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A NECESSARY AND SUFFICIENT CONDITION
FOR ABSENCE OF ARBITRAGE
WITH TAME PORTFOLIOS

BY SHLOMO LEVENTAL AND ANTOLI V. SKOROHOD

Michigan State University

We characterize absence of arbitrage with tame portfolios in the case
of invertible volatility matrix. As a corollary we get that, under a certain
condition, absence of arbitrage with tame portfolios is characterized by the
existence of the so-called equivalent martingale measure. Without that
condition, the existence of equivalent martingale measure is equivalent to
absence of approximate arbitrage. The proofs are probabilistic and are
based on a construction of two specific arbitrages. Some examples are
provided.

1. Introduction and main results. In this paper we deal with a finan-
cial market in which d + 1,d > 1, securities are being traded during the
time interval 0 < ¢ < 1. All processes that appear throughout without restric-
tion on their time domain will be taken as defined on 0 < ¢ < 1. The source of
uncertainty in the market is provided by a d-dimensional standard Brownian
motion W(t) = (Wy(¢),...,W,(¢)) defined on a complete probability space
(Q, F, P). The term “adapted” will refer throughout to the filtration {F:
0 < ¢t < 1}, the P-augmentation of the natural filtration of W(¢), namely,

(1.1) F,=0{W(s):0<s<t} VN,

where N ={A € F: P(A) = 0}. One of the securities traded is called the
bond. Its price process B(t) satisfies

(1.2) dB(t) = B(t)r(t)dt, B(0) =1,

where r(¢) is an adapted process that represents the short-term interest rate.
The other d securities are called stocks, and their price processes {S;(¢):
i=1,...,d} satisfy

(1.3) dS;(t) = 8;(t)|b,(¢) dt + kél o;, 1 () AW, (2) |,

S;(0) =s;.

Here o (t) = (0; ,(£)); <, < 4 is a matrix-valued process which is adapted and
invertible for all ¢; b(¢) = (b,(t)); . ;. 4 is an adapted vector process. In order
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that (1.2) and (1.3) represent a well-defined process, we impose

(1.4) P(fol(lr(S)H Sib(s)+ ¥ afk(s>)ds<oo)=1.
i=1

i,k=1

The investor chooses how much money to invest at time ¢ in any of the
stocks. Let ,(¢) represent the amount of money that the investor invests at
time ¢ in the ith stock, i = 1,..., d. The vector (7,(¢): i = 1,...,d) is called a
portfolio. More precisely, we use the following definition.

DEFINITION 1. The R%valued process m(t) = (w(¢),..., m,(t)) is called a
portfolio if it is adapted and satisfies

P(folllﬂ"(s)tr(s)llz ds <-oo) =1,
(1.5)
P(fol|77’(s)(b(s) —r(s)l,)|ds < 00) =1,

where || || stands for the usual Euclidean norm in R?, a prime stands for
transpose and 1, = (1,1,...,1) € R%

The purpose of investment in stocks, which are a riskier investment than
bonds, is capital gain in excess of what can be achieved by investment in
bonds. That is why we are interested in the discounted capital gain process
X(t) defined as follows:

DEFINITION 2. The real-valued process
(16) X(t) = [‘w(8)B () [0 (s) dW(s) + (b(s) — r(s)1,) ds]

is called the discounted capital gain process associated with the portfolio .

The economic justification of (1.6) is that the discounted capital gain from
holding the £th stock between times ¢ and ¢ + ds is

(#shares owned)(price increase in the stock) — (potential gain from bond),

namely, (7,(¢)/S,(¢)) dS,(t) — (7,(¢)/B()) dB(¢). It follows that the dis-
counted capital gain from holding all stocks between times ¢ and ¢ + ds is
' (o () dW(t) + (b(t) — r(¢)1,) ds]. By multiplying by B~ 1(#) we discount
this quantity to time ¢ = 0, and by integrating from 0 to ¢ we sum up all the
gains that were made up to time ¢. The process X(¢) is well-defined because
B~1(t) is bounded away from 0 and « a.s., under assumption (1.4).

