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BACKWARD-FORWARD STOCHASTIC
DIFFERENTIAL EQUATIONS

By FABIO ANTONELLI

Purdue University

This paper shows the existence and uniqueness of the solution of a
backward stochastic differential equation inspired from a model for
stochastic differential utility in finance theory. We show our results
assuming, when possible, no more than the integrability of the terms
involved in the equation. We also show the existence and uniqueness
of the solution of a backward—forward stochastic differential equation,
where the solution depends explicitly on both the past and the future of
its own trajectory, under a more restrictive hypothesis on the Lipschitz
constant.

1. Introduction. The goal of this work is to show the existence and
uniqueness of an adapted solution of backward—forward stochastic differen-
tial equations of the type

U,=J, + [ £(U,V.) dX,,

(1.1) V,=E(ngs(U;,Vs)dzs+Y|z), 0<t<T,
t

V=Y,
where (Q,7,{%}, <, <1, P) is a complete filtered space satisfying the “usual
hypotheses,” Y is F;-measurable, f,, g, are uniformly Lipschitz [see (2.2)],
X, and Z, are semimartingales in H” and J, is a cadlag progressively
measurable process. This model is called backward—forward because the two
components in the system are solutions, respectively, of a forward and a
backward equation. If the system is reduced to the forward case only (for
instance when U is known), it is possible to find examples of this class of
equations mostly in control theory and in economics, when one models
phenomena involving knowledge of the terminal value of the solution process.
The example that in fact inspired our work is given in Duffie and Epstein
(1992) by the construction of a recursively defined stochastic utility function,
solving the problem of finding the optimal portfolio for an investor in a
market model. For a clear overview of the setting motivating the problem, the
reader may also refer to Picqué and Pontier (1990). Duffie and Epstein (1992)
show the existence and uniqueness of the adapted solution for a backward
equation when Z, =s, V€ S? and Y € L? for p > 1. The case p = 1 is left
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778 F. ANTONELLI

open. However, we resolve it here, as well as considering more general
equations. The key point in their proof is the use of the strong version of
Doob’s maximal inequality to show that the operator G: S? — S” induced by
the equation [see (2.1)] is a contraction. This technique is not useful for the
case p = 1.

Under the further assumption that {#}, _, . is the natural filtration of a
k-dimensional Brownian motion, Pardoux and Peng (1990) treat instead the
similar problem of finding an adapted pair of processes x(¢), y(¢), t € [0, 1],
with values in R¢ and R%** solving

(12) x(¢t) +j;1f(s,x(s),y(s))ds +ft1g(s,x(s),y(s))dWs - X,

where W, is a standard .-dimensional Wiener process generating the under-
lying filtration, X is an F)-measurable random variable and various L2
integrability hypotheses are made. Here the assumption that the filtration is
Brownian is important. Indeed the authors first solve a simplified version of
(1.2) via the martingale representation theorem.

In this paper we relax all these conditions. We will assume that the
filtration {F}}, ., . r satisfies only the “usual hypotheses” and, when possible,
we assume only enough integrability on each term to have the conditional
expectation in (1.1) defined. In Section 2 we consider only the backward case
and we prove the existence and uniqueness of the solution. By including the
particular case when the integrator is just time and p = 1 we affirmatively
resolve a conjecture of Duffie and Epstein (1992).

Finally in Section 3 we are concerned with the model (1.1) in its generality.
Again we show existence and uniqueness of the solution of (1.1) whenever the
Lipschitz constant % is small enough. We first consider only finite variation
integrators, which is the case when the weakest integrability hypotheses are
required, and then we generalize to semimartingales in H”, when strengthen-
ing the integrability assumptions. Last, we also provide two examples in a
linear setting when % is large, thus explaining our restriction.

Throughout this paper we refer to Protter (1990) for notation and
definitions.

2. Finite horizon backward equations. In this section we study only
the backward case of (1.1), so U, will not occur in the model. We will
start with the finite variation case, which requires the weakest integrability
hypotheses.

