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ON THE GALTON-WATSON PREDATOR-PREY PROCESS

By GEROLD ALSMEYER

Universitdt Kiel

We consider a probabilistic, discrete-time predator—prey model of the
following kind: There is a population of predators and a second one of prey.
The predator population evolves according to an ordinary supercritical
Galton—Watson process. Each prey is either killed by a predator in which
case it cannot reproduce, or it survives and reproduces independently of all
other population members and according to the same offspring distribution
with mean greater than 1. The resulting process (X,,Y,), ¢, Where X,
and Y, respectively, denote the number of predators and prey of the nth
generation, is called a Galton-Watson predator—prey process. The two
questions of almost certain extinction of the prey process (Y,), . given
X,, — =, and of the right normalizing constants d,,, n > 1 such that Y, /d,
has a positive limit on the set of nonextinction, are completely answered.
Proofs are based on a reformulation of the model as a certain two-district
migration model.

1. Introduction and main results. Let (Q, &, (P, ), , cn, (X,
Y.)no0 (& )i o1 (i i j21, (i ;)i j=1) be a stochastic model which satlsﬁes

the following assumptions:

(a) For all x,y, P,, is a probability measure on ({, &) such that
P, (Xy=xY,=y)=1
(b) Under each P, ,, (¢ ,); ;21 (n; )i ;21 and (v; ;); ;. are mutually
independent sequences of i.i.d. Nj-valued random variables whose joint distri-
butions do not depend on x,y and have finite means u = E¢; ;, m = En, ;
and a=Ev, . [Here and in the following we write P[E], P [E, ] and
,[E.,] for probabilities (expectations) w.r.t. P, , which do not depend on,
resp (x y), y and x.]
(c) For each n > 1,

+
Xn—l Y, -1

n X,
(1]‘) Xn= Z gn,j and Yn= Znn‘]* Zynj
Jj=1 Jj=1 Jj=1
This model has recently been introduced by Coffey and Biihler (1991) in order
to describe the evolution of a predator-prey population with X, the number
of predators in the nth generation and Y, the associated number of prey not
eaten by these predators before having produced offspring. &, ; clearly repre-
sents the number of offspring of the jth predator in the nth generation, v, ;
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the number of prey eaten by him and 7, ; the number of offspring of the jth
surviving prey in that generation. According to the assumptions, (X)), .,
forms an ordinary Galton-Watson process whereas (Y,), . ,, though based on
the ‘same principle of independent reproduction, is additionally subject to
shrinkage due to the predators. More precisely, each prey produces offspring
only if it survives its full potential life length of one time unit without being
killed by a predator. We call (X,,Y,),., a Galton-Watson predator—prey
process (GWPPP). The analysis of predator-prey models dates back to Lotka
(1925) and Volterra (1926) who studied deterministic versions. Hitchcock
(1986) and Ridler-Rowe (1988) are recent references for probabilistic variants
which, however, are very different from the one given above. We also mention
these works for further literature cited therein.

Two theorems will be proved in this paper. The first one is concerned with
the extinction probability function

q(x’y) =Px,y(Yn_-)O|Xn"")O), x,yEN

under the assumption that © > 1, m > 1 and a > 0. It extends Coffey and
Biihler’s main result and completely answers the question when ¢(x,y) < 1
holds true. The second theorem provides the right normalizing constants d,,
such that Y, /d, tends to a positive limit on the event {Y,, » 0} of nonextinc-
tion. It is the counterpart of the Heyde-Seneta theorem for ordinary

Galton-Watson processes.
The statement of the results requires for some further notation. Put

E=¢& 1,m=my,, V=1, define
pa(§) =P(£=n),
¢, = inf{n > 1; p,(£) > 0},
¢* = sup{n = 1; p,(¢) > 0},
fO(s) = Y pu(é)s” =E; (s%) forls| <1,

n>0

f’g._f) =f®o ..o fO (n times)

and similarly p,(n), p,(¥), 1., 7%, v, v*, O, [0, fO, £, Let q,, be the
minimal root of f("(s) =s which is less than 1 because m > 1. Thus f™
has an inverse g on [q,,,, 1] with its n-fold iteration g{” being the inverse of