Many investors are interested in making money without any risk. This
leads us to the following definition.
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DEFINITION 3. The portfolio 7 is called an arbitrage if its discounted
capital gain process satisfies the following three conditions:

(a) there exists C > —oo such that P(X(¢) >C forall0 <t <1)=1;
(b) P(X(1) 2 0) = 1,
(c) P(X(1) > 0)>0.

ReEMARK. The # that satisfies condition (a) is called a tame portfolio [see
Karatzas (1993) or Dybvig and Huang (1988) for more details]. This is a
restriction that prevents “doubling schemes” and can be interpreted as
putting a limit on borrowing.

The purpose of this paper is to study necessary and sufficient conditions for
absence of arbitrage, which is a property that we expect the financial market
to have. The sufficiency side is more or less understood [see Karatzas (1993)].
The main contribution of this paper is in the necessity of the conditions when
the volatility matrix is invertible. To state our results we need to define a few
more objects. First we look at the vector-valued process 6(¢) defined as

(1.7) 0(t) = o71(t)(b(2) — r(£)1,);
0(¢) is well defined because of the invertibility of o(¢), and it is adapted but

so far nothing is assumed about its integrability properties. The discounted
capital gain process can now be written as

(1.8) X(t) = fotﬂ-’(s)B'l(s)a(s)[dW(s) + 0(s) ds].

Let 0 < 7 < 1 be a stopping time. With + we associate 8, defined by

5= inf‘{t > 7 /tII()(s)I(Z ds = oo},

1, ifno such ¢ exists.

Next we define Z (¢), which plays a crucial role in what follows:

t t lo(s)lI?
Z.(t) = exp{*/;{rgs}e’(s) dwW(s) —fO{TSS} (;) ds}, ift <89,

0, ’ if ¢ > 8.

REMARKS.

' (a) The process Z,(¢) is well defined by imposing left-continuity at ¢ = 8,
so Z,(8) = 0 when the infimum defining & is attained.
(b) The set {r < s} is identified with its indicator function.
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Finally, we look at the following stopping time:
. . t+h 2 _ _

(1.9) 1nf{t.j; lo(s)II*ds ==V h e (0,1 t]},
1, ifno such ¢ exists.
It is easy to see that if P(a = 1) = 1, then, for every stopping time 0 < 7 < 1,
the process Z(t) is a continuous nonnegative supermartingale which may
take the value 0. If in addition E(Z, (1)) = 1, then Z (¢) is actually a martin-

gale.
Now we can state the main result of the paper.

THEOREM 1. There is no arbitrage if and only if P(a =1) =1 and
E(Z,(1)) = 1 for every constant 0 <r < 1.

We next look at the condition
(1.10) P(ftlle(s)ll2 ds <, 0<t<1l]=1.
0

We get the following corollary, which shows that some time there is no
arbitrage even when there is a positive probability that 6 explodes toward
t = 1 (see also Example 2 in Section 4).

COROLLARY 1. Assume (1.10). Then there is no arbitrage if and only if

Next look at the process W *(¢) defined as
W*(t) = W(t) + [ 0(s) ds;
0

W *(¢) is well defined whenever 6(s) is integrable a.s. The following condition
is a special case of condition (1.10):

(1.11) P(fllle(s)llz ds < oo) =1.
: 0
The following is an important corollary of Theorem 1.

COROLLARY 2. Assume (1.11). Then there is no arbitrage if and only if
there exists a probability measure @ equivalent to P such that W*(t) is a
Q-Brownian motion.

The measure  is known as an equivalent martingale measure, and it is
well understood that its existence guarantees absence of arbitrage [see, e.g.,
Duffie (1992), Chapter 6]. Corollary 2 states that the converse is true, in the
context of tame portfolios, if we assume (1.11).