Let us consider the equation

(2.1) 6(v), = B( ["a.(V.) A, + Y1),

Where A is an adapted process of bounded total variation with A, =0
and the function g: [0,T]X QO XR->R is 2(0,T]) X.F X B(R)/B(R)-
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measurable and such that:

1. g is uniformly Lipschitz: there exists a £ > 0 such that

(2.2) lg,(u) —g,(v)I <klu—-vl VuveR,Vse[0,T];
2. g,(-,u): Q - R is F-measurable for each s and u;

3. g is l-integrable; that is, E( fo g, (0)dA,D < +o,

Moreover,

4. Y € LX(P) and it is Fy-measurable.

The total variation process of A,, |Al;, will be increasing, adapted and
bounded, let us say |Alr < B, for some positive constant 8 and |A|, = 0. The
process | A| therefore induces a finite measure on [0, 7] X Q [see Dellacherie
and Meyer (1982)] given by

u([0,¢] x B) = foOtIdASIdP

= E(15(1Al; — |Aly)) = E(1,]Al,)

(2.3)

for every B € %, 0 <t < T, which is called the Doléans-Dade measure. By
using the monotone class theorem, for any nonnegative progressively measur-
able process X, the integral

T
(2.4) fnx[o,mXS(“’) du(s, o) =E(f0 Xs(w)IdAsl)

makes sense and so we can define the Banach space: L'( u) = {V,(w) stochas-
tic processes on [0, T'] X Q such that E(/] [V (w)IldA,D < +}.

This space will be the natural environment in which to look for a solution
of (2.1). Before proving our main result we need a lemma that will enable us
to handle the conditional expectation in the equation more easily.

LEMMA 2.1. Let X be a positive measurable process and let Y be its
optional projection. Let C be an adapted increasing cadlag process. Then

(2.5) E(f:XS dCs) - (f:Y dCs).

Proor. See Dellacherie and Meyer (1982), Theorem VI.57. O

As a consequence of this lemma we have the following remark, which is
what we will actually use in the proof of the theorem.

REMARK 2.2. If we consider the process X,(0) = a(t)H(w), where a is a
positive Borel function on R, and H is a positive or L' random variable and
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we call H, the cadlag version of E(H|%,), then Lemma 2.1 says that

[O,w)a(s) dCS) = E([[O’w)Hsa(s) dCs)

when C is an adapted, increasing, cadlag process (and hence optional).

(2.6) E(H

LEMMA 2.3. Let G be the operator defined by (2.1). Then G: L*(u) - L*( ).

Proor. By the Lipschitz property (2.2) we note that
T
G(V),| < E(f (kIV,| + 1£,(0))IdA,| + IYII.Z).
t

Let us call Z, = [} (kIV,| + |g,(0)DIdA,| and M, = E(IYI|.9§). So M is a martin-
gale and by Lemma 2.1 we obtain

E(fOTIG(V)tIIdA,I) < E(jOTE(zT - Z,I%)IdAtl) " E(fOTMtIdAtI)
- E(ZTfOTIdA,I - fOTZtIdAtI)

¥ E(m ) TIdAIt)

<E(Z;|Alr) + E(IY || Al7)
< BE(Z; +1Y]) < +o. O

Using again Lemma 2.1, we are now able to show the main result of this
section.

THEOREM 2.4. Under hypotheses 1-4 stated previously, there exists a
unique adapted cadlag solution of (2.1) in L'( ) sense. That is, there is one
and only one semimartingale V € L'( u) such that

E(fOTIG(V)t - VtIIdAtI) - 0.

PROOF. Let us first introduce some notation. Without loss of generality
we may assume that A is increasing so A =|A| and we will indicate by
AW and A("-), respectively, the integrals ((---((A-A)-A)--- A)-A), and
(- (A_-A)_-A)_ -+ A)_-A), with the convention that A® = A®-) =1 and
AD =(1-A),=A,=(1_A), = A!-). By using the integration by parts for-
mula for Lebesgue-Stieltjes integrals A? = (A-A), + (A_-A),, it is easy to
verify that A and A{"-) are linked by the relation ¥ ,(—1)'A{"~D-)AW =
0, for all ¢ € [0,T]. Finally we set (A, — A)" = £ ((—1)AL"~9)A4D for
u > t, the same formula holding also for «_. Note that when A is continuous
there is of course no distinction between A{ and A{*-), and (A, — A"
= (A, — A)™ reduces to (A, — A)"/n!. Finally G"™ will indicate the nth
iterate of G.
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For any U,V € L'(u) we will establish, by induction, the inequalities

GV, - GO(V),|

2.7

o0 <w([7(a, - 40", - viaals)
t

5( i), - 6"(v) ) aa,

(2.8) 0

< k"E(fOTA(,'i-)IUt — v, dAt).