£,
Define next Z, = Y,, and

Zn.-l
(1.2) Z,= Y m,, fornx>1
Jj=1

(Z,), -1 is nothing but the ordinary GWP originating from Y|, ancestors if no
predators interfere. By the Heyde—Seneta theorem [see Jagers (1975), Theo-
rem (2.7.1)], there are constants d,, for example, d, = —1/log g{"(s) for
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some s € (g, 1),

N dn o0 1fa <m . dn+
(1.3) '}1_120?‘-={0’ ifa>m, and ,}1_1,20 d, -
such that for all y € N,
Zﬂ
(1.4) 7" Z P ,as,

n

for some finite random variable Z which satisfies P, (Z > 0) = P. (Z, - x).
Note that (1.3) implies Zn+1/Z - mP. ,as on{Z, % o}, If Em log(l + 7)<
%, one can choose d, = m" and E. Z y holds; otherwise d,/m"™ — 0, as
n — o, and E. ,Z = «. By the same theorem there are constants c,, satisfying
(1.3) w1th m replaced by u such that

Xﬂ
(1.5) —>X P, -as,

X,
Cn

for all x € N and some finite random variable X which satisfies P, (X > 0) =
P, (X, — ). Moreover X, /X, > u P, .-as. on{X, — =}.

Theorem 1 shows that the question whether the prey population has a
positive chance of survival essentially depends on the growth of Z, relative to
that of X,. However, rather than simply comparing the reproduction means
m and u the formal condition reads ¥, c,/d, < © or = . Note that the
latter sum is finite if m > w, infinite if m < u, but can be either one if m = u.

THEOREM 1. Let (X,,Y,), .o be a GWPPP with u > 1, m > 1 and a > 0.
Let Y = anlcn/dn.

(@) If y = o, then q(x,y) =1 forall x,y € N.

(b) If y < wand n* = x, orif y < ©,n* < wandpy(v) > 0, then q(x,y) <1
for all x,y € N.

(©) If y <o, n* < oo, po(v) = 0 and py(¢) > 0, then q(x,y) < 1if and only
ifx>landy > v, &, /(n* — 1.

@ If vy < o, n* <o and py(v) = po(€) = 0, then q(x,y) < 1 if and only if
x>1 and y> v, éx/(n* — &), or x>1, y=v,é.x/(n* — &) and
Var(¢{ + 1 + V)=0@G.e, & =u,n*=mand v, = a)

Under the additional assumption that ¢ m and v have finite variances,
Coffey and Biihler (1991) proved q(x,y) =1 for all x,y e N if m < pu and
q(x,y) < 1for all x > 1 and sufficiently large y > y(x) if m > u. For the latter
case they also gave an example where g(x,y) = 1 for some x,y € N. Theorem
1 shows that one can dispense with finite variances and furthermore com-
pletely answer the question when ¢(x,y) = 1, respectively, less than 1 holds.
Its proof is based on rather different arguments than in the aforementioned
paper, especially on a suitable construction of (X,,,Y,), . o in Section 2. Let us
note for the case m = u that ,.c,/d, <® and thus g(x,y) <1 for all
x,y € N can only hold when E¢ log(1 + £) = .
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Our second theorem considers the case where ¢(x,y) < 1 and shows that
the d, from (1.4) are the right normalizing constants in the sense that Y, /d,
tends P, ,-a.s. to a nondegenerate limit.

THEOREM 2. Let (X,,Y,),., be a GWPPP with m,u > 1, a > 0 and
Var(¢é + 7 +v) > 0. Let (d,), ., be as previously defined. Then

Y,
(1.6) 7 Y P ,as,

for some random variable Y which satisfies P, (Y = 01X, - ) = q(x,y) for
all x,y € N\.