Next we describe what are all the possible arbitrages, if there are any,
under condition (1.11). We get the following corollary.
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COROLLARY 3. Assume (1.11). There is an arbitrage T whose capital gain
process X satisfies P(X(¢) > —1,0 <t < 1) = 1, if and only if there exists ¢,
an adapted, R%valued process that satisfies P([}lo(s)II> ds < ) = 1, so that

Y(¢) N
s (t) = Zo(t)B(t)(a (1)) (e(t) + 0(2)),

where the process Y(t), defined by

t ¢l 12
Y(t) =eXp{fO<p'(s) dW (s) —fi(g)—ds},

0

satisfies P(Y(1) > Z,(1)) = 1 and P(Y(1) > Z(1)) > 0. The capital gain pro-
cess of m is X(¢) = Y(¢)/Zy(t) — 1.

A question that arises naturally from Corollary 2 is how to characterize
the existence of an equivalent martingale measure, in the general case, when
(1.11) is not assumed. For that purpose we need the following definition.

DEFINITION 4. A sequence {m,;: n =1,2,...} of portfolios is called an
approximate arbitrage if its respective sequence of discounted capital gains
X, satisfies the following three conditions:

(a) there exists C > —o such that P(X,(¢) > C forall0 <t < 1) = 1, for
every n;

(b) P(X,(1) > 0) - 1;

(c) there exists § > 0 such that P(X,(1) > &) > 8, for all n.

This looks like a natural generalization of the arbitrage concept. A related
definition appears in Duffie (1992). Now we can state the next theorem.

THEOREM 2. There is no approximate arbitrage if and only if there exists a
probability measure @ equivalent to P such that W*(t) is a Q-Brownian
motion.

Now we describe the organization of the paper. In Section 2 we prove two
lemmas that will be useful: Lemma 1 gives an alternative condition to the one
that appears in the statement of Theorem 1; Lemma 2 constructs an interest-
ing arbitrage, one of the two needed for the proof of Theorem 1. In an
example, which precedes Lemma 2, we deal with a special case, for which the
construction of the arbitrage is simpler than that of Lemma 2. In Section 3 we
prove Theorem 1, its three corollaries and Theorem 2. In Section 4 we give
five simple examples that we have encountered while preparing this work. In
the first example (1.11) holds and there is an arbitrage. In the second
example there is no arbitrage, but there exists an approximate arbitrage. The
" third, a minor modification of the second, shows that even when P(a =1) =1
and E(Z,(1)) = 1 both hold there can be an arbitrage. The fourth example
shows that the condition E(Z.(1)) = 1 for every 0 < r < 1, by itself, does not
prevent an arbitrage opportunity. The fifth example shows how to use Corol-
lary 3 to construct an arbitrage.
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Background. In this paper we deal with a specific model of financial
markets, a model that we have learned from Karatzas (1993). Other models
are possible: the trading can be restricted to a discrete time, other processes
can describe the prices of financial assets, other restrictions can be imposed
on the portfolios,and so on. In the last 15 years there has been a considerable
amount of work done on the arbitrage problem in some of the possible models.
The idea of equivalent martingale measure appears first in Harrison and
Kreps (1979). A characterization of absence of arbitrage as equivalent to the

" existence of a martingale measure, in the case where () is finite, was
achieved by Harrison and Pliska (1981) and was generalized by several
authors. The concept of approximate arbitrage was created because, in gen-
eral, it turns out that absence of arbitrage is not equivalent to the existence
of martingale measures. There are several different definitions of this concept
(sometimes called free lunch) in the literature, but they all mean roughly the
same thing. Stricker (1990) assumed that the asset price processes are in L?,
1 < p <; Delbaen (1992) assumed that the asset price processes are
bounded; and Fritelli and Lakner (1994) have essentially no mathematical
restrictions on the asset prices. All these results proved that, with a definition
of approximate arbitrage which is appropriate to each of these models, the
equivalent martingale measure characterizes absence of approximate arbi-
trage. These results should be compared to our Theorem 2. For example,
when we adapt the result of Delbaen (1992) to our setup, we get a type of
approximate arbitrage which is different from ours, whose absence is equiva-
lent to the existence of a martingale measure. We refer the reader to Frittelli
and Lakner (1994), whose introduction contains a review of the recent history
of the subject which is more extensive than ours and whose reference list
gives a fairly complete account of the literature.

