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A MATCHING PROBLEM AND SUBADDITIVE EUCLIDEAN
FUNCTIONALS!

By WaNSo0 T. RHEE
Ohio State University

A classical paper by Steele establishes a limit theorem for a wide class
of random processes that arise in problems of geometric probability. We
propose a different (and arguably more general) set of conditions under
which complete convergence holds. As an application of our framework, we
prove complete convergence of M(X;,...,X,)/ Vn , where M(X,,...,X,)
denotes the shortest sum of the lengths of |n /2| segments that match
Ln /2| disjoint pairs of points among Xj,..., X, where the random vari-
ables X,...,X,,... are independent and uniformly distributed in the
unit square.

1. Introduction. By L, we denote a real-valued function of the finite
subsets of R? (including &), where d > 2 will be fixed throughout the paper.
Under natural conditions, Steele [4] proves that if (X)), are independent
and uniformly distributed in [0, 1], then there is a constant B(L) such that

LiX,,..., X,
(1) r}l_lgo ({ nd-1/d }) = B(L).

This result provides a unified proof for a number of theorems in geometric
probability. Steele’s result suffers, however, from two drawbacks. The first
one is that the conditions on L are often not satisfied. The second is that it
does not imply complete convergence, that is, that for all £ > 0,

ZP( L({X,,..., X,))

: nd-1/d — B(L)
nx=

In most cases, neither drawback is too serious. Steele’s argument can be
adapted to a variety of conditions (but the charm of having a general theorem
is lost in the process), and complete convergence can oftéen be obtained
through a straightforward use of martingales, as used, for example, in [2].
There are, however, cases (and in particular, the matching problem stated in
the abstract) where complete convergence is not so immediate (as will be
explained in Section 4). While developing an approach that works for this
example, we realized that this approach would work under very general
conditions and that it might be worthwhile to spell these out.

In the present note, we point out general conditions that are slightly
different from Steele’s (and in practice seem weaker), that imply complete
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convergence (and much more) and that hold for all the examples that this
author is aware of.

We first list a number of conditions on L. (The names of these conditions
have been chosen in order to be consistent with Steele’s notation.)

A0. L) = 0.

Al. For every a > 0 and every finite subset F of R¢, we have L(aF) =
aL(F), where aF = {ax; x € F}.

A2. For every x € R? and every finite subset F of R?, we have L(F + x)
=L(F), where F + x ={y + x; y € F}.

The following is a (rather formal) weakening of condition A5 of [4].

A5'. There exists a constant C; with the following property. For m = 2 or
m = 3, consider the partition (@,), _ ,,« of [0,1]? into m? equal cubes. Then,
for every finite subset F' of [0,1]? that does not meet the boundary of the
cubes @;, we have

L(F)< Y L(FNn@Q,) +C,.

i<m?

B1l. There exists a constant C, such that for all finite subsets F,G of
[0, 1]¢, we have

|L(F U G) — L(F)| < Cy(card G)“ "/,

We consider random variables X, X,,... that are independent and uni-
formly distributed on [0, 1]¢. We assume that L{X,,..., X,}) is measurable.
Our main result is as follows.

THEOREM 1. Under conditions A0, Al, A2, A5 and Bl the following
occurs: For some constant B(L), we have

EL({X,,..., X,
(2) lim ({n(d—l)/d })=,B(L).

n— o

For some universal constant C, we have, for alln > 1, and all t > 0,

P(|[L({Xy,...,X,}) — EL({X,,..., X,})| = ¢t)

1 [ ¢ \2d/@-D
A ’

3)
( < Cexp

It does not seem possible to obtain a rate of convergence in (2) without
extra hypotheses. However, as a by-product of Theorem 1, we obtain complete
convergence.
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The paper is organized as follows. In Section 2, we compare our conditions
with those of [4] and we explain why our conditions are essentially weaker. In
Section 3, we prove Theorem 1. In Section 4, we analyze the matching
problem that motivated these abstract results.

2. Comparing with Steele’s conditions. By A2, a = L({x}) is indepen-
dent of x € R%. A basic observation is as follows.

PROPOSITION 1. Assume conditions A0, Al, A2, and A5. Set a, =
C,/(2%71 — 1). Set a; = a + d2%" 'a,. Then for each nonempty finite subset F
of [0,1]¢, we have

4 L(F) <a.(card F)¢ V¢ _ g <a card F)¢ V74,
1 2 1

PrOOF. This is proved by induction over card F. First, we observe that the
result holds when card F = 1, by definition of a,, a.