A prey process thus shows the same dichotomy as a simple GWP. It either
explodes at an exponential rate given by its reproduction mean or it dies out. A
further discussion of this as well as the proof of Theorem 2 are given in
Section 4.

The paper is organized as follows. The next section contains a number of
prerequisites for the proofs of Theorem 1 and 2, in particular a two-district
migration model which in a certain sense is a reformulation of the
predator—prey model described before. Section 3 gives the proof of Theorem 1
and Section 4 that of Theorem 2 as already stated.

2. A two-district migration model and other prerequisites. We
begin with a general strong law of large numbers for double arrays which will
be used several times later on.

Lemma 1. Let (8S,), . be a sequence and (¢, ;); , ., be a double array of
nonnegative, integer-valued random variables such that S, and (¢, ;);., are
independent for all n, and the {, ; are all i.i.d. with posszbly mﬁnzte mean B.
Then

S
(2.1) lim — Z {,,;j=B a.s.on {liminf ‘;H > 1}.

The proof is a simple adaptation of those of Lemma 5.2 and 5.3 in Asmussen
and Hering [(1983), Chapter II] and can be omitted.
All notation from the previous section is kept throughout In addition we

define

Y, , n
(22) S, = gl n,; and U,= Y v, ; forn>1,

Jj=1

thus Y, = (S, — U,)". Since X, ,/X, » n P, -as. on {X, — =}, Lemma 1
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implies

U, U,
(2.3) lim X ~¢ and lim — =aX P, -as.on{X, - x}

n—-o n n-—o Cn

for all x € N. Similarly,

Yn 1 Y
(2.4) = lim Z m,;=m P, -as.on {li;riigf ';1 > 1}

for all x,y € N. We will see in Section 4 that the latter event coincides P, ,
with {Y,, » 0}.
An important tool for proving our results will be the construction of a
suitable a.s. convergent martingale. Define Y = Y, and for n > 1,
1Y
(25) Yn* = H(Yn*—l) Z nn,j - Un’
j=1
where H is the ordinary sign function, that is, H(0) = 0 and H(x) = x/|x| for
x # 0. Observe that Y* =Y, if Y, > 0, and that Y < 0 whenever Y, =0,
that is, Y, = (Y)*. Coffey and Biihler (1990) considered the martingale

n
(2.6) m‘"(Yn* + ) m"’jUj), n=>0,
j=1

which is L, bounded if £, n and v have finite variances. In the absence of the
latter condition, however, this martingale does not appear to be appropriate,
because we cannot prove its L; boundedness which would be required for an
application of the martingale convergence theorem. Moreover, the normalizing
constants m ™" need not be the appropriate ones if only first moments are
supposed to be finite. Instead, the following construction will lead us to
another procedure of proving a.s. convergence. It will be of great importance
for the proofs of our theorems.

A two district migration model. In order to better understand this con-
struction we drop the predator-prey interpretation and replace it by the
following one: Let Z, Z,,... as defined in (1.2) be the successive generation
sizes of a population which colonizes two districts A and B and the members
of which we call natives. During the first time period all Z, ancestors live in
district A and nobody lives in B. Beginning with the first generation members
can migrate from A to B and settle there. In addition, further individuals can
immigrate from the outer world into B. Let us call these individuals as well as
all their descendants aliens. Migration into A is not possible, neither from B
nor the outer world. So A can only be left whereas B can only be entered.
.Aliens reproduce according to the same distribution (that of 7) as all natives
and also independent of them and each other. Let Y, = Z,,Y; TR be the
successive numbers of natives whlch stay at A until death, that is, until next
reproduction, and let ¥, ; = T Mper j» k=0 denote their numbers of
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offspring. The sequence U, U,, ... in (2.2) governs the number of migrating
individuals for the successive generations with priority always given to native
immigrants. More precisely, at each time & > 1, just after reproduction has
taken place, Y, A U, natives migrate from A to B first and are followed by
U, — Z, aliens only if Y, < U,. We denote by (Z»), ., the GWP originating
from them, natives as well as aliens. The total number of individuals coloniz-
ing B at time %k is thus given by

k—j

k
(2.7 ZF =4 Y Z. forall k >0,
j=1

the total population size including aliens by
(2.8) Z, =4 Y, + ZF forall k> 0.