In this paper the main result is Theorem 1, which characterizes absence of
arbitrage in our model. This result is more delicate than results which
characterize absence of approximate arbitrage for our model. Accordingly,
Theorem 2 is an easy consequence of Theorem 1. We believe that our main
result is new. Furthermore, we have used only probabilistic techniques, in
contrast to the proofs of the results on approximate arbitrage mentioned
before, which use the Hahn—Banach theorem and other methods from func-
tional analysis. Qur approach looks to us more natural to mathematical
finance, in the sense that we show how to take advantage of an arbitrage
opportunity if one exists.

After submission of this paper, one of the referees pointed out that a recent
paper by Delbaen and Schachermayer (1995) has some overlap with our
paper. We were unaware of the existence of this paper. The same referee also
remarked that another recent paper by the same authors [Delbaen and
Schachermayer (1994)] contains a result similar to Theorem 2.

REMARK. In some of the formulas we identify sets with their indicator
functions. Recall also that a process that is defined without restriction on its
time domain is taken as defined as 0 <¢ < 1.
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2. Two lemmas. The following lemma gives a condition equivalent to
the one that appears in the statement of Theorem 1. The proof of Theorem 1
will actually characterize absence of arbitrage in terms of the equivalent
condition.

LEMMA 1. We have P(a = 1) = 1 and E(Z,(1)) = 1, for every 0 <r <1, if
and only if E(Z (1)) = 1 for every stopping time 0 < 7 < 1.

Proor. Sufficiency is trivial. If P(a < 1) > 0, then E(Z,(1)) < 1 and this
contradicts the assumption, since « is a stopping time. Since constants are
stopping times we are done.

Now we prove necessity. Suppose there exists a stopping time 0 < 7<1
such that E(Z (1)) < 1. Let
k-1 &k
,;],k =1,2,...,n,n=12....

2.1 k if
) = — =
(2.1) T, - if 7

n

It is well known that {r,: n = 1,2,...} is a sequence of stopping times and
7, L T a.s. Also, E(Z (7,)) = 1since Z () = 1 and {Z (#)} is a supermartingale
which is continuous a.s., because P(a = 1) = 1. We claim that there exists n
such that E(Z, (1) < 1 Otherwise E(Z, (1)) =1 for every n, and since
E(Z, (1)|F )< Z (T ) =1 a.s., we must have E(Z, (1)IF ) =1 a.s., for every
n. This will create a contradlctlon

1> E(Z.(1))
=E(Z(7,)Z.(1))
= E(Z.(v,) E(Z, (DIF,))
=E(Zr(7,)) —» 1.
So the claim is proved. Let us, therefore, assume that, for some 7,
(2.2) E(an(l)) <1.
Since

E(Z,(1)) = E[élzk/n(”{“ ) S} ]

n k
= E[ Z E(Zk/n(l)IFk/n){Tn = ;}]
k=1
and 1 = E[X}_.{r, = k/n}], it follows that
" k
(2.3) E[El [1- E(Z,,,(V)IF,,,)] {fn =A—}

So there exists k € {1,..., n} for which P(E(Z, ,,(DIF}, ,,) <1) > 0. For this
k we have E(Z, (1)) <'1. This is a contradiction to the assumption of the
lemma. O

> 0.

In the next lemma we will assume
(2.4) P(a<1)>0.
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The goal is to show that if (2.4) holds, then there is an arbitrage. The
following special case is considerably simpler than the general case but,
nonetheless, will expose some of the ideas that are involved in the proof of
Lemma 2.