Because of the Lipschitz property, (2.7) is clear when n = 1. As for (2.8) when
n =1, let us indicate with Z(® the integral [{|U, — V,|dA,; then applying
Remark 2.2 to the martingale E(Z(1)|37 ), we obtain

E(fo IG(U), — G(V),IdAt) skE(f E(f U, — VsldAslz) dAt)

kE( E(Z - Zz{7) dA )

kE(Z(Tl) f dA, - z<1> dA )

kE(+Z(1)A ~ ZPA, + f A, dz<1>)

< kE(f A, U, -V, dA,).
0
Thus also (2.8) is established when n = 1.
From now on, for convenience, we will indicate |U, — V,| by H,. By the

inductive hypothesis, if we assume (2.7) is true for n — 1, then, using the
Lipschitz property of g, we obtain for n,

GO, — GOV,
<8 [Tl (), - 6o ()l da 17
t

< k"E(f TE( [(A, ~a)" 8, dArlz) dAslz)
t s
[ 722 ; o
=k"E(f E(f L (-1 A2 0A0H, dA,Iz) dAslz)
t s i=0 .
n—2 ; T T o
—&" Y (-D'E| [LAVE| [AC270OH, dA,|7 | dA,l5,
i=0 ¢ s

n—2 ) ] )
- 1S (-v'B(["8(["A, aag-1-9lg, | dag ).
i=0 t s
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Let us now set Z(" 179 = (¢ H, dA™~170) = L AC=2-0 dZD. Tt is
important to notice that both Z{"*~ 1-) ‘and ‘AU+D are increasing processes,
and we can therefore apply Lemma 2.1 to them in its conditional version [see
Dellacherie and Meyer (1982)]. This and the integration by parts formula will
lead to the following series of equalities for the right side of the preceding
inequality:

fTE Z(n 1- z)_Z(n 1- L)lg-) (t+1)|%)
t

E Z(n 1-4) A(z+1) A(z+1)) fz(n 1- z)dA(L+1)|'7)

T

|I
Pﬂ

(A(z+1) _A(z+1)) dz(n 1- z)ly)

T

LE(AL+1) Zr1-0 — Z(Tn—l—i))+ fTA(sijl)ngn—l—i)lz)
¢

(A(z+1) — AGFD) AR 2D )dZ(l)I./)

t

_(

( Z( 1) A(z+1)A(n 2-1i)

_ Z (_l)iA(ti+1)A(s(z—2—i)_)) dzgl)lz)

i=0
n-1 ) ) )
~wE| [T T (- avaro
: = s s
n—1 . ) )
- T (—1)“1A$’>A<;f-1-“->) dzgnlz)
i=1

n-—1 . ) )
- knE([tT(Ag"_—D + Y (—1)’A§‘)A(§E‘1“)-)) dzgnlz)
i=1
T n—
~won([7Ca, — )", - VA
or summarizing,

G, ~ G(V). < kB[4, - 4710, - V] da k7).
t

which is exactly the formula (2.7) we wanted to establish.
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At this point (2.8) can be proved for n by virtue of (2.7), following the same
procedure. In fact we have

IG™U) = GVl

- E(fOTIG(")(U), — GV, dAt)

<knE(f (f ( Y (—1)f APA-1-D- >) zg1>|9;) dAt)
_kn 3 ( 1) E( (f A1) )dZ(l)Lg) dA(‘“))
= pn Z (-1) E(f Alr—1-i)- )A(‘“)dZ(l))

- k”E( A Té(—1)"‘1A<;z-i>—>Agz dzgh)

= kE| ["AUH, dA, | = R"E| [TACOW, - Vi d4, ).
O O s s

It is now important to notice that A("-) < A”/n!. As a matter of fact, when A
is continuous we have the equality; otherwise, we have to add the contribu-
tion of the quadratic variation process in the left side to obtain the right one.
But under our hypotheses A is bounded by 8 and so

IG(U) = G(V)lziw < k" (B"/n)IU = VliLiw).

This means that for n sufficiently large, G is a contraction on the Banach
space L'( u) and by the Banach fixed point theorem there exists one and only
one V € L'(u) such that E(/] |G'™(V), — V,|dA,) = 0. Applying G again,
the Lipschitz property (2.2) implies that E(/] |G™(G(V)), — G(V),| dA,) = 0
and by the uniqueness of fixed points, G(V) = V in the L'( 1) sense.