It is obvious and underlined by the choice of notation that the number Y, of
natives of the nth generation who stay and therefore reproduce in A corre-
sponds to the number of surviving prey of this generation in the original
model. The predator process (X,),., still appears as a control sequence
hidden in the sequence U,, U,,... which governs the number of individuals
who enter district B in successive time periods and originate simple GWP.

Now consider the sequence (Y,}), , , defined in (2.5). Recall that Y, = (Y;*)*
for all n > 0. Let 7 denote the first entrance time of aliens, obviously given by

7=inf{n > 0:Y, = 0} = inf{n > 0: Y, < 0}
= inf{n >0:Z,= Z,’f}

Since Z, = Z, for 0 < n < 7, we infer from (2.8) that

(2.10) Z,=Y*+Z=Y,+Zf forall0<n<r.

(2.9)

For n > 7, Y,* is negative with absolute value just giving the total number of
aliens in the nth generation. Subtracting this number from the total popula-
tion size at time n, given by Z = Z¥, yields the number of natives at this
time, given by Z,,. Consequently, the ﬁrst equality in (2.10) remains true for
n > 7 and we have proved:

LEMMA 2. Let Y, n >0 beasin (2.5). Then Z, = Y* + Z} foralln > 0.

The importance of Lemma 2 relies on the fact that (Y;*),., and thus
(Y,),, 5o on {r = ©} have now been constructed as the difference of two ‘“nice”
processes namely, the simple GWP (Z,),, ., and the GWP with immigration

Z} =4 L3_1Z”;. Note also that the P, ,-distribution of (Z,),,, does not
depend on x, Whereas that of (Z)), .0 does not depend on y.

Our final prerequisite is an -a.s. convergence result for Z}/d, which
combined with (1.4) and Lemma 2 trivially implies a.s. convergence of Y,*/d,,.
For each j > 1, we denote by Z\) the a.s. limit of Z’/d,, as n — «, with
respect to each P, .. Note that, given (X,,, U,), o, the Z, j > 1 are condi-
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tionally independent under each P, . with
(211) P, (ZV€ ((X,,U,),.0) =P.«(Z€)*Y P, -as,

where *(k) denotes k-fold convolution and Z is given in (1.4).

Lemma 3. For all x,y €N, Z¥/d, and Y} /d, converge P, ya.S. to ran-
dom variables Z* and Y*, respectively, which satisfy Y* = Z — Z"< and

1, if y<w,
0, if y=o.

If m >pu and Enlog(l + n) < o, then Z* = ijlm_jZ(j) and E, Z* =
axm/(m — u).

(2.12) P, (Z* <>lX, > ) =P, (Y*> —o|X, > =) = {

PrROOF. As already stated above, we must only consider the sequence
Zy/d,, n =0, and it clearly suffices then to prove the assertions under P,
Furthermore it is no loss of generality to assume P; (X, — 0) = 0. Put

= —log g{¥(sy) and d,, = —log g{"(s,) for some s, sufﬁc1ently close to 1.

It is easily verified that g{™(s)?%, n > 0 forms a bounded, nonnegative
supermartingale under P, . and thus converges a.s. Taking the logarithm
yields that Z} /d, a.s. has a limit which, of course, may be infinite.

