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We present a formalism to investigate directionality principles in
evolution theory for populations, the dynamics of which can be described
by a positive matrix cocycle (product of random positive matrices). For the
latter, we establish a random version of the Perron—Frobenius theory
which extends all known results and enables us to characterize the
equilibrium state of a corresponding abstract symbolic dynamical system
by an extremal principle. We develop a thermodynamic formalism for
random dynamical systems, and in this framework prove that the top
Lyapunov exponent is an analytic function of the generator of the cocycle.
On this basis a fluctuation theory for products of positive random matrices
can be developed which leads to an inequality in dynamical entropy that
can be interpreted as a directionality principle for the mutation and
selection process in evolutionary dynamics.

1. Introduction. Evolutionary theory is concerned with understanding
the dynamical behavior of replicating entities—molecules, cells or higher
organisms—subject to two main forces: mutation, which introduces new
variability within the population, and selection, which organizes this vari-
ability through competition for available resources. The latter ultimately
leads to the replacement of one population by another of different genetic
structure. Studies of such evolutionary processes indicate that changes can be
determined in terms of two population parameters, the growth rate A and the
population entropy H, and a quantity ® called reproductive potential that
describes the effect of ecological conditions on the population. In particular,
the reproductive potential determines evolutionary trends for the population
entropy (cf. [19]): When certain constraints on the resources corresponding to
a reproductive potential ® < 0 are satisfied, a directionality principle, which
is an analogue of the second law of thermodynamics, holds, namely,

(1.1) AH > 0.

Here A H denotes the change in entropy as the population moves from one
stationary state to another under the concerted action of mutation and
selection. Population energy as introduced by Demetrius [17] is a special case
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of the Kolmogorov—-Sinai invariant and presents a mathematical concept
which characterizes the heterogeneity in the birth and death rates of the
individuals in the population. Analytically, H describes the rate of decay of
fluctuations in population numbers, induced by sampling effects. Populations
with nonoverlapping generations are described by H = 0; when generations
overlap, H > 0. The relation (1.1) thus embodies a fundamental observation
concerning evolutionary processes: Evolution by mutation and natural selec-
tion results in an increased stability of population numbers, if constraints on
resources obtain.

The derivation of (1.1) has been carried out for a class of nonlinear
dynamical systems—Mendelian models of age-dependent population growth
(cf. [18], [19]). Three main elements are involved:

1. The characterization of the equilibrium state of the dynamical system in
terms of an extremal principle. A consequence of this principle is the
relation

(1.2) A=H+ ®.

2. A fluctuation theory for the dynamical state at the equilibrium. This
represents the mathematical description of the mutation event. If AA and
A'H denote the change in growth rate and entropy due to mutation, then
we have

(1.3) ®>0=AAAH <0,
(1.4) ®<0=AAAH> 0.

3. An analysis of competition between dynamic systems. This yields the
mathematical description of the selective event, a process which drives
the system to a new state. If AH denotes the change in entropy as the
population moves from one state to the next and AH the change in
entropy which characterizes invading mutants, then

(1.5) AHAH > 0.

The program which this paper presents aims to elucidate the mathemati-
cal structure which underlies (1.2)-(1.5) for random and deterministic sys-
tems in both discrete and continuous time, and consequently to identify a
general class of dynamical systems for which the directionality principle (1.1)
holds.

The ideas that underlie (1.2) have their origins in models of equilibrium
statistical mechanics whose mathematical structure is described by the term
thermodynamic formalism (cf. [37]). The notions that generate (1.3)-(1.5)
have their origins in models of mutation and selection in evolutionary dynam-
ics. The directionality principle (1.1) rests centrally on (1.3)-(1.5) and hence
we use the term evolutionary formalism to describe its mathematical basis.

This article derives an analogue of (1.1) for dynamical systems described
by products of nonnegative random matrices that satisfy a strong primitivity
condition such that one can consider, without loss of generality, products of
positive random matrices. The largest Lyapunov exponent and the (fiber)



EVOLUTIONARY FORMALISM OF RANDOM MATRICES 861

entropy for random matrix products represent the analogues of the growth
rate A and the population entropy H in age-structured populations.

The selective process in evolutionary models may involve competitive
interactions leading to the replacement of one population type by another, as
in models of asexual populations, or cooperative interactions resulting in a
mixed type which replaces the ancestral type, as in Mendelian populations.
In cooperative interactions, (1.5) is a consequence of a perturbation analysis
of the new stationary state, whereas in competitive interactions, (1.5) can be
shown to hold trivially. As the main thrust of this article is to investigate in a
canonical example the effect of randomness on the evolutionary process, we
will restrict our study to competitive interactions. Consequently our analysis
addresses mainly (1.2)—(1.4).

In our derivations of (1.2)-(1.4) for random matrix products a crucial role
is played by a random version of an abstract dynamical system (%, u, o),
where . denotes the symbol space, the space of genealogies, o the shift
operator, and w a shift invariant probability measure on .. Stationary states
of dynamical systems described by positive matrix products can be canoni-
cally represented in terms of such abstract dynamical systems. We exploit
this connection in the variational characterization of A which leads to (1.2)
and in the fluctuation theory for A and H leading to (1.3) and (1.4).

The class of dynamical systems we consider is the natural generalization of
discrete time models which were studied in the context of population dynam-
ics and are defined via Leslie matrices. These population models represent a
class of dynamical systems where the expressions in (1.2)—(1.4) can be
explicitly computed and consequently we will invoke these models to intro-
duce for non-Mendelian interactions the central methods and results of the
evolutionary formalism. We develop this in Section 2.

The general mathematical setup for this article is described in Section 3.
There we also study products of random positive matrices and derive a
random version of the Perron—Frobenius theorem which extends earlier
results in the literature. In Section 4, we develop a thermodynamic formalism
for random matrix products by exploiting the connection between the phase
space on which the products of random matrices are defined and the space of
genealogies. We derive a variational principle for the maximal Lyapunov
exponent and use this to derive (1.2), which also yields a new characterization
of the stationary distribution. We show that the latter can be represented as
a Gibbs distribution by investigating analyticity properties of the exponent.
Based on the ideas of Gundlach and Rand [24] and on the notions and
notations of Crauel [15], we weaken the condition of Ruelle [38] for the
analytic dependence of the top Lyapunov exponent on the random variables
defining the matrices. We investigate first and second directional derivatives
of the exponent to establish a fluctuation theory for the products of random
positive matrices. In Section 5, we finally apply this theory to special pertur-
bations of the matrices in order to derive the mutation relations manifested
in (1.3) and (1.4) and to obtain a directionality principle for the case of
competitive interactions.
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2. Matrix models in population growth. Let us consider a simple
time-discrete model which has its origin in demography and is well known in
population biology and economics. It can be obtained by considering a popula-
tion divided into d age classes. Thus a vector z(n) = (z,(n),..., z,(n)) repre-
sents an age distribution of the population at time n. Changes in this age
distribution are described by the discrete dynamical system given by

(2.1) z(n + 1) = Az(n),

where A = (a;;) is a so-called Leslie matrix given by

my m, - - my
b, O 0
A=|0 b
0 0 b, O

The entries m; represent the number of offspring an individual in age group
J at time n contributes to the first age group at time n + 1, while the
quantities b; denote the proportion of individuals of age j at time n surviving
to age j + 1 at time n + 1. The Leslie matrix A can be represented by a
directed graph, the so-called life-cycle graph (see Figure 1), where the nodes
(i) represent the age classes, the transitions (i) —» (i + 1) represent the aging
process and the transitions (i) — (1) represent the reproductive event. We
assume

(2.2) m;>20, 0<b <1, my > 0.

These conditions ensure that the matrix A is irreducible, that is, for all
1 <i,j < d there exists n = n(i, j) such that a{} > 0 if A" = (a{}). If such
n does not depend on i, j, so that A™ > 0, we call A primitive. This is the case
if and only if we require, in addition to (2.2), that there exists i < d — 1 such
that m; > 0 and greatest common divisor of {j: m; > 0} = 1 (cf, e.g., [16]).

Fi16. 1. Life-cycle graph for a Leslie matrix.
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We assume from now on that A is primitive. Anyway, we conclude from
the Perron-Frobenius theorem that:

1. A has a simple positive real dominant eigenvalue 7.
2. There exist positive unit vectors u,v € R¢ such that Au = yu and A*v =
vyv, where the asterisk (*) denotes the adjoint of a matrix.

The vector u = (u;) corresponds to the stationary age distribution, while
v = (v;) is a measure of the relative contribution made to the stationary
population in the future by the individual age groups;

A= logy

is the intrinsic rate of natural increase, which we also call the population
growth rate. It describes the growth rate of the population number N, =
):;le (n), that is, A = lim,, ,.(1/n)log N, if N, # 0. The elements u; and v,
can be explicitly expressed in terms of the quantities m, and b,. Namely, let
us write

; 1, forj=1,
J 7 \ITjzis,, forj> 1.
The number [; represents the proportion of individuals surviving to age j,
and the dominant eigenvalue y is the unique positive real root of the
equation
d I.m.
(2.3) 1- Yy

i _ o
=Y

from which we can deduce that the

(2.4) pj =

define a probability distribution for the age of parents. Now put

d

T = ijjuj.
Jj=1

Then the expressions for u and v are given by

u—li v
A ! TU;

d
_ ):F,mjuj

Thus we have m;u; = p;; hence, 7= Z;L 1Jpj, which consequently describes
the mean age of parents of all newborns when the equilibrium age distribu-
tion is attained. It is also called the generation time.

In the ergodic theory of populations we consider the system at steady state
characterized by the parameter y and the vectors u and v. This steady state
can be represented in terms of an abstract symbolic dynamical system.
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Namely, let
x=TI(1,....d}, X,={xeX:a, , >O0forallkeN}.
k=0

The set X, represents the set of all paths x of the life-cycle graph (Figure 1)
of the form

x=(...,%_1,%), x; €{1,...,d}.

Such a path is also called genealogy as it represents a recording of successive
ancestors of a particular individual which at time O is in age group x,.