Finally let us note that the solution V will be automatically adapted
because of the conditional expectation. Moreover, it will be a semimartingale
by virtue of the decomposition

T t
(29) V.- B[ [e.(v) aa, + Y17 - ['2.(v) a,,
0 0
which is possible because A is an adapted process and V € L'(w). O

In the special case A, = ¢ our proof simplifies. In fact, the random measure
w reduces to d¢t X dP and Lemma 2.1 becomes the conditional version of
_ Fubini’s theorem. This case answers affirmatively the conjecture stated in
Duffie and Epstein (1992) for p = 1.

‘"Theorem 2.4 also implies that (2.1) has a solution in D under the uniform
convergence on compacts in probability topology. Indeed assuming without
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loss of generality that G is already a contraction on L'(u), the sequence of
iterates V.0 = 0,V,! = G(V?),,..., V,* = G(V""D),,... converges to the solu-
tion V in L'( u) and by Doob’s weak inequality for martingales, we obtain for
any A > 0,

P( sup [V "1 -V, > A) < P( sup kE(fTIVs" - VslldAs||37,) > /\)
0<t<T 0<t<T t

< P( sup kE(fTIVs" - VSIIdASII.Z) > )t)
0<t<T 0

Ty n _
E([yIVy - V,lIdA,l) o

as n — o,

So V" —» V in D. Moreover, by the Lipschitz property of g, V" converges in D
also to F(V'). Thus we must have F(V) = V because of the uniqueness of the
limit in D.

REMARK 2.5. It is important to note that if we require more integrability
on the terms in (2.1), then we can obtain better integrability also for the
solution. Indeed, if we assume that Y € L? and (E(/{ |g,(0dA,DP)/P < +
for some p > 1, we have that G: S? —» S? and, using the strong version of
Doob’s martingale inequality and the fact that | Aly is bounded, it is possible
to show that the iterate G will be a contraction on S? for n large enough.
This implies as before the existence and uniqueness of a V € S? verifying
(2.1) [see Duffie and Epstein (1992) for the case A, = s].

This allows us to extend our model even further. In fact, if we take any
semimartingale X in H” with canonical decomposition X = M + A, where M
is a martingale and A is a bounded total variation process, and consider the
equation

(2.10) 6V, = B( (e, (v, ) ax, + Y17

under the additional hypotheses that g,(0) € S”, we have that (2.10) reduces
to

(2.11)  G(V), = E(ngs_(Vs_) dA, + le) for any V € S?,
t

because the martingale term gets cancelled by the action of the conditional
expectation. Again we can find a unique solution in S”, which will coincide
,with the solution of (2.10).

3. Backward-forward stochastic differential equations. We are
now going to consider the system (1.1) in its more general form when a
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forward and a backward stochastic differential equation intervene at the
same time. It is clear that in this case the solution may depend simultane-
ously upon its own past and future; that is, at each time it may depend on its
whole trajectory. This peculiarity is exactly what led us to impose stricter
assumptions on our model. For simplicity here we will consider only the
two-dimensional case. Again we start our study by restricting to integrator
processes of bounded total variation, because this is the case when the least
integrability is required. We will proceed later on to generalize our model to
semimartingales in H”.
We want to consider the system

(3.1) U =J,+ [1.(U,,V,) dA,,
0
T

(32) v, E(["e.U, V) dc, + Y1z,
t

where A and C are two finite variation processes in H”, say |Alr,|Clr < B
for some constant B and with A, = C, = 0. The functions f, g:[0,T] X Q X
R? > R are ([0, T]) X% X B(R?)/%(R)-measurable and such that:

1. f, g are k-Lipschitz in (x, y) uniformly in (w, s); that is,
14 (0, %,9) — { (0, %, 5) <k(lx — X+ |y - 3),

where ¢ = f, g for any (x, y),(%,%) € R%, s €[0,T] and w € Q.
2. £.¢, x, ), 8., x,5): Q > R are &,-measurable for any (x, y) € R2.
3. If D, = max(|Al,[C|;), then

E(];Tlfs(O,O)lst) < oo, E([OTlgs(o,onst) < +oo,

Finally Y is a random variable #,-measurable in L'(P) and J, is an adapted
process such that E(/ |J,|dD,) < k; < +c.