Next, observe that c,/d, always converges to some p € [0,], as n — =,
This is trivial if m # u and follows by rather straightforward analytic argu-
ments if m = u. We omit further details. As a consequence, U, /d, converges
P, .-as. to the limit U = paX where (2.3) should be recalled. If p = », we
have thus already proved the assertion of the lemma because Z* > U, for all
n > 1. In the following p is therefore always supposed to be ﬁnlte

Let h, be the generating function of Z* for each n > 1 and let ¢ and ¢
denote the Laplace transforms of Z* under P, andof Z=1lim,_,.Z,/d,
under P. |, respectively. Note that ¢ satisfies go(t /m) =gMoop(t)forall t >0
such that o(t) € [q oy 1]; see Jagers [(1975), Theorem (2.7.2)]. Hence
o(t/m") = g{Mo o(t) for all such ¢ >0 and all n > 1. Note further that
#(0) = 1 because p = lim, ¢, /d, < .

Since the Z, j > 1 are conditionally independent, given (X, U,), . o, and
(2.11) holds, we obtain for all » > 1 and s € [0, 1],

ho(s) = E, Hf‘" (s)) (lf[lf‘”“fé’l)j(S)X’)

g

=E . f@o féz)1(3)X1EX1 (nI:I f@e fé’l)l—j(s)xj/))
“lJ=1

-E, . F®o fﬁh(s)xlEL ( 1’1 F®o f(n)l_J(s) 1
(2.13)

=B, ([£©0 f™u5) - hpor(5)] ™)
=FO[F®0 f[Du(s) - hy_y(5)],
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where (X)), ., is an independent copy of (X,), . , satisfying P, (X, = X; =
x) = 1 for all x € N. We then further obtain for all ¢ > 0:

#(¢) = lim El,‘(exp(tZ,’i< log g,(l””(so))) = lim hn(g,(l")(so)t)

= lim f(é)[f(u)o £0(85(50)") + Bn—a(£57(50) )]

n—w

sl %) o5

ol 2] o]

For t =0, (2.14) gives ¢(0) = f©(y(0)), hence y(0) =P, (X, > 0)=0 or
(0) = 1. In the first case ¢ = 0, in the second one % > 0. Now consider ¢ = 1.
Equation (2.13) yields

(2.14)

(1) = lim h,(g7(so)) = lim E, . (I—Ig‘"’(s ) )

j=1

o 2%

Jj=1

(2.15)
= El,-( l_Ing('n)(so)Ul) =k,
j=

and the last expression is obviously positive if and only if X, ,U,;/d; <
P, -a.s., which in turn holds if and only if ¥, .,c,/d, <, because
hmn e U /¢, =aX >0 P, -as. We have thus proved (2.12).

In order to prove the ﬁnal assertions of the lemma, note that under the
stated conditions we can choose d, = m" and that Z),/m" - ZY/m/ P,
a.s. Moreover, sup,.,m™ "Z, is 1ntegrable wrt. P, by the Kesten- Stlgum
theorem; see, for example, Asmussen and Hering [(1983) Chapter II, Theorem
2.1], whence by P, (Z{"),.,€ "IU;=u)=P (Z,),.,€ ) and a simple
estimate,

Z(J) A Z
E, . (sup———) <E, (U)E, (sup—';)—ax,uJE 1(sup—)<oo
n=0 n=0 M n=0

follows for all x, j € N. We conclude that ¥, ,m ™/ sup,.,m "Z{" is inte-
grable and a.s. finite w.r.t. each P, , and then by dominated convergence

n VA®S VA
Z* = lim Z m™ ';_JJ = — P, -as,

whlch is the asserted identity for Z*. If we finally observe that E  Z/ =
E U = axu’ for all j > 1, then also the assertion on E, .Z* follows. ‘O
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3. Proof of Theorem 1. We keep the notation of the previous sections.
The proof of Theorem 1(a) is trivial now because we infer from Lemma 3 that
y = o implies 1 = P, (Y* = —»|X, - ») < q(x,y) for all x,y € N.

The proof of Theorem 1(b)-(d) is based on the following.

LEmMA 4. If vy < o, there is k € N such that q(x,y) < 1 for all x € N and
y/x > k.