Let X be equipped with the product of the discrete topology for {1,..., d}
such that X becomes a compact Hausdorff space. The set X, is a closed
subset of X and hence compact. We consider the shift o: X, — X, defined by
(ox), =x,,, for k€N, which is a continuous surjection. Note that the
dynamics for o is related to the dynamics given by (2.1), but the two are not
conjugated in any way. Considering the meaning of the configuration spaces
and the evolution of the states, this is rather obvious: While (2.1) describes
the evolution of the age distribution of the population induced by birth and
death processes, the shift on X, is only concerned with the genealogical
history of living individuals in the population and consequently corresponds
to the dynamics defined by the adjoint of A. Motivated by this fact, we define
a potential function ¢, by

(2.5) ea(x) = log Qyxy

Let M denote the set of all o-invariant probability measures on X, and let
H( ) be the (metric) entropy for the shift ¢ with respect to u € M. As we do
not consider any mappings other than o on X,, we do not indicate the
o-dependence of H( w) in our notations. It follows from Ruelle’s thermody-
namic formalism [37] that the population growth rate A satisfies an extremal
principle:

(2.6) /\=Sup{H(v) +fqudszEM}
and the condition
(2.7) A=H(p)+ [esdp

is satisfied for a unique measure u € M. Moreover, this measure is ergodic
and a Gibbs measure for the potential ¢,. This so-called equilibrium state p,
and consequently the quantities H(u) and [¢, du, can be explicitly com-
puted. We proceed as follows. Consider the transition probability matrix
. P =(p;;) given by

b;; = v, .
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With the help of the probability distribution given by the p; from above, we
can write the matrix P as

b/ ipjs forj=1,
Pij = ):;-l=i+1pj/z}i=,~pj, forj =1+ 1,
0, otherwise.

Let 7 = (1) be the stationary distribution of P defined by #*P = m*, which
turns out to be

1
T

d
L

Note that 7; > 0 for all i, as it follows from (2.4) and (2.2) that p; > 0 and
p; = 0 for i < d. Then we can define a Markov measure u on X, with the
corresponding o-algebra % by declaring for all cylinders of any length &,

p{x, =in,ees Xpyp =lpip} = T Pijinyr " Py vinas foralln € N.

This measure is shift-variant and thus we have arrived at a Markov shift

(X,, &, u, o) for which we can compute H( u) (cf. 4.27 in [43]) and [p, du as
follows:

Z;'i= 1p;log p; l

r

(2.8) H(p) = - Z"Tipijl"g pPij=—"—"vg .~

d
Y. p,log p;.
irj Xf.1Jp; ! !

j=1
Z}L 1p;log I;m;
Z}i= 1JP;

‘ ¢ = fcpA du = Zﬂ' pulogaﬂ =
(2.9) , b
=— Z p;loglm;.

j 1
The expression on the right-hand side of (2.8) is called the population entropy
H, while we refer to the one on the right-hand side of (2.9) as the reproductive

potential ®. It follows from (2.8), (2.9) and (2.4) that u satisfies
(2.10) A=H+ o.
Hence it must indeed be the unique equilibrium state defined by (2.7).

The parameters A and ® may assume both pos1t1ve and negative values,
while H is always nonnegative:

®>0 = A>H, dP<0 = A<H.

The condition ® < 0, for which the directionality principle holds, refers to
populations whose growth rate is constrained, asituation which will occur
when resources are limited.

We should note that the extremal pricniple described by (2.6) is formally

_identical to the principle of the minimization of the free energy in classical

statistical mechanics. A consequence of this variational principle is the

relation
(2.11) P=FE —ST.
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Here P denotes the free energy, E the mean energy, S the Gibbs—Boltzmann
entropy and T the absolute temperature. The relations (2.10) and (2.11)
imply the following formal correspondence between the parameters in popu-
lation theory and thermodynamics:

Population Theory Thermodynamics
Growth rate A Free energy (pressure) P
Reproductive potential ® Mean energy E
Generation time 7 Inverse of absolute temperature 71
Population entropy —7H Gibbs—Boltzmann entropy S

Mutation. Mutations describe small changes at the genetic level. Such
variations will induce changes in the life cycles of the population as described
by the population matrix A. In order to understand the evolutionary dynam-
ics of a population, it is central to understand the effect of these mutations on
the population growth rate A and the entropy H. We call the population
described by the matrix A the ancestral type. Its macroscopic properties are
completely characterized by the potential ¢, defined by (2.5), that is, by A.
The mutant population will be represented by a perturbation of ¢,, namely,

o(8) = @4 + Of

for some f € C(X,) and some & € R of small absolute value. It will turn out
that for the formalism we want to develop, such an f has to be cohomologous
to ¢, (see Corollary 5.4), whence in particular

Jfdu= [esdu=.

All possible f’s cohomologous to a potential ¢,(x) = log a, , are determined
in Appendix A. For definiteness, assume here f= ¢,. Then' ¢(8) is just the
potential corresponding to a matrix A(8) = (a};”s) and considering all the
quantities /;, m;, p;, etc. from above as functions of §, we find that

m;(0) =m;logm;, 13(0) =1logl;,
and by differentiating (2.3), we obtain

d
Y vy [lym;log m; + L;m;log L]

d
ZJY I=m;y'(0)
J=1 Jj=

10 d
_ 70 Z Y ilm,.
Y

Consequently, we deduce from—the definitions of p;, 7 and ® that

(2.12) A(0) = Z% = ! ipj log I;m; = ®.
Ti=1
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Now it is clear that
d

P}(O) = pj(IOg ljmj —ch), Z (O) =0,

d
j=1

Therefore,
T (O) 1 d
H'(0) = —3 Zp, log p; — — — X pj(0)log p;
j=1
7'(0 d p.
= ( ) 5 ij(logl m; —jlogy) — ) %log I;m;log p;
Jj=1 Jj=1
® d
+— ) pjjlog p;
T i1
7'(0)
=—(® - logy)
,
d p;
+ ¥ [~ (108 ,m;)" +j(log y + ®)log L;m, — j*@ log ¥
j=1
7'(0) 14 d
- — cD—;JE:lpj(loglm) § p;j®log lm;
1 22 2
= ;ngpj[zq)j log I;m; — ®%j% — (log I;m;) ]
and thus
1 4 9
(2.13) H'(0) = —~ ¥ [~j® + log L;m;]"p, = —0* <0.
j=1

Note that H'(0) = 0 if and only if /;m ;= (exp ®) =: ¢/ for all j or, equiva-
lently,
m1=c, b1m2=02,...,b1...bd_1md=cd.
If we set m; =c, m; =cy,/y; for 2 <i <d and some parameter vy,, then
b,=cy;.1/v; for 1 <i <d — 1 and the matrix A becomes
1 Y1i/v2 M Y
Yo/ V1 0 0
A=c| O Ys/V2 - -,

0 0 Ya/ Ya-1 0

which is satisfied, for instance, if all y, coincide.
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If & is small enough, we can, on the basis of (2.12) and (2.13), approximate
AA= M1+ 8)¢p) — A by 6-®, AH=H(u;) —H by —802 and, hence,
AMAH by —82®0 2, from which we conclude that in the case o2 > 0,

>0 = AAMAHK<O,
<0 = AAMAH>O.

In this article we will give a proof for the two so-called fluctuation relations
in a context more general than the population model. The above can be taken
as an introduction to the methods we will invoke in our studies of the
fluctuation relations for products of random matrices. For an elementary
proof of H'(0) < 0 for a general primitive matrix A, see Appendix A.

Selection. The mutuant type will invade the population if AA > 0 and
extinction will obtain if AA < 0. In order to investigate the possible direction-
ality of evolution, an interaction between the invading mutants and the
ancestral types of the population leading to a new dynamical system has to be
considered.

In sexual populations, the mutant will mate with the ancestral type and
generate a new type (cooperative interaction). The coupling of the three
genotypes is determined by the Mendelian laws. In systems described by a
single locus with two alleles, the new dynamical system will involve three
types A;A;, A;A,, and A, A,. The relative proportion of the three types at
equilibrium is determined by the growth rate of each type and the mating
laws.

In asexual populations, the ancestral and mutant types evolve indepen-
dently and the relative proportion of the two types at equilibrium will be
determined uniquely by the growth rate (competitive interaction).

In this paper, we restrict our study to linear models of asexual populations.
The result of our analysis will be a directionality principle; see (5.7).

3. Random Perron-Frobenius theory. The inclusion of randomness
in dynamical systems has lead to the notion of random dynamical systems
(for an overview, see [1]). Among these systems, products of random maps
play a central role, and their long-term behavior is one of the main topics of
the subject. One of the earliest results in this field is due to Furstenberg and
Kesten (cf. [23]), who considered products of (positive) random matrices.
Later their theorem was improved and extended by Oseledets in his cele-
brated multiplicative ergodic theorem (cf. [35]). In this section we will present
a version for products of positive random matrices which could be called a
random Perron-Frobenius theorem. It contains and extends all the results
known to date.

Let (Q, %, P, 6) be a dynamical system in the sense of ergodic theory, that
is, let (Q, .7, P) be a probability space and let 6: 1 — Q be a bijection such
that 0 and 6~! are measurable, which leaves P invariant. Assume that 6 is
ergodic. A random dynamical system on a measurable space (X, %) over 0 is
a family {¢(n, w): n € N}, N = {1,2,...}, of measurable transformations on X
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satisfying for P-almost all w € Q the cocycle property
o(n +k,0) =¢(n,0%) o(k,w) forall n,k eN.
It follows that, with ¢(w) == ¢(1, w),
o(n,w) = (0" 'w)o - op(w) foralln €N,

that is, the time-one mapping ¢(w) generates the cocycle.
A ¢-invariant measure is a probability measure p on X X ) with marginal
P on ) which is invariant under the induced skew-product transformation

0:XXOQ->XXQ, (x,0)(¢(w)x,0w).

If X is a Polish space and since 6 is invertible, the ¢-invariance of w is
equivalent to

o(w)pm, = pp, forP-almostall w € Q,

where {u,: o € Q} is the disintegration of u with respect to P given by
w(dx, dw) = u, (dx)P(dw) (cf. [15]).

It will turn out to be important that 6 is invertible. This assumption is
basically without loss of generality due to the existence of a natural extension
(for Lebesgue spaces, see [14], page 239). Invertibility of § will enable us to
consider ¢(n, 8%») for & € Z (but n € N), the mapping which goes from time
k € Z n steps forward to n + k € Z. In particular, ¢(n, 6 "w), which goes
from —n to 0, will be studied for n — o,

We will now study the matrix cocycle in R?,

(3.1) d() =A(0" o) - A(w), neN,

over 6 generated by the random variable A: Q) —».#, , where .#, is the
semigroup of positive d X d matrices [a matrix A = (a,;) is positive, A > 0,
if a;; > 0for all 1 <i, j <d, and analogously for vectors]. Put for A > 0,

M= max a
1<i,j<d

m= min a

1<i,j<d w2 4

THEOREM 3.1 (Random Perron—Frobenius theorem). Consider the product
of positive random matrices (3.1) and assume

1
log* — € LY(P), log™ M € L(P).
m
Then there is a 6-invariant set Q) C Q of full P-measure on which the

following holds:

(i) There exist a unique positive random unit vector u and a positive
random scalar q with log q € LX(P) such that

A(w)u(w) = q(w)u(bw).
Further, there is a unique invariant splitting
R¢ = W(w) @ Ru(w),
that is, A(w)W(w) € W(6w).
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(i) If x &€ W(w), then
1
lim —log|¢,(w)x| = A = Elog gq,
n—oo n

where ) is the Furstenberg constant (top Lyapunov exponent). If x € W(w),
then

1
lim sup —log| ¢,(w) x| < A.
n

n— o

The statements of Theorem 3.1, which go beyond Oseledets’ multiplicative
ergodic theorem, are:

1. The top exponent A is always simple.
2. There is an invariant complement Ru(w) of W(w) (the latter can, in
general, only be obtained for invertible matrices).