As before, D, induces a finite measure u. Let us consider the space
L' ) ® L' w) with the norm (U, V)llziezt = IUllr + V|1, Again this is a
Banach space and we can view (3.1)—(3.2) as the operator

Jt + '/:fs(AUs"/s) dAs

F(U,V)t)

(3.3) T(U,V), = (G(U,V)‘,

B(["e.0,v) dC, + Y15,
t

Under the previous hypotheses, I'! L'(u) ® L'(u) —» L'(w) ® L'( w). Indeed,
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for any (U, V) € L'(u) ® L*(n), we obtain

IT(U,V)lipew =

t
Jo+ [£.(U,V,) da,

=E([0T

+|&([ s v ac, + iz
! t

!

.+ [0,V aa,

+’E(ftTgs(Us,Vs)dCs +Y|9;)

o

<(["lv)ap| +E([0T[(flfs<vs,vs)ndAs|th)
n E(fOTE([tTIgS(U;,Vs)IIdCSI + IYIIZ) dD,)
<y +pE(Y) + B( [ 1£,U,.V.)llaa, D |

+ E([OTE([tTlgs(U;,vs)||dcs||z) th).

But we have to note that, by the choice of D,, |Al; < D, and |C|; < D, with
respective Radon—Nikodym derivatives H,, K,, which are positive and less
than or equal 1. So we can write the last side of the inequality as

IT(U, V) s < by + BE(Y) + E( [ [17.0, V) 1H, a, dD,)
« &(['8( [lle.(,. V) K, aD,\7)
0 t
<ky + BE(IY]) + E([OTfOtlfs(Us,Vs)lst th)

+ E([OTE([tTlgs(U;,Vs)I dDSIZ) dD,)-

Looking more closely at the two integral terms, for the first one we have
B(["[=If.(t. V)l D, D
)

T T

- &( .11, 0, vl an, - 17,0, v)iD, b
0 0

< &(p, [ 11,0, vl ap,)
0

< BE([T(IfS(O,O)I + kU + EIV,)) st) < 4o,
0
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For the second term, by the optional projection theorem, we obtain

([ ([ lg,(U;, V)| dD, Iy)dD)
- &( [lle.(w,.v)i0,_ap,)
< BE([OT(IgS(O,O)I + kU, + EIV,)) st) < 4o,

In conclusion [[T(U, V)lipierr < +o, ¥V (U, V) € L} n) ® L'( ). We can there-
fore hope that I' is a contraction on L'( u) ® L'( w). This is unfortunately not
true for any pair of Lipschitz functions f, g as we will see by the following
theorem and examples.

THEOREM 3.1. Under the previously stated hypotheses and under the
additional assumption that k|| Dl|lg- < 1, then T is a contraction on L'(u) ®
L'( ). Consequently there exists a unique adapted solution (U, V) that satis-
fies the system (3.1) and (3.2) in the L'(u) ® L'(u) sense.

ProOF. Let (U,V),(U,V) € L'(u) X LM ). Let us recall that by our
definition of norm, (T(U, V)lipterr = IF(U, V)l + IGWU, V). Also, by
absolute continuity, we have that

[,y (@7

<k [(IU, - G| +V, - V.|)idA,|
0

\F(U,V), - F(U,V),l =

<k [(1U, - U +V, - V,) dD
0
and
-~ o~ T
IG(U,V), - G(U, V), ='E([ ( L. V,) —g(U,, )) dcC Iy)'
t
< k8 (710, ~ O) +1V, - V,)dc,]
t
< e [0, - G+ 1V, - V,) ap )
t .
Hence by the adaptedness of the processes we obtain
|F(U,V), - F(U,V),l+IG(U,V), - G(U,V),l

< kE(fOT(IUs -Gl +1V, - V| stlz)
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and finally

E(/OTIF(U,V)t — F(U, V), th) + E(/OTIG(U,V)t —- G(U, V), th)

< kE([TE([T(IU; ~ Ul +1V, - V) stlz) th)-
0 0
Once again by the optional projection theorem we can conclude

IF(U,V) = F(U,V)lp + IGU,V) - G(U, V)l

< kE(DT[OT(IUs ~ G+ v, - V) st)