Proor. Put r(x,y) = P, (7=, X, - ®) with 7 given in (2.9). Clearly,
g(x,y) < 1if and only if r(x y) > 0.
We show first ¢(1, y) < 1 for all sufficiently large y. Recall that Y* = Z — Z*
with
P.,(Ze-)=P (Ze-)=P (Zc )
and
P, (Z*e€-)=P, (Z*€-) =P (Z*e -)'?¥

for all x,y € N. Recall further E.;Z = 1 or = «. Hence by the law of large
numbers,

im P, (Z>ey) =1 foralle € (0,1)

and
lim P, (Z* >¢ey) =0 foralle > 0and x € N.
y—)oo

We obtain for each ¢ € (0,1/2),
r(x,y) > Pl’y(Y* >0, Xn - oo) > P1,y(Z — 7% > Ey)
=P (Z>2ey) — P (Z* > ey),

and the last expression is obviously positive for all y > k&, % sufficiently large.
In order to complete the proof of the lemma, consider (Y,*, X,,), ., under
for arbitrary x, m € N. Observe that

Px,mx((Yn*’ Xn)nzo <€ ) = Pl,m((Yn*? Xn)nzo =

from which r(x, mx) > r(1, m)* easily follows and thus r(x, mx) > 0 for
all m > k. Finally, for arbitrary x € N and y > kx we conclude r(x,y) >
r(x, kx) > 0 because r(x, - ) is obviously increasing. O

P

x, mx

_)*(x)

b

With the help of Lemma 4 we will now prove Theorem 1(b)-(d). Indeed,
since (X,,Y,), ., is a Markov chain, Lemma 4 implies that ¢(x,y) < 1 if for
all £ >0,

Y,
(3.1) supr’y(X—n >t X, > 0) >0

n=0
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CaASE 1. y < o, n* = . There is nothing to prove because n™ = » obvi-
ously implies P, ,(Y; > ¢X;) > 0 for all x,y € N and ¢ > 0 which is stronger
than (3.1).

CASE 2. y < ®, n* <o, p,(v) > 0. In this case it is enough to note that,
given any x,y € N, for sufficiently large » € N and ¢ > 0,

Y, d,
P —zt—,Xn>0)2Px,y(Yn=yn*,maxU 0,0<antycn)>0,

X,y
Xn n 0<j<n

that n*" > m"” > d, and that d,/c,, — «.

CasE 8. y <o, n* <o, po(v) =0, py(¢) > 0. Fix x,y € N and define for
n>1

5, = sup{k = 0: P, (Y, =k, X, > 0) > 0},
(3.2) x,=inf{k > 1: P, (X, =k,Y,=%,)> 0},
=inf{k > 0: P, (U, =%, Y, =53,) > 0}.

It is then easily verified by using (1.1) that under the preceding assumptions
‘.’.cn = §*7 l’_‘n = V*f* and

+
_ n n*" -1 n Vi
(33) ¥.=|n*"y - ﬁf*v*) =n* (y— :

(1=n")

n* -1

for all n > 1.

If y>v,é,/(n* — 1), then y,/x, 1® as n — «, so that (3.1) and thus
q(x,y) < 1 follows.

If y <v,éi/(n* — 1), then ¥, = 0 for sufficiently large n, implying Y, = 0
on {X, > 0} for sufficiently large n, that is, q(x,y) = 1.

Finally, if y = v, £, /(n* — 1), then (3.3) shows that y, =y for all n > 1.
But together with U, — « P, j-a.s. on {X, — oo}, this implies ¥, < (y — U, )=
0 on this event for suﬂimently large n, that is, again g(x,y) = 1.