In the proof of Theorem 3.1, we will establish a group of results one could
call random Perron—-Frobenius theory. Our principal technique will be to
study the action of A €.#, on S¢ 1,

S1=RINSIT,  Ré= (x€Rex>0),

where S¢ ! := {x: |x| = 1} is the unit sphere, and to measure distances on
89-1 by the Hilbert metric (projective distance) d, which is defined by

max; _; 4 (%;/¥;)

- , x,y € R,
mlnlsisd(xi/yi) ’

d(x,y) = log

LeMMA 3.2. (i) On R%, we have

d(x,y) =0, d(x,y) =0 < x=Ay forsomeleR,,
d(x,y) =d(y,x),
d(x,y) <d(x,z) +d(z,y).

(i) On 8?71, d is a finite metric which makes (S¢~ %, d) a complete metric
space. We have

lx —yl < exp(d(x,y)) — 1.

In particular, every Cauchy sequence in (S¢~1 d) is also a Cauchy se-
quence in (8471 |-).

For a proof of the above and further facts, we refer to [4], [5] and [40].
The Hilbert metric is important to us because of the following facts.
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LEMMA 3.3. Let
' d(Ax, A
7(A) == sup ( 7)

x,yesi—l d(x’y) ’
x+y

Aes,,

be Birkhoff’s contraction coefficient of A. Then:

@O 0<71(A) <1
(i) 7(AB) < 7(A)r(B) ifA,B eA,.

A positive matrix thus automatically contracts all d distances in S -1
d(Ax, Ay) < 7(A)d(x,y) <d(x,y).

As shown in [46], the Hilbert metric is not a Riemannian metric, but is the
only, up to a scalar factor, Finsler metric which makes the action of any
positive matrix on 8¢~ ! a contraction.

Now consider the matrix cocycle (3.1). Using polar coordinates s = x/|x|,
r = |x| the action of ¢,(w) on R?\ {0}, described by the random difference
equation x,,; = A(8"w)x,, can be split into

sn+1=A(0nw)sn’ Thi1 = |A(0w)sn|rn’

where A: S?°1 5 §9-1 ig defined by s — As = As/|As|. In particular, the
linear cocycle ¢, induces via the canonical projection p: RI\{0} » 8% 1a

nonlinear cocycle ¢, on S¢~! given by

Bu(@) =A(8" )0 - o A( )

with p e ¢, = ¢, ° p, which leaves S¢-1 invariant.

LEMMA 3.4. Let A: Q —.#,. Then there exists a 6-invariant set QcQof
full P-measure such that for all wel, x,ye 8%,

1
lim sup ;log|¢ (0)x — &, (w)y| < limsup —log d(¢,(w)x, d,(@)y)

n— oo n— o

< Elog7(A) € [—=,0).

ProOF. By Lemma 3.2(ii) it suffices to prove the r.h.s. inequality. We have

d(du(w)x, du(@)y) < 7(a(@))d(%, ),

and by Lemma 3.3(ii),
-1

(.(w)) < TT 7(A(0))

By the ergodic theorem there is a #-invariant set Q) c Q of full P measure on
which

lim sup Zlog d(¢,(w)x, b, (w)y) < hm - Z log 7(A(8'w)) = Elog 7(A),

n—o

where Flog 7(A) < 0 by Lemma 3.3(). O
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Lemma 3.4 says that any two orbits of ¢,(») on S¢~! cluster exponentially
fast forward in time. However, they do not, in general, converge to a common
point, but approach a stationary process.

LEMMA 3.5. Let A: QO —.#, with log*d(A(w) x,, xy) € L") for some
%o € S%71. Then there is a 6-invariant set Q0 C Q of full P-measure (not
depending on x,) such that

1 — _
lim sup —log d(¢,(0 ") x,, ¢, 1(6 " Vw) xy) < Elog 7( A).
n—o n

In particular, (¢,(6"w)x,) is exponentially Cauchy with respect to the projec-
tive metric and hence also with respect to the Euclidean metric.

Proor. Note first that log*d(A(w)x,, x,) € L'(P) if and only if log*
d(A(w)x, x) € L'(P) for any other (hence for all) x € S¢~, since
(32) d(x,A(w)x) <d(x,xy) +d(xg, A(w)xy) + d(A(w)xy, A( ) x)
' < 2d(x,x,) +d(xg, A(w)xg).

Now
d( an( a—nw) X0, $n+ 1( 6" (n l)w) xO)
n
< [17(A(670))d( A6~ " Dw) x4, %)
i=1
so that the lemma follows again from the ergodic theorem and the fact that

log* d(A(w)x,, x,) € L'(P) guarantees that on a ¢-invariant set of full mea-
sure [independent of x, by (3.2)],

1
lim sup —log d( A(6~"*Vw) x4, x,) = 0. ]
n

n— o

REMARK. We can choose x, = (1/Vd )1,...,1)* = 1 /V/d and observe that
dl a 1 1 max; X;a;; ) M
—,— | =log———=— <log—.
The integrability condition log*d(A(w)l/Vd,1/Vd) € L}(P) is certainly

fulfilled if log*(M /m) € L(P), which is implied by the assumptions of Theo-
rem 3.1.

Y :
min; ¥ ;a;;

PROPOSITION 3.6. Let A: Q —».#, and log*d(A(w)x,, x,) € L\(P) for some
%y € 8471 Let

u(w) = lim ¢,(6 ") x,
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be the S¢~ Lvalued random variable which is for w € Q) (¢f. Lemma 3.5) equal
to the limit in S%~! of the Cauchy sequence ($,(6”"w)x,). Then:

@) u: Q > 8% is measurable with respect to the “past” o-algebra F~
generated by the random variables (A(67"w)), c v-
(i) Forallx € 8% 'and we Q,

lim sup —logl ¢, (07 "w) x — u( w)| < Elog7(A) <O.

n-—o
(i) u is the a.s. unique stationary solution of ¢, in S~ (or p, = 8, is
the unique ¢-invariant measure on S?~1), that is, for v € Q,

&.(0%0)u(0*w) = u(6**"w) forallk €Z,n e N.
Equivalently,
A(w)u(w) = u(bw)
or
A(w)u(w) = q(o)u(bo), q(w) =|A(w)u(w)| > 0.
(iv) For o € ) and all x € %,
1
lim sup —log| ¢ (w)x —u(6 w)l < Elog7(A).

n—o

_ Proor. (i) The measurability of u is obvious from the definition and
$,(07"w) = A(87'w)o -+ o A(8™"w).

(ii) It suffices to prove the assertion for the Hilbert distance. For x = x,),
Lemma 3.5 gives

d(En(ﬂ"‘w)xo, u( w)) =< i d(Ei(a‘iw)xO, éi41( 0_(H1)"’)x0)~

i=n
Choosing & > 0 with Elog 7(A) + & < 0, there is a constant C(¢, ) such that
for all i e N,

d($i(07@)xg, ¢4 1(0”“Pw)x,) < C(&, w)exp((Elog 7(A) + £)i).
Thus

lim sup —log d( $,(07"0) %y, u(w)) < Elog 7(A).

n— o

For arbitrary x, use the triangle inequality and Lemma 3.4.
(iii) We have, as A(w): 82! - S9! is continuous, for » € Q,

A(w)u(w) = A(w) lim ¢,(87"0)xy = lim ¢,(6 "0w) A( 6™ "w) x,
n—o n—o
= lim ¢,(0 "0w)x, = u(fw),
since, putting s, = A(6 "w)x,,

d(a(67"0w)s,, ¢, (6 0w) x%0) < 7(h,(67 " w))d( A6 ) xo, %),

and the r.h.s. converges to zero exponentially fast.
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(iv) By (iii), u(8"w) = ¢,(w)u(w) on { and
d(ba(( @) x, $(@))u(@) < 7(6,(@))d(x,u(w)).
Note that (iv) also gives the a.s. uniqueness of the stationary solution. O
We can now apply everything to the cocycle ¥, (w)=A*(6"""w)--

A*(67'w)A*(w) = ¢ (67" w) over 47! generated by A*: Q —.#, and obtain
the following.

COROLLARY 3.7. Let log*d(A*(w)x,, xo) € LY(P) for somex, € S¢~1. Then
there is an a.s. unique random variable v: Q — S%~% which is measurable
with respect to the “future” o-algebra & generated by the random variables
(A(6"w)), . o and satisfies on a 6-invariant set of full P-measure

A*(w)v(bw) = g*(w)v(w), q*(w)=|A*(w)v(0w)|> 0.
REMARK. (i) The integrability condition of the corollary is again implied
by the one of Theorem 3.1.
(i) If (A(0"w)), ., is iid, then $" and ¥~ and thus u and v are

independent. The latter was also discovered by Kesten and Spitzer ([27],
(2.18)).

We can now establish the existence of an invariant splitting.

PROPOSITION 3.8. Assume that for some x, € S,
log* d(A(w)xy,x,) € LN(P), log*d(A*(w)xg,x,) € L}(P).

Then there exists a 6-invariant set 0 C Q of full P-measure on which the
following hold:

(1) We have
g*(0) _ (u(bw),0(60))
a(@) ~ (ul@),0(@)
(i) The (d — 1)-dimensional subspace
W(w) =v(w)" = {x € R%: (x,v(w)) = 0}
and the half-spaces
WH(w) = {x e R%:{x,v(w)) >0}, W (w)={x<cR%(x,v(w)) <0}

are ¢, -invariant,

(3.3)

A(0)WH) () c WHE)(fw),
and ker A(w) € W(w). In particular,
R¢ = W(w) ® Ru(w)

is an invariant splitting.
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(iii) The unique invariant measure of ¢, in W *(w) N 8%~ 1is +u(w), and
+u(w) is globally attracting with

lim sup —log|¢ (w)x — (xu(6 w))l <[Elogr(A) <O
n-—oo
for all x € W *(w) N S9-1,
(iv) For each x € R?,
1 | (@) (x,v(w))
lim sup —log - u(6w)| < k<0,

TP 7 (@) Cu(w), o(w)) )
where q,(w) =q(0" 'w)--- qg(w) is a scalar cocycle and k € [—»,0) is a
constant which only depends on A.

