dV(x).

Since V(x) is a continuous distribution function, the distributions of ®, and
A, are independent of V(x), that is, ®, and A, are distribution-free statistics.
Consequently, to find the distributions of ®, and A,, we may assume without
loss of generality that V(x) = x for 0 < x < 1, that is, the elements of the
samples are independent random variables each having a uniform distribution
over the interval (0,1). In this case (100) and (101) can be expressed in the
following equivalent ways:

2n
(102) 0,= ) né + 38y,
i=1
and
2n
(103) A, =Y Inlé,
i=1
where {ny, 7y, ..., M3, is the tied-down random walk defined in Section 3, 3,

is defined by (20) and the random variables &, ¢4, ..., &,, are independent of
the random walk {n,, n,, ..., n5,} and defined in the following way: We choose
2n points at random in the interval (0, 1). We assume that the 2n points are
distributed independently and each point has a uniform distribution over the
interval (0,1). These 2n points divide the interval (0,1) into the 2n + 1
subintervals. Denote by &, &5, - - ., &5, their lengths.

The random variables £,,¢,,...,&,, are interchangeable and obviously
Eo + &+ - +&,, = 1. We have
(104) E{¢) =1/(2n + 1)
and
(105) Be) = o
' (2n + 1)(2n + 2)

fori=0,1,...,2n.If 0 < i <j < 2n, we have

1
(106) Bt = G Dan v o)

Furthermore, we note that

(107) pn -2 - = (1)) /(%)
for0 <k <i<2n and
(108) P{5,, 2 k} = (n2_nk)/(2nn)

for 0 <k < 2n.
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The problem of finding the moments and the asymptotic distribution of ©,
was proposed in the mid-1950s by researchers of the Hungarian State Railway.
In response, Sarkadi [12] proved that

@_

(110) E(0F) = o - 5(0,).

By the above results we can prove that ©,/vV2n has the same limit
distribution as p,/ V2n as n — «,

(109) E(®,) - 5

and Takécs [15] proved that

THEOREM 15. We have

0
(111) ’}iﬂP{‘/——zin— sx} = ,}i_r)x:oP{‘/——;Ln— sx} - W(x),

where the distribution function W(x) is defined by (49) and is given explicitly
by (61).

Proor. By (2) and (102) we have

2n

(112) 0 ~pn= L ni(6i- 35
By the formulas mentioned above
(113) E(0, - p,} = 0
and
(114) E{(®, - p,)*} = 1/12.
Accordingly,
(115) E{(Q"_p”)2}=i—>0

V2n 24n
as n — «. Thus

. [©On—p,
(116) lim ( o ) -0

in probability. This implies (111). O

The limit theorem (111) suggests, and indeed we can prove, that for every
r=20,1,2,... the moments E{®;} and E{p} show the same asymptotic
behavior as n — «.
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THEOREM 16. We have

0, \ P\
117 lim E{| — = lim E =M
forr=0,1,2,..., where M, is defined by (44) and (45).

Proor. By making use of (71) and applying the Schwarz inequality, we can
prove that

(118) lim [ E{07) - E{p}}]/n"/* = 0
for r=1,2,... . Hence (117) follows. O

In considering the statistic (101), by (103) we can prove that
n4"

119 E(A,) =
(119 (4] 2(2n + 1)(2nn)
and
. n{7n + 3)
(120) E{a%) = ETCESR

Moreover, A,/ V2n has the same limit distribution as o,/ V2n as n —» .

THEOREM 17. We have

A
(121) }%P{ﬁ sx} - }%P{—‘/% Sx} - H(x),

where the distribution function H(x) is defined by (91) and is given explicitly
by (98).

Proor. By (4) and (103) we have

2n 1
(122) S-an= X6 - 5.
Thus by (81),
(123) E{A } o /
n " Ong = — ~T
(2r)@n+1) B

as n — o, and

194 El(A 9 3n2+9n -2 1
—_— =———————ﬁ_

(124) (@} - Gm D "

as n — . Accordingly,

195 g A, -0\’ 3n%+9n -2 0
=
(125) V2n 120n%(n + 1)
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as n — o, Thus

An__oh
(126) lim|[————] =0
n—o
in probability. This implies (121). O
Moreover, we have the following result.

THEOREM 18. We have

A\ o, \"
12 lim E = = lim E = =M}
forr=0,1,2,..., where M} is defined by (87) and (88).

Proor. We can prove (127) by (89) and (122). O

Finally, we note that if we more generally assume that F,(x) and G,(x) are
the empirical distribution functions of two independent samples of sizes m
and n respectively, and the elements of the two samples are independent
random variables each having the same continuous distribution function V(x),
then the statistic

O = | o | [ LBu(x) = Gu()] V()

- min [Fm(x)—Gn(x)]}

—oo<x <™

(128)

has the limit distribution function W(x) as m —» © and n — «, and the
statistic

(129) K=y = [ Fu®) = Gu(#)|dV(x)

has the limit distribution function H(x) as m —  and n — .
I have used the remarkable program Mathematica of Wolfram [20] to
calculate the tables in this paper.
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