CASE 4. y <o, n* <o, p,(v) = po(¢) = 0. Note first that py(¢£) = 0 im-
plies P, (X, — 00) =1 for all x,y € N. If x,y are now again fixed, we obtain
here for 3 ¥,., %, and u, in (3.2),

x, =x¢k, u,=xv,¢; and

(3.4) _ ( xV*f*( £ )" i
Vo=m*"y - 55— 1—(—*)
T = n

for all n > 1. Similar arguments as in the previous case show g(x,y) <1,
respectively, q(x,y) = 1 according to whether y > xv &, /(n* — &,) or y <
xvy €y /(0% = €4
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If y=xv,é,/(n* —£,), then (3.4) implies 3, = xv, &1 = x,v, £,/
(n* — &,) for all n > 1. Furthermore we infer from the definition of n*, ¢,
and v, that

{Yn _ Xnv*g*

_"7*_5*

=4t Dn Px’ ya.8s.

for all n > 1, whereas Y, < X, v, ¢, /(n* — £,) on Dy P, -as. Now put
T =inf{n > 1: 1(D,) = 0}.

If Var(¢ + n + v) = 0, that is, in the purely deterministic case, we clearly have
T = « and thus g(x, y) = 0. But if the latter variance is positive, then T < o
P, ,-a.s. which together with the strong Markov property and Y, <
Xyv.£. /(0" - £,) implies

r(x’y) = Ex,yr(XT’YT) = O, thus q(x,y) =1
The proof of Theorem 1 is herewith complete. O

4. Proof of Theorem 2. In the following we fix any x,y € N, suppose
vy < ®, q(x,y) < 1 and define A ={Y, » 0, X,, > «} ={Y, » 0, U, — «}. We
infer immediately from the definition of Y, that Z}[gilnn’ ;> U, » « and thus
Y, » © P, ,-as.on A, thatis, A ={Y, - », X, > «}. Since Lemma 3 already
implies P, ,-a.s. convergence of Y, /d, to some random variable Y, namely
Y =(Z - Z*)", it remains to prove for Theorem 2 that P, (Y = 0|X, — «) =
q(x,y), or equivalently that P, (Y > 0, X, — ) = r(x, y).

The idea to prove the latter assertion can be intuitively described as follows:
Given Y, — o, we show the existence of a (random) time point 7 such that the
prey generation at this time can be reduced by one individual and still
originates a prey process which does not become extinct. Moreover, the
separated individual originates an ordinary GWP which will not die out. One
may think of this individual as being brought to a district where inhabitants
are no longer exposed to predators. If we look at the branching tree of the
whole prey population, this means that on the set of nonextinction we may
extract a full subtree of an ordinary GWP with one ancestor. The theory of
ordinary GWP, more precisely the Heyde-Seneta theorem, ensures that the
subpulation size divided by d,, has a positive limit on its set of nonextinction,
whence this must also hold for the total population size divided by d,,.

In order to make the previous argument rigorous we give a number of
lemmas. :

LEmmA 5. Forall x,y € N, lim, . r(X,,Y,) = 1(A) P, -a.s.

'Proor. Note that (r(X,,Y,)),., is a nonnegative, bounded martingale
w.r.t. each P, , and thus converges a.s. to a limit r, say. Clearly, r = 0 on A°
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so that
P, ,(A) =r(x,y) = lm E, ,(X,.Y,) = [ rdP,,

forces r tobe a.s. 1 on A. O

Lemma 6. If Var(é +n +v) >0, then liminf, , r(X,,Y, —1)>1/2
P, ,-a.s.onAforall x,y € N.

Proor. Without loss of generality fix x,y € N such that r(x,y) > 0. Sup-
pose Var n > 0. In the following we use a simple coupling-type argument. Let
(711, ;); > 1 be a sequence of random variables with the following properties:

(@ (ny ;, 7, ;), j = 1areiid. and independent of (n,,, ;, &
(b) m, ; and 7, ; have the same distribution;
(¢) my,; — 7, ; is symmetric with positive, finite variance.

n s Ve, jn =15

The existence of such a sequence is easily verified, possibly after an enlarge-
ment of the underlying probability space (Q, &/, P, ). Now define

_}'_1 Yn—l
Yo=y-1, Y= Y4, ,-U and Y,= Y n,;-U, fornz=2.
j=1 j=1

Obviously, P, (X, Y),.0€ )= P, (X,,Y,) € ). Moreover, Y,>Y,
for all n > 1 if this is true for n = 1. The central limit theorem implies
1 S