PrOOF. We work on the intersection ), of the two invariant sets of
Proposition 3.6 and Corollary 3.7.

(i) Take the inner product of A(w)u(w) = q(w)u(fw) and v(6w) to obtain
q(@){u(bw),v(bw)) = (A(w)u(w),v(8)) = (u(w), A*(w)v(bw))
= g*(0)u(),v(0)).
(i) Just use ¢*(w) > 0 and
(v(0w), A(w)x) = (A*(w)v(00), x) = ¢*(0){v(w), x).

(iii) Any compact set in W*(w) N §%~! is mapped by &,,, into S2~! for a
finite n(w). After that Proposition 3.6(iv) takes over, showing in partlcular
that there can be no other invariant measure in W*( w).

(iv) First let us fix a vector x > 0 and choose A,(x, ) the largest, m(x, w)
the smallest positive number with

(34)  A(x, 0)g(0)u(8") < ¢,(0)x < p,(x, 0)g,(®)u(8™).

Since ¢,(w) > 0, those A,, u, exist and because of Proposition 3.6(iii) they
satisfy

(%, @) < Apq(%, 0) < -+ < Bpia( %, ©) < p,(x, ).

Along the lines of Birkhoff ([4], part 7), from which we adapted the method of
this proof, one can show that there is a mapping p: Q — [0, 1) [which can be
estimated by p(w) < 1 — (m(w)/M(w))?] such that

Bri1( %, ) — Appa(x, 0) < p(O”w)(,u,n(x, w) — A, (x, a)))

< TTp(0%0) (s @) = M(x, 0))

,and thus we may deduce from the ergodic theorem that on a #-invariant set
Q C O, of full P-measure which is independent of x,

lim sup —log( My(x, @) — A (%, w)) <Elog p=k<0.

n— o
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Consequently the limits of u,(x, w) and A, (x, w) for n — « exist, are positive
and coincide. We denote this limit by M(x, ) > 0. By (3.4),
(A%, @) = M(2, 0))g,(@)u(8"0) < ¢(w)x — M(x, 0)q,(w)u(8")

< (a2, 0) = M(x, 0))q,(w)u(0"),

and thus we have for all » € ) and all x > 0,

1 x
(3.5) lim sup —log n()
now N | qu(®)

If we give up the restriction x > 0, we consider instead x = x,+ x_ with
(x,); = max{x;,0} and (x_); = min{x,, 0} and if we write ¢,(w)x = ¢,(w)x,
+ ¢,(w)x_, we obtain for every x € R? a mapping M(x,-): O —» R, that
satisfies (3.5) and is positive and linear in x. In particular, we could find such
mappings for every x in a basis of R¢, which, by linear extension, yields a
mapping M: R? X () — R that satisfies (3.5) for all x € R¢ and for all w € Q.
We will now further determine that mapping M. By multiplying the exponen-
tially fast decaying sequence
¢, (w)x
g,( @)
by (-, v(6")), we obtain, with the help of part (i) of this proposition, the
exponentially fast decaying
(x,v(w))
(u(@),v(w))

which is only possible if we have almost surely
(x,0(w)
<u(w)7v(w)> ‘
REMARK. (i) An equivalent characterization of the invariance of the split-
ting R? = W(w) ® Ru(w) is
A(w)o II(w) =1I(0w)° A(w),

—M(x, w)u(0")| < k.

-~ M(x,w)u(0")

- M(x, o) u(0%),v(0™)),

M(x,w0) = O

where

ey
x> w)e = m iy, o(w)y )

is the projection with range Ru(w) and kernel W(w).
(ii) Proposition 3.8(iv) says that x and II(w)x approach each other expo-
nentially fast under the application of (¢,(w)/q,(®)), as

¢, (@) _ (@) (x,0(0) ~ ({x,v(0) o
Qn(w)n(w)x_qn(w)<u(w),v(w)>u(w)_<u(w),v(w)> (6"(w)).
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If u is constant (as in the case of a random stochastic matrix), then ¢,/q,
converges exponentially fast to II.

So far we have established the behavior of ¢, on S¢~! and of ¢,/q,. Our
final task is the investigation of the growth of orbits ¢,(w)x in R%. For this
we need the stronger integrability conditions of Theorem 3.1.

PROPOSITION 3.9. Let A: Q —».#, and assume log*M, log*(1/m) € L'(P).
Then Propositions 3.6 and 3.8 hold. Moreover,
() log q,log q*,log{u,v) € LX(P) and log q,log q* are cohomologous,
log g* = log q + 0 log{u,v) — logu,v) P-a.s.
(i) If R¢ = W(w) ® Ru(w), we have

1
x¢&W(w) = lim —n—log|¢n(w)x| = A,

1
x€W(w) = limsup ;log[ b (w)x| <A,

n—o
where A = Elog q is the Furstenberg constant (top Lyapunov exponent).
PrOOF. (i) An elementary estimate gives m < ¢ < Vd M and
1
—log~m = log* — < log g < logVd + log*M,
which yields log ¢ € L*(P), analogously log ¢* € L(P). Further, 1 > {u,v) >

min; u; > m/q, implying log{u,v) € L'(P). 3
(i) From Proposition 3.8(iv) for each x € R? and o € Q,

(3.6) limsup —log|¢,() (0, 0(0) o u(0%)] < x+ 2 <A
. imsup —log|¢,(w)x — ———¢q,(w)u(0"w)| <« )
n-w N <u(w)’v(w)>
where A = Elog q. Now write any x € R? as

(z,v(w))

x=r(w)w(w) + u(w) withw(w) € W(w) NS4 1

<u( w) ’ v( w)>
so that

(x,0(@))

$,(0)x =r(o)d,(w)w(w) + mqn(w)u(9"w)~

The first term has growth rate less than A by (3.6). The second term (and

_ hence the sum) has exact growth rate A provided {x,v(w)) # 0, that is
x & W(w). It remains to prove that A is equal to the Furstenberg constant

1
A= lin:° ;log”fﬁn( o)l
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[which exists by the subadditive ergodic theorem and the fact that log*M
L'(P) is equivalent to log*|| All € L'(P)]. Clearly A < A. For the converse, use

d-1 1
$.( @)l < R(w) El | (@)w;(w)]| + mqn( w),

where (w(w));_;  4_; is a basis in W(w), s0o A < max{x + A, A} = A. O

REMARK. (i) For all statements before Proposition 3.9, it suffices to as-
sume log*log(M/m) € LY(P). For part (ii) of Proposition 3.9, log*log(M /m)
€ L}(P) and log*log M € L}(P) would suffice, with A = Elog g, which is
possibly —. However, we will later need part (i) of Proposition 3.9, which
also gives a finite A. Note that log*M, log*™(1/m) € LY(P) imply
log M, log m,log(M/m) € L'(P) and thus log a;; € L'(P).

(i) If A(w) > 0, but for some fixed r € N, ¢ (w) > 0, then all the results
remain true.

Discussion of the literature. There has been and still is intensive research
on products of (positive) random matrices. Cohen [12] has compiled a bibliog-
raphy up to 1986 which contains several hundred papers. We only comment
on those papers which have contributed to a random Perron—Frobenius
theory.

Furstenberg and Kesten worked in their classical paper [23] with the
assumptions

M(w)

<C<owo, log*||Al €Lt
m(w)

1<

and proved (see the Corollary on page 462) that for all i, =1,...,d,

1
(3.7) —log ¢, (w)ij = A
This follows from our Proposition 3.8(iv) by noting that
¢n w)U <ez’¢(w)ej> _r(w)<ez’¢'(w)w(w)>
(3.8) v;(w) .
mqn( w)u;(6").

The first term has growth rate less than A = Elog g < . The second term
has exact growth rate A since lim,, _, , log u;(6 w) = 0, which is true because
log u; € L', as

m(w) m(w)
> ¢,

q(w) M(w)

' [log(M/m) € L' would suffice for this step].

Kingman [28] has also obtained (3.7) under the condition loga,;; € L
[which implies log(M /m) € L'] by utilizing his subadditive ergodic theorem

1>u;(6w) = >c¢; >0
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The first one whose work deserves the name random Perron-Frobenius
theory was Evstigneev [20]. He proved our Proposition 3.6(ii) [except for the
rate Elog 7(A)] and (iii) under the stronger assumption log(M/m) € L.
Evstigneev worked with a metric on S%~! similar to the Hilbert metric and
also used the pull-back to n = — o,

Kesten and Spitzer [27] investigated convergence in distribution of se-
quences of products of i.i.d. nonnegative random matrices given by A, (w) =
A(w) -+ A(6" 'w). In their Lemma 2 they state that z and v exist as limits in
distribution and are independent. The link to our results is provided by the
observation that in the iid. case (and if we assume w.lo.g. that 6 is
invertible) the law of (A,), <y is equal to the law of ($,(87" - )), <y, for which
we have Proposition 3.6, which also implies the independence of u
and v.

The book by Bougerol and Lacroix [9] contains a few remarks and exercises
(on pages 59, 60 and 68) using the Hilbert metric for products of i.i.d. positive
matrices. They present the statement of Lemma 3.4 and the fact that ¢, (w)*x
converges in probability to a random variable o: ( — S‘i‘} which is a weak
version of our Corollary 3.7 since ¢,(w)* = ¥ (6 "0w) for 6 = 671

Heyde [25] has observed that, under 1 <M/m <C and log M
L', 1log ¢,(w); ; is well approximated by a sum of stationary random variables
[namely, T*_,log q(6'w)], which also follows from Proposition 3.8(iv); see
(8.9).

Cohn, Nerman and Peligrad [13] proved various limit theorems for
log ¢,(w);;. Their method is based on a representation of nonnegative matri-
ces via stochastic matrices [see also (4.1)].

Ferrero and Schmitt [21] investigated the more general case of products of
random Ruelle-Perron—Frobenius operators. They derive generalizations of
all our statements, but under conditions where are, if specialized to the
matrix case ¢, (x) = log a, , (w), much stronger than ours. To establish the
results concerning the invariant splitting (up to and including our Proposi-
tion 3.8), they need log M, log m € L' (condition H3), while log* log(M/m) €
L' would do. We thus believe that our “elementary” approach is not obsolete,
as it also clearly reveals the minimal integrability conditions.

The approach of Ferrero and Schmitt has recently been extended by
Bogenschiitz and Gundlach [8]. Under the same conditions they show that
the results remain valid if the assumption that the random matrices are
quadratic is dropped.