Before we perform the induction step, we observe that, by concavity of the
function f(x) = x(@~V/4 we have

1 o 1 @-1d
Y onld-rd < | 30 n

i
card I /= joy card I

for all integers (n,), . ;- Thus

(d-1)/d
(5) Y nld-1/d < (card 1)1/"( Zni) :
iel iel
Assume now that (4) has been established for all sets G with card G < n,
and consider F c [0,1]¢ with card F = n. Consider the partition (Q,), _ 5« of
[0,1]¢ into 2¢ equal cubes. First, we observe that we can assume that F is
not a subset of a certain @,. Indeed, by Al and A2 it suffices to prove (4) for F’
rather than F, where F' = aF + x and where a > 1 is chosen as large as
possible so that we can find x € R? for which F’ c [0, 1]¢. Thus, for i < 29,
we have n; = card(F N @,) < n, so that by Al and A2 and the induction
hypothesis, we have

L(FNQ;) < %(aln(id_l)/d - az)

whenever n; > 0. Because L(F N @;) = 0 when n; = 0 (by A0), by A5’ and (5)
we have

L(F) < 3( (a7 — a,)) + €,

iel
where I = {i < 2"; n, > 0}. Thus, by (5) we have, setting card I = m,

ml/d
L(F) <

m
n(dil)/dal - —2—(12 + Cl'
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To conclude, it suffices to prove that the right-hand side is at most a,n~1/¢
— a, or, equivalently, replacing C; by its value (297! — 1)a,, that

a ml/d
32-(2d—m)sa1n(d‘1)/d(1— 5 )

Because n > 1, a; > d2% 'a,, it suffices to show that

ml/d
2d—msd2d(1— 3 )

Setting m = x2¢, this reduces to the elementary fact that 1 — x < d(1 — x'/¢)
for0<x<1. 0O

REMARK. A consequence of Proposition 1 is that condition A6 of [4] (and
thus condition A4) follows from A0, Al, A2 and A5'.

We consider now the following conditions:

A3. For every finite set F c R? and every x € RY, we have L(F) <
L(F U {x}).

A7. There exists a constant C, such that, for all finite subsets F,, F, of
[0, 1]¢, we have
L(F,UF,) <L(F,) +L(F,;) + Cj.

ProPOSITION 2. Conditions Al, A2, A3, A5' and A7 imply condition B1.

Proor. By A3, A7 and Proposition 1, we have
L(F)<L(FUG) <L(F) +L(G) +C,4

< L(F) + ay(card G)“ V7 + C,
< L(F) + (a, + Cg)(card G)“*~ "¢, O

We know of no natural example where A5' holds but A7 fails. On the other
hand, there are numerous examples where A3 fails [e.g., if L(F) is the length
of the minimum spanning true tree through F]. Thus, in practice, when
conditions Al, A2 and A5’ hold, condition B1 is weaker than condition A3.

3. Proof of Theorem 1. The proof of (2) follows; for example, the
argument of the proof of [3] Theorem 3.1 (which itself is a routine variation
on the arguments of [4]) and we do not reproduce it here. To prove (3), the
temptation is to use the information

(6) |L(F U (x)) - L(F)| < C

and martingale difference sequences as in [2]. For d = 2, this fails to give
complete convergence and for d > 3 this gives a result weaker than (3) [more
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precisely, as in (4), the exponent 2d/(d — 1) has to be replaced by 2]. The
basic observation is that the situation becomes much clearer if one thinks in
an abstract way. The basic fact is as follows.

PROPOSITION 3. Consider the set ) = ([0, 1]¢)" and the uniform measure u
on Q. Consider a subset A of O, with u(A) > . For a pointy = (y,,...,y,)
€ Q (where y,,...,y, €[0,11%), consider the Hamming distance

¢(y) = inf{k; I (x4,...,x,) €A, card{i < n; x; # y;} <k}

of y to A.
Then, we have

(1) u((9(3) = 1)) < aemp( 5]

CoMMENT. This statement has been known for a long time by the special-
ists. The proof (that will be sketched below) is contained in [1], Section 7.9,
page 36). Our contribution here is the recognition that this statement is the
heart of the matter (rather than trying to use martingales directly).

SKETCH OF PROOF. (No attempt is made at obtaining sharp numerical
constants.) Applying Azuma’s inequality to the function ¢(¥) yields

(8) u({‘dﬁ) —fd>du Zu}) szexp(—zﬁ;)-

Taking u = [¢ du, we see that because ¢(y) = 0 for y € A, the right-hand

side of (8) is greater than or equal to 3. Thus

_ (Jpdw)®
2n

i< 2exp(

that is, /¢ du < y/2n log4. Thus, from (8),
u?
,u.({qﬁ(i) >u+ \/2nlog4}) < 2exp(— é—;)
so that, for ¢ > 2y/2nlog4,

n({o(y) =t}) < 2exp(— (t _ @@) )
42
< 2exp(—§)'