T ~ ~
< kanHwE([O (U, - Tl + v, - V) st),
or
IC(U,V) = T(0,V)lpern < kIDIa=I(U, V) — (U, V)l

Because of our assumption k|| D|g- < 1, the operator I' is a contraction on
L'(w) X L'(w), which is a Banach space. Again by the Banach fixed point
theorem there is a unique pair of processes (U, V) € L'(u) ® L'(u) solving
the system (3.1) and (3.2). The adaptedness of each process is clear from the
structure of the equations. O

As before, if we increase the integrability requirements in our system we
are able to generalize the model to integrating semimartingales. We now
want to consider the system

(34) F(U,V), =J,+ [f,-(U,,V,.) dX,,
0

(35) 6.V, = B( s, (U, .V, )z, + s,

where X and Z are two semimartingales in H® with respective canonical
decompositions X =M + A and Z = N + C, with M and N martingales and
A and C bounded total variation processes, and such that X, = Z;, = 0. Here
f and g satisfy the foregoing hypotheses 1 and 2 and instead of 3, we will
have the substitute hypothesis

3". £,(0,0) € S? and g,(0,0) € S?, for p > 1.

Finally we also want J € S?” and Y € L? for the same p > 1. These assump-
tions imply that the operator

G(U,V),

defined by (3.4) and (3.5) acts from S? ® S? to S ® S with the norm
U, V)llgregse = IUlls» + ||V lls>. By Emery’s inequality and by the relation-

T(U,V), = (F(U’V)’)
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ship between the S” norm and the H” norm [see Protter (1990), pages
190-191] we have

IF(U,V) = dlisr < c,IF(U,V) — Jllur < c,If(U,V)llsl Xlla
< ¢ I Xlla=(ElUlls» + EIVIiss + 11 £(0,0)llsr) < +oo

because of the Lipschitz property of f. Thus ||[F(U,V)l|lg» < +%. Moreover, for
(3.5) we remark that, if U,V and g(0,0) € S?, then [{ g,_(U,_,V,_)dN, is a
true martingale (and not only a local martingale) because

T
“fo 8,-(U,_,V,_)dN,| <Ig(U,V)ls-lINlu-
HP

< (k(IUlls» + IVlis») +11(0,0)lls>)INllg= < +c°.

Thus the martingale part gives no contribution to (3.5), whence
T
60 V)l < B( [lg. (U, .V, Jldc, + ¥l
t
T,
<8([Mlg. (W, v, Jlac, + 177
and by Doob’s inequality we can conclude

T
IG(U, V)llss < q“ (s, (.. v ldc + ¥

LP
<q(k(IUlls» +IVlls») + llg(0,0)lls?)IClla= + lY llz» < +o,
where 1/p + 1/q = 1. Thus we have the following theorem,

THEOREM 3.2. Let I'(U,V) be defined by the system (3.4) and (3.5). Iff, g
and Y verify the foregoing hypotheses and if f, g are Lipschitz functions with
constant k such that k max(c,|| X|la=, qllCllu=) < 1, then there exists a unique
pair of processes (U, V) in SP ® S? that is the solution to the system (3.4) and
(3.5).

ProoF. For (U,V),(U,V) € S? ® SP, because of Emery’s inequality, we
obtain from (3.4):

IF(U,V) - F(U,Vllg» < If(U,V) - £(T,V)llsel Xllg=
<k(IU = Ulls» + IV = Vliso )| X l1z-.

Consequently, because of the relationship between the H? and the S” norms
we can conclude

IF(U, V) = F(U,V)ls» < ¢,IF(U, V) = F(U,V)las
< ke, | Xllg=(IU — Ullss + IV = Vlis»).



790 F. ANTONELLI

As for (3.5), we get, by the Lipschitz property of g,

IG(U, V), — G(U,V),l < kE(ftT(lUs ~Ul+1V, - V;|)|dcs||3§)
<k(E((U=-U)p+ (V- V)7)
x(IClr — ICl) 1)
<k(E((U - U)y + (V- V)7)IClrl7)
and by Doob’s inequality for p > 1 we can finally deduce
IG(U,V) — G(U,V)llsr < kq(IU = Ulis» + IV = Vlis»)IClla-.
In conclusion we obtain
IT(U,V) = T(U,V)llsresr < & max(c,|| Xla-, qllClla)
X (U, V) = (U, V)lsrese.
Therefore, under our additional assumption on the Lipschitz constant &, it is
clear that I' is a contraction on the Banach space S? ® S”. Hence a unique
fixed point for I" exists and this is the solution of our system. O
It would certainly be appealing to be able to remove the preceding restric-
tion on the Lipschitz constant of the coefficients in the equations. Unfortu-

nately this is not possible as the following two examples show.