Baccelli [2] investigated products of nonnegative random matrices in the
semifield in which “addition” is max and “multiplication” is +. He stated in
his Corollary 5 the existence of ¢, u € L' with A(w)u(w) = g(w)u(fw), pro-
vided a;; € L' and a certain event has positive probability.

Wojtkowski [45] gives conditions under which the top Lyapunov exponent
. of a prdduct of nonnegative random matrices with |det A(w)| = 1 P-a.s. is
positive.

There is a huge body of literature about products of random stochastic
matrices (i.e., with row sums 1) as they appear naturally as n-step transition
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matrices of Markov chains in a stationary random environment. See the
survey paper by Orey [34] in which systematic use is made of the Hilbert
metric, and an asymptotic theory of products of the form A(w):-- A(6" w)
and A(0 "w) -+ A(6™ ') is developed. Orey reviews in particular the work of
Cogburn (see also Cogburn [11]) and Nawrotzki.

In case A(w) is stochastic a.s., u(w) = 1 /d and q(w) = |A(w)u(w)| = 1 are
nonrandom, and A = Elog g = 0. The splitting is R? = W(w) @ R1, the pro-
jection is II(w) =( - ,v(w))/{1,v(w)) 1 and Proposition 3.8(iv) gives ¢,(®)
— II(w) a.s. exponentially fast with speed k < 0. Since log*™ M = 0 and log g,
log{u,v) and log ¢* € L! automatically, the whole theory including Theorem
3.1 is valid in case of products of random stochastic matrices under the sole
condition that log* d(A*(w)1, 1) € L. Berger [3] has given a beautiful proof
of ¢,(w) = II(w) which is modeled after the deterministic proof of A" — II,
but relies on the fact that the matrices are i.i.d.

4. Thermodynamic formalism. From Propositions 3.6 and 3.8 we know
that under certain conditions there exist globally attracting stationary states
for the cocycle ¢,. Of course these states are of particular interest from the
viewpoint of dynamics. Therefore, we will in the following only be concerned
with these states and their changes due to small perturbations of the cocycle.

We know from the population model of Section 2 that the stationary states
for the cocycle can in a canonical way be carried over to a related abstract
system on a symbol space. The new symbolic system is not a coded version of
the original system, though it can be seen as the description of the historical
evolution of the system in graph-theoretical terms. In particular it can be
used to simulate the multiplication of the adjoint matrices. The configuration
space for our symbolic system is known in statistical mechanics as the one for
random spin models. Since the works of [41], [10] and [37] it is popular to
exploit such connections between dynamical systems and statistical mechan-
ics by adopting methods from the latter to dynamics. This approach is known
as thermodynamic formalism.

In this section we develop such a theory for products of random positive
matrices. In particular, we introduce parameters like pressure and entropy
for random dynamical systems in order to give useful characterizations of the
system in terms of a few parameters. The crucial step for this scheme is the
construction of a unique equilibrium state satisfying a variational principle
for the top Lyapunov exponent. We can deduce the existence of this probabil-
ity measure from our Perron—Frobenius theory, so that we do not need to
follow the usual route of statistical mechanics and investigate the related
problem of the differentiability properties of the pressure function. Due to an
observation of ours that the evolutionary dynamics due to mutation and
selection can be mathematically expressed by directional derivatives of the
-population growth rate, which coincides with the pressure function for ran-
dom dynamical systems, we do nevertheless examine the analyticity of the
pressure. For this purpose we adapt ideas of [24] to the setup of [15]. This
leads to analyticity properties of the top Lyapunov exponent under weaker
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conditions than in [38] and to explicit formulas for directional derivatives of
the pressure and the entropy which we need in Section 5.

Variational principle. In the following we consider a fixed random matrix
A: Q ».#, for which we assume that the results of Section 3 are valid; that
is, we require for such A that log*M, log*(1/m) € L}(P) and consequently
also log q;; € LY(P) by a remark from Section 3. Then let us define a random

matrix P(w) = (p,/(w)) and a random vector p(w) = (p,(w)) by

(4.1) pij(w) 7*(0)v;(w) ’ pi(@) (u(w),v(w))’

PROPOSITION 4.1. For almost all w € Q, P(w) is a stochastic matrix and
p(w) is a probability vector. Furthermore the random variable p: O - R? isa
stationary solution of the cocycle defined by P*, that is,

(42) P*(w)p(w) = p(6w).

PrOOF. The assertions follow by straightforward calculations and with
the help of (3.3). O

Hence the stochastic matrices P(w), w € Q, define a random Markov
chain and (P(w), p(w)), o € Q, induces a random Markov shift, also known
as a Markov chain in a random stationary environment, on X = {1,...,d}" .
Namely, let us denote by o the shift map on X, by & the natural Borel
o-algebra of X and by u the measure defined via

n
= = = i I I i+1
(43) /"’w(xi_yO""’xi+n_yn) _pyo(otw)j=1pyj_1yj(0 w)’

p(dx, dw) = dp,(x) dP(w).

A measure v on (X X Q, & ® &) with marginal P on (Q,%) is called invari-
ant if it is invariant under the (skew) product transformation ® = (o, 0).
From Section 3 we know that this is the case if and only if oy, = 3, holds
P-a.s. Now the next result is obvious.

LEMMA 4.2. The probability measure u on (X X Q, # ® F) is invariant
and (X X Q, F ® F, u, o) is a random Markov shift.

Though the nature of the shift o is deterministic, in our setup we will
refer to it as the random Markov shift. The randomness enters the problem
via the random initial probabilities p(w) and the random transition probabil-
. ities P(w). Let us also remark that we could have defined a two-sided shift
space X = {1, ..., d}?, but for the following investigations it will be important
to work on the one-sided space. Considering that the original system defined
by (38.1) was one-sided, too, this should not cause any headaches. Incidentally,
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in the same canonical way as for the original system one could extend the
shift to one on the two-sided sequence space by using pull-backs.

Let & be a finite partition of X and denote by H, () the usual entropy for
a measure v on (X, %#). The entropy of a random shift system can be
introduced as the fiber entropy of the skew product of # and o (cf. Bogenschiitz
[6]D: h(v) = sup h(v; ), where v is a probability measure invariant under
the skew-product transformation, the supremum is taken over all finite
partitions of X and

n=en i=0

1 n—1 )
h(v;#) = lim _va( V (r“g") a.s.

We will refer to A(v) just as the entropy of o with respect to the measure v.
We have omitted indicating the dependence of A(v) on o as throughout this
paper we do not consider any transformation apart from the shift. Using the
standard partition of X into 1-cylinders and the version of the
Kolmogorov—Sinai theorem from Bogenschiitz [6], one can show analogously
to the deterministic case (see, e.g., 4.27 in [43]) that for the measure w
constructed from A by (4.3),

(1) = = [ Lpi( @) pij( w)log pij(w) dP(w).
L,J

Let us remark that in applications ~( ) is also called adaptive value (cf. 7.1
in [16]) in order to give a physical interpretation to the entropy concept and
underline the fact that it is concerned with both the structure of the dynami-
cal system and the uncertainty of the environment. Namely, on the one hand,
h(u) describes the asymptotic rate of increase of the number of symbol
sequences with increasing number of coordinates on the basis of a
Shannon—-McMillan-Breiman theorem (cf. Theorem 4.2 in [6]); on the other
hand, it describes the stability of the equilibrium state due to a large
deviation characterization (cf. [29]).

Let us consider the space C(X) of real-valued continuous functions on X
equipped with the topology induced by the sup-norm || - || and furthermore the
space 1}(Q,C(X)) of P-integrable random continuous functions on X. On
L'(Q,C(X)) we will use the norm defined by

1l = [Ilf(w)ll dP(w)
and the induced topology which makes 1}(Q), C(X)) a Banach space. Here we
have used notions and notations from Crauel [15]. Now let us denote
‘PA(x, w) = IOg azoxl(w) = log axlxo( w)

and call the function ¢, € [1(Q,C(X)) a potential. If we define the so-called
reproductive potential ®, for the probability measure v on (X ® ), Z ® F)
by

®,(A) = [eu(x, ) dv(w,x),
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then we obtain
0,(A) = [ Lpi(@)pi)(@)log afj( @) dP(w).
i,Jj

The reproductive potential and the entropy are related via an extremal
principle which can be found for general random dynamical systems in [32]
and for even more intrinsic shift systems in [7]. For our setup this variational
principle is as follows.

THEOREM 4.3. Let u be the measure constructed above for A. Then h( u) +
®,(A) = X and u is the unique invariant probability measure on (X ® Q, #
® F) satisfying

h(u) + ®,(A) = sup{h(v) + ®,(A)lv is invariant} = A.

ProOoF. The first assertion is a consequence of the random
Perron—Frobenius theorem, namely,

h(w) + @,(A)

= prl( w)pij( w)(log a?j( w) — log Pij( w)) dP(w)
t,J

= [ Zpi(@)pi(@)(log ¢*(w) + log v,(w) — log v;(6w)) dP( )
t,J

=)A+ f( Zpi(w)log vi(w) — ij( fw)log v;( gw))dp( @) = A

The proof of the second assertion is a consequence of the following well
known information theory result.

LemMa. If (py,..., pg) and (qq,...,q,) are two probability vectors and
p; >0 forl<i<d,then

d d
Y qlogp,— Y q;loggq; <0
i=1 i=1

with equality if and only if p, = q; for 1 <i <d.

Let a = {C,,...,C,} be the partition of the shift space X in 1-cylinders and
let v be a shift-invariant probability measure. Then we choose

pi(x, w) = %igﬂ

where E, (/c~'%) denotes the conditional expectation with respect to o1&
and x. denotes the characteristic function corresponding to a set C. Using
the conditional entropy H, (a|o~ 1%) of a with respect to o 1% we deduce

4%, 0) = E,(xcloT'F)(x),
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from the lemma by integration that

d
Piys (@) Py (@)
0> lo S 2
igl '[Ci & pxl( fw)

= ¢,(P*) + h(v)
with equality if and only if p,(x, ») = q,(x, w) »a.s. This condition is equiva-
lent to

dv,(x) dP(w) + [H,(alo"'®) dP(v)

Piz(@)Pi(@)

P (0w) (%) = fg(a'x)pi(x, w) dy,(x)

Je(ox)
= fg(a-x)qi(x, o) dv,(x)

= jc_g(ax) du,(x)

for all &-measurable functions g. If we choose in particular g to be the

characteristic function of an n-cylinder C, =, ={x€X:x; =ay,...,x, =
a,}, then we obtain the condition
pial( w)p;i(w)
Vo(Ciray.a,) = T p(00) 50(Cay....a,)

This shows that the measure v must be Markov and that the transition
probabilities for v must be given by p,(x, w). The corresponding probability
vector has to satisfy (4.2), but from Proposition 3.8 we know that such a
vector is unique. Hence the resulting measure is unique, that is, equal to wu.
Now the assertion of the theorem finally follows from

sup{h(v) + ®,(A)|v is invariant}
= sup{h(v) + ®,(P*) + M is invariant}
=h(p) +Q(P*) + A=A i

The pressure function. For A: Q —».#,(d) with ¢, € 11(Q,C(X)) let us
put

T (A) =7, (@) = sup{h(v) + fqu dvlv is invariant};

a,(A) and 7, (¢,) are called the pressure or free energy of A or ¢, respec-
tively, for the random shift o. In order to study perturbations of A and ¢,
we have to use the extension of this definition as given in [7].