Thus, for all ¢,

w({#(y) = t}) s4exp(—%). |
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To apply Proposition 3, we denote by M a median of the random variable
Z = L(X,,...,X,)), so that P(Z < M) > 3. For an n-tuple X = (x4,..., x,)
of O, we set L(x) = L({xy,..., x,}).
Consider the subset A of () that consists of the n-tuples ¥ = (x4,..., x,)
such that L(¥) < M. The condition P(Z < M) > 7 means that u(A) > 3.
We observe that
(9) L(7) <M + 2C, (7).
Indeed, if ¥ = (x,...,x,) €A and ¥y = (y,..., ¥,), setting
F=U{x; % =y},
by B1 we have
|L(%) — L(F)| < C,k@~/4,
|L(5) — L(F)| < Cok@~ V79,
where k = card{i; x; # y;}. Because L(X) < M, (9) follows. It follows from (9)
that
P(Z2M+1t) = u((3: L(7) = M +1))

t d/(d-1)
{5';¢(5') > (2—02) })

t2d/(d_1)
8n(2c2)2d/(d—1) ) :

A similar inequality holds for P(Z < M — t), as is seen by replacing A by the
set of ¥ such that L(x) > M, so that

<u

From (7) we have

P(Z=M +1t) s4exp(—

2d/(d-1)
(10) P(1Z-M|>1t) sSeXp(—Sn(ZCZ)Zd/(d_D).

Using the identity
E(h) = [ P(h=t)dt
0

whenever h >0, we get, by a routine computation that E|Z — M| <
Kn(@-V/24C, (where K is a universal constant), so that |EZ — M| <
Kn'@~1/24C, Combining with (10), we have

t2d/(d—1)

b

) _ (d-1)/2d _
P(IZ EZ| >t + Kn | C2) < 8exp( 8n(202)2d/(d—1)

from which (3) follows.
It should be pointed out that (3) simply requires that the random variables
X,,..., X, be independent. On the other hand, to extend (2) to the nonuni-



800 W.T. RHEE

form case, other conditions on L are apparently necessary (like, e.g., condi-
tion A8 of [4].

4. Application to the matching problem. Consider a subset F =

{x4,...,x,)} of R Set m =|n/2|. Consider m disjoint pairs (= subsets of
card2) of F, say (%, X0, -+ s (Xi(;m)» Xjny) @and the sum
(11) Z d( Xiy» xj(l))

l<m

of the distance of the elements of these pairs. Define L(F) as the infimum of
the quantities (11) under all choices of pairs. Define L(#¥) = 0. It is obvious
that A0, A1, A2 and A5’ hold (with C, = 3%/d). It is also obvious that A3
does not hold, as is shown by the example F = {(0,0),(0,1)}, x = (0, &), so
that L(F) =1, L(F U {x}) = .

We now prove that B1 holds. First, we observe the inequality

L(FUG) <L(F) + L(G) + Vd
that is obtained by considering the union of an optimal matching of F and an

optimal matching of G, and if both card F and card G are odd, by matching
the two leftover points together. Combining with (4), we get

L(FUG) <L(F) + Vd + ay(card G)* "¢
< L(F) + (Yd + a,)(card G)*~ "/

For the reverse inequality, consider an optimal matching of F' U G. Consider
the set F; of points of F' that are matched to points of G and let F' = F\ F,.
Surely we have card F; < card G, and obviously L(F') < L(F U G) [by con-
sidering the restriction of the optimal matching of L(F U G) to F']. Using
(12) for F' rather than F, F, rather than G completes the proof of B1.

We now explain why the usual martingale arguments apparently do not
succeed in proving complete convergence. The reason is that it is very difficult
to improve the trivial inequality

(12)

IL({xl,..., X 1, X, X100, X))
—L({xl""’xi—l’ Yis xi+1,..., xn})l < d(xi’yi)‘

This relation is obtained by matching y; to the same point x ; as x; (and
matching all the other points the same way) and using the triangle inequality

Id(xi’xj) - d(yiaxj)l <d(x;,)-

Presumably x; is close to x;; when d(y;, x D> 1/ Vn , it is very inefficient to
match y; to x;. However, if one wants to match y; to a point x,, then the
point to which x, was matched has to find a new partner (and so on). It is not
clear how to control this chain reaction and indeed, there are configurations
where this is impossible (e.g., where the points in each matched pair in the
optimal matching of {x,,..., x,} are very close, and the pairs at distance of
order at least n”!/% to each other). While controlling the “chain reaction”
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might be possible in the general case, an analysis of this situation is certainly
going to be considerably more difficult than the present approach, and for the
time being, we do not know how to improve upon (3).

Concerning (2), it does not seem possible to obtain a rate of convergence
unless A5’ is replaced by a two-sided control. In the present case, such a
two-sided estimate can be obtained by repeating the arguments of reference 3
(Theorem 2.6). Along the lines of Theorem 3.1 of reference 3, one then obtains
(when d = 2) that if F c[0,1]? is generated by an homogeneous Poisson
point process of intensity A, then
EL(F)

~ log A
7 B(L)

<K———,
VA
where K is a numerical constant and “de-Poissonization” using (3) yields
EL({Xy,..., X,}) _B(D)
Vn

(for another numerical constant K). Combined with (3), this shows that for
d=2,alln>1and u >0,

<

/%

ut
P(IL({XI,...,Xn}) - \/;B(L)I > un1/4) < Kexp(— _I?)’
where K is (yet another) numerical constant.
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