1
PPl X0 = | =) 2
1

3

Consequently, for x,, y, — « such that lim, _,, r(x,,y,) = 1 we conclude

kYR

liminf r(x,,y, — 1) > liminf Lim [ r(X,,Y,)dP,
k—o k—oowo n-ow/fy >y >0}

.

lm P, (%2 %) n4)

- 1
= klivI)I:o(r(xk:yk) - P»,yk(Yl = Y1)) DR

which together with Lemma 5 yields the assertion.

If Varn = 0 but Var£ > 0 or Var v > 0, then use a similar construction
with the §; ;’s or v, /s replaced by appropriate copies in the definition of Y,
respectively. The details can be omitted. O

We are now ready for the intrinsic step towards the proof of Theorem 2,
which is basically a geometric trial argument. We fix any x,y € N such that
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r(x,y) > 0. Define
m,=inf{n > 0: r(X,,Y, — 1) > 1}

which is a.s. finite on A (w.r.t. P, ). Using the definition of Y,* we have the
decomposition

Yie=%r) + Zulr), n=0,

T1t+n

where, wrt. P, (C1X, =x,, Y, =y), (@ (7)), X, ,,), ., has the same distri-
bution as (X,,Y,),., under P, , _,, and (2,(7)),., is an ordinary GWP

with one ancestor, the same distribution as (Z,), . , under P, and indepen-
dent of the previous process. Let

T, = inf{n > ,: 2;*(7;) < 0or 2,(r,) = 0},

with the usual convention inf @ = «,
For & > 2, we now define recursively.

n=inf{n > T, _:r(X,,Y, - 1) > i},
decompose Y*,, into Z,*(r,) and 2,(r;,) in the obvious manner and put
T, = inf{n > 7,: 2,*(7,) < 0or Z,(7,) = 0}.

Note that 7, <o P, ,-a.s. on A N {T),_; < «} by Lemma 6. Recall further for
the next lemma that q,, = P, (Z, — 0) is strictly less than 1 because (Z,),, .,
is supercritical.

Lemma 7. The first occurrence time o =inflk > 1: T, = «} is P, -a.s.
finite. :

Proor. We will prove P, (T}, <) =P, (0 >k)— 0as k — o. It follows
by using the strong Markov property that

P, (T, <=) = [

{r, <o

PXTk,YTk(Tl <®)dP, ,

- (1= Py, v (%*(r1) = 2, u(71) > ®)) dP, ,

{7}, <o}

= (1 - r(X‘fk’ K'k)(]' - q("]))) dPxJ’

{r), <0}
1 —
= (1 - —;I@)Px,y(Tk—l < 00) '

. and hence upon induction,

1- o

k
0 k . DO
1 )—) as k > »

P, (T, <) < (1 -
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Proor oF THEOREM 2. Let x,y € N such that r(x,y)> 0, that is,
q(x,y) <1. On A we obviously have 7, <, T = «. Denote by 2(k) the
P, ,-as. limit of 2,(r,)/d, and observe that 2(¢) >0 P, -as. on A by
construction. Consequently, the desired result follows from
. Fn-o(7s)
m —_—m =

lim —= > li

n—o n n—o dn

If Var(¢ + n + v) > 0, then Theorem 2 ensures that Y, essentially behaves
the same as the associated GWP Z, where no predators occur: It either dies
out or it explodes at the same order of magnitude d, as Z,. In the determinis-
tic case, that is, when Var(¢ + n + v) = 0, the situation is equal unless m > u
and Y, = auX,/(m — n). Whereas q(X,,Y,) =1 in the nondeterministic
case, q(X,,Y,) equals 0 here and one can easily verify that Y, grows like u"
instead of m”, a situation which never occurs otherwise. O

m=°P(c) >0 P, ,-a.s.on A.
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