DEFINITION 4.4. For f € L(Q,C(X)) we define the pressure (free energy)
of f for the shift o as

m,(f) = sup{h(v) + /fdvl is invariant}.
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Any probability measure u satisfying 7, (f) == h(p) + [fdu is called an
equilibrium state for f.

In our situation we can combine Proposition 3.9(ii) and Theorem 4.3 to
state the following result according to the last definition.

PROPOSITION 4.5. For the cocycle ¢, induced by A we have:

(@) m,(@4) = A, where A is the top Lyapunov exponent of &,.
() m,(¢y) = lim, , (1/m)logll¢,(w)ll for almost all w € Q.
(iii)) w from Lemma 4.2 is a unique equilibrium state for ¢,.

The uniqueness of equilibrium states does not hold in general. In
[7]1, [30] and [21] it is shown under some Hoélder assumptions for f that one
can find such unique probability measures. Originating from statistical me-
chanics and, in particular, from the theory of phase transitions it is common
to reduce the investigation of uniqueness of equilibrium states to the differ-
entiability of the pressure. Though we already know about the uniqueness of
our equilibrium state, we need the connection between it and the differen-
tiability of the pressure to find further characterizations of this probability
measure. We start with some basic properties of 7.

PROPOSITION 4.6. The pressure m,: L}(Q,C(X)) - R is Lipschitz continu-
ous with constant 1, convex and increasing.

Proor. Note that it follows from
Isupai - supbil < supla; — b,
iel iel iel
for any families (a,); c ;,(b,);c ; of real numbers that
|7T¢r(f) - 77-lr(g)l < |f_g|1
for any f, g € 11(Q, C(X)). It is also clear that f(w) < g(w) a.s. implies

7 (f) = [fdu+h(u) < [edus+ h(py) < [gdp, + () = 7,(8)

if s, u, denote any equilibrium states for f and g, respectively. Moreover, it
is obvious for the same reasons that @ (Af+ (1 —Mg) <Am (f)+ 1 -
Mm, (g) for any A € [0,1]. O

As a consequence of this result, one can consider: tangent functionals to the
pressure. Usually one defines for a convex function g: X —» R a tangent
functional {: X —» R at x, € X as a continuous linear mapping that satisfies

g(xg+y) =g(xy) +{(y) forally eX.

Due to the Riesz representation theorem, we prefer the following definition
(cf. Section 9.5 in [43] and Section 1 in [44]).
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DEFINITION 4.7. A finite signed meausre v on (X ® ), & ® ) is called a
tangent functional to 7, at f € L'(Q,C(X)) if m,(f + g) — 7,(f) = [gdv for
all g € 11(Q, C(X)).

Since any equilibrium state u for fe 11(Q,C(X)) satisfies, for all g €
L'(Q,C(X),

m(f+g) = sup{h(v) + [fdv+ [gdvlvis invariant}
>h(p) + [fdp+ [gdu=m(f) + [edu,

it is clear that any equilibrium state for f is also a tangent functional to =, at
f. Using exactly the same arguments as Walters ([44], Corollary 2 and
Theorem 5, and 9.15 in [43]) for the deterministic case and the fact that the
entropy map % is an upper semicontinuous function on the space of all
shift-invariant probability measures, one can even show a closer connection
between tangent functionals to 7, and equilibrium states.

PROPOSITION 4.8. For f € LY(Q, C(X)) the pressure m, is Gateaux differen-
tiable at f [i.e., the limit

1 d

lim —(m,(f + tg) = m,(f)) = 7, (f+tg) o

exists for all g € 1MQ,C(X))] if and only if there is a unique tangent
functional u to m, at f, and then

i1';;,(/"+ tg)' = fgdu forallg € 1(Q,C(X)).
dt t=0

If, in particular, w, is Gateaux differentiable at f and there is a unique
equilibrium state w for f, then u is the unique tangent functional to , at f.

Thus we have established a connection between equilibrium states and the
derivatives of the pressure. In order to calculate the latter explicitly, let us go
back now to Proposition 4.5 and present assertion (ii) of that proposition as

1
(4.4) 7, (@y) = lim -r:log Z,(p4, w) as.,
n—o

, where Z, (¢4, ) is defined by -

' n—1
(4.5) Z(¢r0) = ¥ exp( X ¢>A(0fi*,9jw))

Bgreeerin_1 j=0
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with i* being the n-periodic member of X starting with i,,...,i,_;. That the
r.h.s. of (4.4) indeed yields A can be seen as follows. We have

Zn( Pa>s w) = Z ]._.[ atﬁlt(ojw) Z (A*( w)"” A*(On_lw))ioio

d
= tr(¢¥(w)) = tr($,(@)) = ~§1<ei, b (w)ey,

and (as shown in our discussion of the literature) by Proposition 3.9G) each
term on the r.h.s., and hence the sum, has exponential growth rate A.

It is easy to see that the sequence log Z, satisfies almost everywhere the
inequality

log Z, ;. in (¢4, @) <logZ, (¢4, 0" 1" " TMaw) + -
+ log an( ¢A’ (A))

+e(gmt "l + o +o(0™M )
forall ny,...,n, €N, k> 2,

(4.6)

where ¢: ) - R, ¢ > 0 is integrable. Such a “weak” subadditivity property
can be used to derive the existence of the limit in (4.4) (cf. [39]). It also holds if
we replace ¢, by a mapping f in the space Ly-(Q,C(X)) of mappings
which have equi-Ho6lder-continuous support. Such mappings f satisfy almost
surely

(4.7) [f(0)x —f(w)y| <ca™ ifx;=y fori<n

for some a = a(f) €(0,1) and ¢ = c(f) > 0. They play a major role in a
topological introduction of the pressure function which are going to present
now. For this purpose, let us define Z, by (4.5) for all f € 11(Q, C(X)), where
C(X) denotes the space of complex-valued continuous functions on X, and
call it the n-partition function for f. For each n € N it is clear that m,(f, w)
= (1/n)log Z,(f, ) is an analytic function in f. We have to examine the
limit points of this sequence and their analyticity.

PROPOSITION 4.9. For every f € 1MQ,C(X)) the limit of the sequence

(m(f, ®)), en Of analytic functions given by w,(f, ») = (1/n)log Z,(f, w) ex-
ists almost surely and equals m,(f).

ProoF. It follows from (4.7) that for f € L;5-(Q, C(X)),

n—1 k-1
10g Z,, 4(f> @) < log Z,(f, 0%) + log Zy(f,©) + L ca" + ¥ ca*™
Jj=0 j=0

a.s. for all n, 2 € N and hence

log Z,, 4(f, @) <log Z,(f, 0%) + log Z(f, @) + ¢,
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for some constant ¢, > 0. Thus if we define G,(f, w) = log Z,(f, w) + ¢;, we
can apply Kingman’s subadditive ergodic theorem to G, to deduce the exis-
tence of the limit lim, . (1/n)log Z,(f, w) as. for all fe Lg-(Q,C(X)).
Note that for general f, g € 11(Q, C(X)) one can show analogously to Ruelle
([3.7], 3.3) that m,(f, @) is almost everywhere convex and satisfies

|m(£,) = M85 )y = [|m(f, @) — m(g, w)|dP(w) <If g,

where |-|; denotes the L'-norm. This inequality and the fact that
L%5c(Q,C(X)) is dense in L'(, C(X)) (cf. Lemma 6.2 in [6]) enables us to
deduce the existence of lim,, _,, m,(f, ®) for all f € L'(Q,C(X)). This limit
coincides with the so-called topological pressure for random dynamical sys-
tems (cf. 5.2 in [6]). In the last reference this quantity is introduced on the
basis of so-called spanning or separated sets. As shown by Ruelle ([37], 7.19)
and using the results of Bogenschiitz ([6], Section 5), the two ways of
introducing topological pressure for random dynamical systems are equiva-
lent for the random shift we are dealing with. This enables us to have
recourse to further results of Bogenschiitz ([6], Theorem 6.1) like the varia-
tional principle for the topological pressure which gives the equality of
lim, ,, m(f, ®) and 7, (f) for f € L'(Q,C(X)). O

Analyticity of the pressure function. With this topological definition of
pressure it is easy to investigate the analyticity of 7, using a method of
Dobrushin, which was adopted from statistical mechanics to dynamical sys-
tems in [24].

THEOREM 4.10. For ¢, there exists a neighborhood V in LX(Q, (X)) on
which the pressure is an analytic function.

ProoF. We know from the weak subadditivity property (4.6) for ¢, that
log Z, . . . (¢a,")|, <|l0g Z,(@a,")|, + = +|log Z,,(ea,") |, + klch

for all n,,...,n, € N, k > 2, which guarantees the existence of a constant C;
such that
|10g Zn(¢A’ ) |1 = nCl'

Let us now consider f € 1(Q, C(X)). Then we write
Zn(¢A + f’ w) = Zn(q’A’ w)Z:A(fg w)9
where

s n e i Tilof(oti*, ')
ZeA(f, = ex Ji*, 0'w) |ex ,
" (f w) i Z"_l p(]go f(o- w)) p( Zn( Pa> w)

igreres i

llog Zea( £, )|, < I flin.
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Thus if we choose a neighborhood U of 0 in 1'(Q, C(X)) such that ||fll; < C;
for all f € U, then

1
(48) ~[1og Z,(¢s + £, )1 < 2Cs.

Note that 7,(g, ®) is trivially an analytic function of g € L(Q,C(X). Tt
follows from (4.8) and the Cauchy formula for the derivatives of analytic
functions that there exist a neighborhood V of ¢, in [}(Q,C(X)) and a
constant C, > 0 such that

d
dg n(g’ )

<C,.
1

In particular, the 7,(g, @) form almost surely an equicontinuous family of
analytic functions on V. Thus by the theorem of Arzela-Ascoli, (7,(g, @), cn
has a subsequence which almost surely converges uniformly on every com-
pact subset of V. In fact, all possible limit functions must agree on the set
V N L1(Q, C(X)) (there we know the existence of the limit); hence, they are
all continuations of the same real analytic function and consequently equal.