ExampPLE 1. In this example we consider the linear system
¢
(3.6) U, =dy + [ (U, +V,)) ds,
0
T
(37) v, B[, + v s + ¥17),
¢

where we are assuming that J, is #,-measurable and positive and Y is
positive and integrable. Here g(u,v) = u + v and f(u,v) = u + |v| are both
uniformly Lipschitz in (z, v) with constant 2 = 1. Let us assume we have a
solution (U, V). Then we will obtain a contradiction. First of all let us notice
that, if the solution exists, we may write U and V in terms of each other:

U, = et(JO + fte'slel ds) for any given V,
0 .

V, = E(e(T“)Y + fTe(s‘t)Us ds|5§) for any given U.
t
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It is clear that U,, V, are both positive, so we can remove the absolute value
from (3.6) and conclude that U, V, are also solutions to

(3.8) U =dJ,+ jO‘(U +V,) ds,
(3.9) vV, = E(ftT(U's +V,)ds + YIZ).

Adding up (3.8) and (3.9) we obtain that

l7t+Vt=J0+E(fT(Us+Vs)ds+le)

0
is a martingale; thus its mean will be a constant, let us say B. This implies
E(0, +V,) = E(J,) + [ E(T, + V) ds + E(Y)
0
or better
B=E(J,) + BT + E(Y),
which implies B(1 — T) = E(J, + Y) > 0. Hence if T > 1, then
E(Y +dJ,)
1-T

and we have a contradiction to the existence of the solution of (3.6) and (3.7)
whenever T > 1. We would also like to note that the system (3.8) and (3.9)
already provides a counterexample to the case T' = 1.

0 <E(U,+V,) =E(U,+V,) = 8=

A pleasant feature of the preceding example is that the contradiction
occurs as soon as the sufficient condition of Theorem 3.1 that 2T <1 is
not satisfied. What is not fully satisfactory is that we used the singular

matrix (i i), and one may therefore wonder if the contradiction is really
due to the singularity of the operator rather than to the large size of
the Lipschitz constant. The next example shows that we also need a
small Lipschitz constant for a nonsingular linear operator. We still con-
sider Example 1 important because in the following example 2T can be

indeed bigger than 1, although still bounded.

ExampLE 2. Taking again J,, positive and #;-measurable and Y positive
and even bounded, let us focus our attention on the system

(3.10) U =do+ [V,ds,
0

' (3.12) v, = E(fTUs ds + le).
t

Clearly, here f(u,v) = v and g(u,v) = u are Lipschitz with constant 2 = 1.
If the solution of (3.10) and (3.11) exists, then U; has to be integrable in
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order to have V; = Y. Let us treat U, as if it were known for the time being.
From (8.10) we get U, — U, = [T V, ds and taking conditional expectations,

U, = E(UT - [, dsLZ’).
t
Substituting the latter in (3.11) we obtain
V, = E(fTE(UTIz) ds — fTE(fTV, erZ) dsIZ) +E(Yl%),
t z 8
and by the conditional version of Fubini’s theorem,
(3.12) V, = E(Ulg)(T - ¢) ~E(fT(r—t)V, dr + le).
t

Hence, by Picard iterations we can find a solution of (3.12) in terms of Y and

Uy. In particular, if we define M, = E(Uy|%) and Y, = E(Y|%,) we obtain
V,=M,sin(T —t) + Y, cos(T — ¢).

Substituting this in (3.10) for U, we get

(3.13) Uy =Jo+ [M,sin(T —5) ds + ['Y, cos(T — ) ds.
0 0

Rewriting (3.13) for U, and taking expectations on both sides, using Fubini’s
theorem once again, we obtain

E(Ur) = E(Jy) + fOTE(UT)sin(T—s) ds + LTE(Y)COS(T—S) ds

= E(J,) + E(Up)(1 - cosT) + E(Y)sinT;
thus
E(J,) +E(Y)s1nT
cos T

It is then clear that if T = w/2, then U, is no longer integrable and our
system does not make sense.

E(Ur) =
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