O

This theorem together with Proposition 4.5 gives us an immediate corol-
lary.

COROLLARY 4.11. The top Lyapunov exponent A = MA) is an analytic
function in a neighborhood of A in 1}(Q, C4*?).

A similar result had been obtained by Ruelle (cf. 3.1 in [38]) for the case
that Q is compact and the matrix A satisfies some general positivity condi-
tions: Then there exists an open subset of C(Q, R*¢) on which the pressure
is real and analytic. Our conditions on A concerning the dependence on w are
less restrictive and assure the analyticity of the top exponent in a wider
domain. For further regularity results see [33] for the ii.d. case and A:
Q - GL(d, R) (analytic dependence of A on a parameter implies C* depen-
dence of A) and [26] for i.i.d. positive matrices (C**2 dependence of A on a
parameter implies C* dependence of ).

THEOREM 4.12. Let u be the unique equilibrium state for ¢,. Then

(i) w is the probability measure which takes the average of mappings in
L'(Q,C(X)) using almost surely the weights

exp(Z120ea( a7, 0w))
Zn( Pa> w) ’

W,(i*, ) = W(i*, w) = asn — ®;

2

4
(ll) WWU(QOA‘FS]C-F tg) >0 forallf,geﬂ_l(Q,C(X))
s=t=0



890 ARNOLD, GUNDLACH AND DEMETRIUS

and

2

a9 "o (@atsf+if) = u(f?) —u(f)* +2 f‘, {w(F-Foa?) —u(H);
t=0 j=1

s=

(iii) for f € lpo(Q, C(X)), we have

92
=0 e f=C+H-.0c-H,

— +sf+t
g5 97 o\ #a TS+ )

s=t=

for some C € R, H € l;,.(Q,C(X)).

ProoF. From Proposition 4.8 we know that the first derivative of 7, at ¢,
defines the unique equilibrium state for ¢,. Since

d
E%(G"A +tf) o

1 1 n—1 ) ] n—1
= lim ———— Y exp| X eu(0’i*, 0/w)| Y f(o*i*, 6%w)
in—l k=0

n—on Z,(¢s, ®) iy j=0

for all fe1}(Q,C(X)) and almost all w € , the first assertion of the
corollary is proven. The second one is a consequence of the convexity of the
pressure and the observation that for f, g € 1}(Q, C(X)),

2

B +sf+t,
asat’%(%q sf + tg)

1 n—-1 n—1
= lim —[ Y W, (i*,0) Y f(oPi*, 0P0) Y, g(a*i*, 0%»)
p=0 k=0

s=t=

n-o n

Lgs-ves [

n—1
- Y W(i*,w) Y f(oPi*, 67w)
=0

Loseees in-1 p

n—1
X Y, W(I*,0) ) g(o'l* 0'w)

loserrlno r=0
holds almost surely. Note that for each » € N and almost all w € Q) the
W, (-, w) define a probability distribution on {1,...,d}% ™. So if we denote
the corresponding probability measure and the expectation by u, and E,,
respectively, and if we introduce random variables X,,Y, by

n—1

n—-1
X, (1%, w) = Y f(a'ji*, ij), Y, (i*, w) = Y g(aji*,ij),
j=0 j=0
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then P-a.s.,
9 2

1
9s ot 77,,-(§0A + Sf+ tg) s—ie0 = ’ll_lgo}:[IEanYn - (IEan)(EnYn)]

1
lim -—covn( ws Y,)

= lim ;[En(Xn - IEn‘Xn)(}’n - [EnYn)]

where cov, denotes the covariance with respect to E,. Let us point out that
the indicated limits exist by Theorem 4.10 and that

X, (1%, ) — E(X,)
n—-1 ) ) 1 n—1
= Y | f(oi*, 0l0) — — ¥ W,(I*,0) ¥ f(atl*, 0%)|.
Jj=0 LC PO N E=0

Thus if we choose f = g and take into consideration that

n—1 n—1
( Yy f(o-ji*,ejw))( Y f(o-ji*,()jw))
j=0 j=0

n-1 . o, n-1n-1-j . . .
= T (o9t 000)" +2 L T f(adi*, 000) f(a7Hi%, 07 ),
J=0 J=0 k=1

then we obtain
2

— +sf+t
e A CTR Al

1
=lim— Y W(i* o)
n-o>o n . .
Ty resbpn-1

n—-1 n—1
X Y (f(aji*,ojw) _ 1 Y W, (l*e) ) f(akl*,()kw))
j=0 n k=0

loreerdn1

n-1
x| f(oi*, 0/w) — -1— Y W,(I*, ) Y f(o*l*, 0%)
n k=0

los-erlno1

1
+ lim —2 Z W,(i*, o)
noe g i ‘
n-1n-1-j ) 1 n—1
X Y f(0'i*, ¢lw) — — Y W(*e) X f(ohl*, 6%)
k=0

j=0 p= Loseeurbno1

n-1
(f(a””l 0/ Pw) — -’%z Y W, (%, w)kz f(akl*,Okw)).
0see s =0
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So we can deduce from part (i) that
2

Hcr(¢A +Sf+tf)

=cov(f,f) +2 i cov(f,fea?),
t=0 p=1

s=t=

ds dt

where cov is the covariance with respect to the expectation defined by u.
Thus part (ii) is also proven. For the proof of the final assertion of this
corollary we adopt an idea of Ruelle ([37], Chapter 5, Exercise 5) and note
that the convexity of 7, implies not only (9%/ds dt)m, (o4 + sf + t8)s—t-0
> 0 for all f, g € L}(Q, C(X)), but also that the matrix

92 2
T, + sf + ¢ + sf + ¢,
s ot a(¢A f f) s=1=0 ds ot 7TU'(¢A f g) —t=0
92 92
T, + sf + ¢ -— T + sg + ¢,
s ot a(¢A f g) im0 ds ot s(¢A g g) sote
is positive semidefinite. Consequently,
92 2
— + sf + ¢ =0 = . + sf + ¢, =0
95 9t o (@4 + sf+ tf) T 9s ot o (@a + sf+t8) mio

for all g € L}(Q,C(X)),
and in this case one can show with a bit of work that for all 2 € 11(Q, C(X)),

3
—asjmwa(% + sf + tg + uh) o
92
= o T ea t uh)‘u=om%(¢A +sf+ig)|
d 9®
* E""( oat tg)Lo dsdu 7o (s t sf + uh) s=u=0
d 92
+ Egﬁ,(ﬂ + sf) s=omﬂ;,(qu + tg + uh) t=u=0=0.

Using induction one deduces that for [ > 3 all directional derivatives of the
form

al

-_— +8.f1+s + - +8
95, 985 - 35, AN 1/ 2fs 111)

S1=8g= " =5,=0

with f; € 1}(Q, C(X)) can be represented as linear combinations of

, 2<k=<l-1,

Sy= +r =8,=0
1 &

o* .
— + s + o +s
98, - 95, a(€0A 1fp(1) kfp(k))

where p is a permutation of {1, ..., [}, and hence must vanish. So we conclude
by the analyticity of =, that its first derivative at ¢, in direction of f is a
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constant, if (92/3ds dt)m, (@, + sf + tf)ls=¢=0 = 0. Then, in particular,

d
s '_)awa(goA + Sf+ tf) =0 = M¢A+sf(f)

is a constant. Here ., . ,.(f) denotes the equilibrium state for ¢, + sf, which
is constant in s. Along the lines of Parry and Pollicott ([36], Proposition 3.6)
in the deterministic case, one can show in the random case (cf. [8]) that two
functions in L%,-(Q,C(X)) have the same equilibrium state if and only if
they are cohomologous via a function in U;50(Q,C(X)). Thus ¢4, ¢4 + sf
and ¢, + ¢ (where c is a constant) all must be cohomologous and we deduce
the existence of a function H € [';;.(Q,C(X)) and a constant C such that
92
mWU(QDA +sf+tf)s=t=0 =0 = f=C+H-.0—-H,

which completes the proof of this corollary. O

The assertions of the corollary can be written down in a shorter and more
elegant way if one uses Lanford’s characterization of Gibbs states (cf. C1 in
[31]D and the definition of the spectral denszty S, for the random stationary
sequence (Z[), . defined by Z[(x, 0) = f(o*x, 0 *w) corresponding to a func-
tion fe L'(Q,C(X)) and a Markov chain (X,), .y in the random environ-
ment given by P, 7, namely

1
Si(y) = py Y. exp(—iyk)p,, wherep_, = p, = cov(Z§, Z[).

k= —o

COROLLARY 4.13. If u is the unique equilibrium state for ¢,, then it is the
unique invariant Gibbs state for ¢, and

(92

Fyy (@4 + sf + tf) o = 277'Sf(0)

for any f € 11(Q, C(X)).

5. An evolutionary principle. We have seen that the macroscopic
behavior of dynamical systems described by products of random positive
matrices can be represented in terms of the top Lyapunov exponent A, the
entropy H and the reproductive potential @, parameters related by A = H +
®. Small directed perturbations of that dynamical system at equilibrium
have an analogy to mutations in evolutionary theory, as seen in Section 2.
Such perturbations generate a new system with different macroscopic param-
eters. Interaction, competitive and cooperative, between the “ancestral” and
the “mutant” dynamical system, an analogy to the selective process in
evolutionary theory, will drive the system to a new stationary state charac-
terized by new macroscopic parameters. The description of the change of
these parameters due to this mutation—selection process is the object of our
evolutionary algorithm. Our analysis is restricted to random dynamical sys-
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tems which are linear. As cooperative interactions in biology usually result in
nonlinear systems describing the mixed population which does not fit into the
framework which we have developed so far, we prefer to restrict our attention
only to competitive interactions, though the selection process becomes trivial
in that case.

Mutation relations. Corresponding to evolutionary theory, we split our
analysis into one for the mutation and one for the selection process. The
original system (describing the ancestral population in biology) is given by
the cocycle induced by a fixed random matrix A: () —».#, satisfying log™M,
log*(1/m) € L(P), such that we can use all the results of Sections 3 and 4.
We are interested in changes of our parameters A and H due to small
directional changes of the potential. While Proposition 4.8 describes the
change of growth rate A, we still have to derive an analogous result for the
entropy H. For solving this problem, it is our intention to make use of
Theorem 4.12. This can be done if one considers in that theorem the Gateaux
derivatives in the right directions. This observation is manifested in the
following result.

THEOREM 5.1.  For any f € 11(Q, C(X)) one has

d 92
. — =- +6 <0,
(5.1) d6h('u5)a 3838ﬂ”((1+8)¢‘4 f) <0

£=8=0

where ps denotes the unique equilibrium state for ¢, + 8f and 6§ € R is
sufficiently small in absolute value.

ProOF. Let us consider any mapping f € [1(Q,C(X)). Then we deduce
from Proposition 4.8 that with u, = u being the unique equilibrium state for

‘PA ’

d
(5.2) 75 w(®a + 8f)

= ffdp,.

On the other hand, we know from Proposition 4.8 and Theorem 4.10 that for
8 € R having sufficiently small absolute value,

5=

7, (s + 8f) = h(1s) + [ondus + 8[fdp,,

where u,; denotes the unique equilibrium state for ¢, + 8f and hence

d : d
8=0+Eg(f¢A ,“a)

d d ”
(53) Z5m(eat Bf)L=0 =75h(Ks) o7 [fdp.

So comparing (5.2) and (5.3) gives

d
50 =‘gg(/¢’A d,U«.s)

' d
(54) —sh( 1)

6=0
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Going even one step further, we consider now an additional perturbation of

the form e¢, for small £ € R. Under the same conditions as above we obtain
from Theorem 4.8 that

J
P (1 + &), + 6f)L=o = f¢A dus

and, therefore, it follows from (5.4) that we can differentiate =, in the
directions of ¢4 and f to obtain

2 d
33&8%((1 + &) s + 8f) 50 =%([¢A dﬂs)

The nonpositivity of those expressions is a consequence of Corollary 4.12. O

—_% (M.s)

5=0 -

Note that also the left-hand side of (5.1) depends on the choice of f&
1}(Q, C(X)). This dependence is manifested in w; and hence in the direction
of the Gateaux derivative of the entropy. Due to Corollary 4.13, we can give a
further characterization of the derivative of the entropy. Namely, we obtain
the following.

COROLLARY 5.2. If s denotes the unique equilibrium state for (1 + 8)¢,
with 8§ € R having sufficiently small absolute value, then

d
Z5h(m)| = —2mS,(0).

For § € R having sufficiently small absolute value and any fixed f€
11(Q, C(X)), we define

A= m(gq + 8) = m(0a),  AH = h( ) = h( ).

It follows from (5.2) that the sign of A A is given by the sign of § X [fdu, and
(5.1) implies that the sign of AH is destined by the sign of -8, if
(0%/9e 38)m, (1 + €)@y + 8f)lo=s-0 does not vanish. Though soon we will
consider in Corollary 5.4 a case where we can exclude such a possibility easily
by a nice and explicit assumption, it is, in general, hard to examine the last
condition. Anyway, one obtains immediately the next result.

THEOREM 5.3. For any f € 11(Q, C(X)), one has

ffd,u>0 = AMAH<O,

[fdp<0 = ArAH= 0.
.If S; does not vanish at 0, then the deduced inequalities are strict.

Of particular interest in evolutionary theory is the following case, which is
in accordance with our observations in Section 2.
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COROLLARY 5.4. For any f € 11(Q, C(X)) cohomologous to ¢,, one has
®,(A)>0 = ANAH<O,
®,(A) <0 = AMNAH=0.

Except for the case that A is almost surely of the form

b(w)
bj(w)

for some y> 0 and b € L1(P) with b > 0, the implied inequalities are even
strict.

(5.5) a;j(w) =7y

PROOF. Due to the assumed cohomology and Theorem 4.12(ii), it only
remains to prove that the condition of ¢, being cohomologous to a constant C
is equivalent to (5.5). So let us assume that ¢, = C + H> o — H for some
H € U55c(Q,C(X)). As A depends only on the first two coordinates of the
elements in X, we can deduce that H only depends on the first one. Thus if
we put y = exp(C) and b,(w) = exp(H(i, w)), we are done. O

Selection dynamics. As already mentioned above we will only consider
competitive interaction between the ancestral and mutant types in the popu-
lation. This competitive interaction assumption implies that each type can be
considered as increasing at the expense of each other. Under such conditions
there exists a priori a directionality principle, namely, the types with larger
growth rate will obviously soon dominate the population, while the ones with
smaller growth rate will eventually become extinct. Thus

(5.6) Axr >0,

where A , represents the change in growth rate as the population moves from
one stationary state to another due to the mutation and selection process. If
AH is the analogous change in population entropy and AH is the change in
entropy of the invading mutant, then trivially AHAH > 0; hence, we can
deduce on the basis of Corollary 5.4 that for populations with ®,(A) < 0 the
following directionality principle holds:

(5.7) AH > 0.

Note that both (5.6) and (5.7) determine a direction for evolutionary changes
under certain constraints defined by the reproductive potential, but (5.7) is
far more general. This can be seen, for example, in the common nonlinear
models where the stationary states are characterized by A = 0. For continu-
ous deterministic systems of that kind, even with cooperative interaction the
directionality principle (5.7) has already been proven for some important
examples (cf. [18]).
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6. Conclusion. Products of random positive matrices represent a class
of dynamical systems which describe processes which occur in population
biology and economics. The evolutionary algorithm involving mutation, an
event generating new types, and selection, a dynamic ordering of the types,
represent a canonical mechanism for inducing change within dynamical
systems.

The problem of associating this process with some measurable property
that characterizes persistence of the process and that also increases in
evolutionary time has been central in both biological evolution and classical
economic theory. The interest in such a property is partly philosophical,
deriving from the idea that progress and stability must be the inevitable
outcome of variation and conflict: mutation and selection in biological sys-
tems and innovation and competition in economic systems.

Entropy represents one such measurable property: The mathematical con-
cept describes the stability of the dynamical system and in this sense it
reflects the intuitive notion of persistence. This article has shown that a
unidirectional increase in stability, as described by the directionality princi-
ple AH > 0, holds for a subclass of the dynamical systems considered,
namely, systems whose stationary states at equilibrium satisfy the condition
® < 0, that is, slowly growing systems.

Two central assumptions underlie the derivation of this principle:

1. Linearity of the dynamical system.
2. Competitive interaction between ancestral and mutant types.

These two conditions are highly restrictive. Random evolutionary processes
in biology and economics are typically described by nonlinear dynamics. In
population biology, density-dependent population growth represents a classi-
cal case of nonlinearity. The growth models of Solow and Samuelson [42]
represented by homogeneous operators of degree 1 represent a well-known
example of nonlinearity in economics.

Competitive interactions leading to the elimination of one type by another
is also atypical. In biological systems involving sexual reproduction, the
mutants that are generated will mate with the ancestral type to produce new
types. Depending on the viability of the new types, the system may evolve to
what is called a polymorphic state in which the ancestral and the mutant
types are represented. In economics, the analogue of polymorphic states may
occur through cooperation of the ancestral type and the mutant. When
interactions are cooperative, the dynamical system will be driven to a new
state with properties distinct from the ancestral and the mutants.

A directionality principle has been derived for time-continuous systems in
which both nonlinear dynamics and cooperative interactions are considered

(cf. [18]). These models are deterministic and refer to biological systems
where the nonlinearity is of a special kind and the cooperative interaction has
its basis in the Mendelian laws.

The issue of extending our theory to general nonlinear systems with
general cooperative interactions applicable to both biology and economics is
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still open both in the deterministic and the random case. This paper thus
constitutes a small step in our general program whose resolution will rest on
two main technical developments:

1. A general Perron-Frobenius theory for nonlinear random and determinis-

tic operators.
2. A thermodynamic formalism to characterize the stationary states of these

operators.

The work of Fujimoto and Krause [22] in the deterministic case and
Bogenschiitz and Gundlach [8] in the random case provide a basis for the
development of these two directions.

APPENDIX

Elementary proof of H'(0) < 0 in the deterministic case. Let A(§)
= (a;{(8)) = (a};®) for & in a neighborhood of § =0, with A0)=A>0a
primitive matrix. The functions u(8), v(8), y(§), ®(§) and H(S) given by
(A1) A(8)u(8) = y(8)u(s), A*(8)v(8) = y(8)v(9),
where ||u(8)|| = 1 and {u(8),v(8)) = 1,

aji(a)vj(a)

pij(a) = ¥(8)v,(d) ’ m;(8) = u;(8)v,(95),
d
®(5) = .;lﬂi(a)pij(ﬁ)log aji(6)’
d
H(8) = - . ;17";‘(5)13;'1‘(3)108 pij(a)

are analytic with respect to & in a neighborhood of § = 0. The definitions
yield

(8) + H(5) = log (5)
and
(A2) Y(8)H(8) = —(1+ 38X A'(8)u(s),v(8)) + v(8)logy(8),
where A'(8) = (a;;(8)log a,)). Differentiating (A.1) and (A.2) at § = 0 gives
[writing v, y', A’, u, v instead of y(0), y'(0), A'(0), u(0), v(0)]

(A3)  yH'(0) = —ypo — 2((A" = ¥)(y = 4) (A" - v)u,0).

In (A3), py is the variance of the random variable Y, =loga, , . Since
@:=(A"— yDu €v', the invariant subspace in which y — A is invertible,
" the second term in (A.3) makes sense, and the expansion

1 = (A
-A)'a=— (—) i
(y—A) ykgo ”
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converges geometrically. Thus
yH'(0) = —ypo — 2 1. <(A’ - 7’)(7) (A" - 7’)u,v>'
k=0

Let now X, X, ... be the stationary Markov chain given by the coordinate
variables in {1,..., d}N with measure u generated by 7= and P. Then Y, =
log ay, x, %k =0,1,..., defines a stationary sequence. A lengthy but elemen-
tary calculation gives

A k
<(A'—7')(7) (A'—Y')U,U>=72pk+1, E=0,1,...,

where
pr = (Y, — w(Y,)) (Yo — m(Yy))
are the covariances of (Y},). Hence,

H'(0) = —py—2 ) ps-
k=1

Remember now that the spectral density S of (Y},) is given by

1 ° .
S(y) = o9n Y. exp(—iyk)p;, P—r = P>
T o
which is a bounded smooth function due to the geometric convergence of the
series ¥} _, p,. Thus, finally,

H'(0) = —27S(0) < 0.
In the same way as in Section 4, for the random case we could look for an

alternative condition for H'(0) = 0 and hence S(0) = 0. Namely, we obtain
analogously to the random case

(A4) H@0)=0 e ¢ =C+Heco—-H

for a constant C and a continuous function H on X, which depends only on
the first coordinate of the sequences. Thus (A.4) gives a formula for the
nonvanishing elements of A. So we can conclude, in accordance with the
result obtained for the Leslie matrix in Section 2, that primitive matrices A
with vanishing S(0) must be of the form

b,
b.

J

a;;=0 or aq;=c

for some positive numbers c, b;.
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