ExaMPLE. We assume now that 6(¢) is deterministic.
To make things simple, we take d = 1, r = 0 and o = 1. We assume

ftoz(s)ds=00, 1>¢>0,
0

floz(s)ds<oo, 1>¢t>0.
t

Our goal is to find an arbitrage. Let

2 -3
PRNNCICT T3 L

7(0) = 0.
Obviously 7(¢) is an increasing function and is continuous at ¢ = 0. Define

dr(t) |
B(t) = 2 sign(6(t)), 1=>¢t>0.
Some elementary calculations show that

fotB(s)O(s) ds = 7(£)"?,

[[8*(s) ds = (2).
Define the following stopping time:

’

. ¢ (8)”
y= 1nf{t> O:I;ﬁ(s) dW(s) = — 2 }

1, ifno such ¢ exists.
Observe that P(y > 0) = 1. The reason is that, by a time-change argument,

t

[B(s) dW(s) = W*(x(1)),

where W* is a standard Brownian motion. So
tB(s) dW(s
fOB()—IM()HO ast — 0, a.s.

(%) :

Finally, let
w(¢) = B(t){t < v}

" The capital gain X(¢), associated with the portfolio 7, satisfies the following
a.s.:
T(t A 'y)l/ 8

, v<t<l..
2 <

X(t) =
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It follows that 7r is an arbitrage. This example cannot be generalized immedi-
ately to handle random 6, because the arbitrage that was constructed here
will not be adapted in that case.

LEMMA 2. Assume (2.4). Then there exists an arbitrage.

PrOOF. Define for every j = 1,...,d,

inf{t: thOjZ(s) ds=oVYhe (0,1~ t]},
t

a; =
1, ifno such ¢ exists,
where 6,(¢) is the jth coordinate of 6(#). Since a = min{a,,..., a;} we
conclude that there exists j € {1,..., d} such that
P(a; <1)>0.
We will assume first that P(a; = 0) = 1, namely, we assume that
(2.5) P([Otejz(s) ds=00,Ostsl) - 1.

We start the construction of an arbitrage by selecting two sequences of
constants ¢, | 0 and ¢, 7 such that

(2.6) Y P(ftk‘l(oj2(s) Acy)ds < 1) < o,
k=1 123
This can be done as follows: Let ¢, = ¢, = 1. After selecting {¢;,c;: i = 0,...,
k — 1}, we observe that
1
P(f:"‘l(of(s) A -t-) ds < 1) -0, t-0,
as follows from

o 1
P(ftk 1(sz(s)/\—t—)d.(s—>°°,t—>0) =1,

So we select 0 < ¢, < t,_;/2 so that

1 1
. tho1
2.7 P 02(s) AN —|ds <1| < —,
(2.7) (/tk (J(s) tk)s ) 77
and we take ¢, = 1/¢t,. Next we introduce a sequence of stopping times,
t

inf{¢, <t <t, [ (0%(s) Ac,)ds =1},
(2.8) 7 = {" “ftk(’() ) }

t,_1, ifnosuch ¢ exists.

From the Borel-Cantelli lemma it follows that 7, <¢,_; for all & large
, enough a.s. Now fix A € (1,2) and set

B(t) = X {t, <t <}k,
(2.9) P
6(t) = (10,(6) A eu )t <t <t,_1).
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We observe that

_ JiB(s)6%(s) ds . Thoaek?
ey ISP 75 = 0 e “an1/3
(/¢ B2(s)6%(s) ds) noe (Thansrk ™)
%
= lim %—n@_wa = a.s.
Now set
£)02(¢
. ————B() (), if0j(t)¢0,
(2.10) #(t) = 0;(¢)
0, if 6,(¢) = 0.
Since

j:%(s) dW,(s) = W*(/:ﬁ'2(s) ds),

where W* is a standard Brownian motion [Karatzas and Shreve (1987), page
174], it follows that

Jo#(s) dWi(s)
im 3 = 0 a.s.
t-0 (f(ffrz(s) ds)

Also, it follows from (2.10) that
ftﬁ-z(s) ds < ftﬁz(s)éz(s) ds.
0 0

So we have
oy SO e
t=0 (fotﬁ'z(s) ds)
Let
inf{t > 0: ft%(s) dW;(s)
0
(2.12) T=

1/3
t t
+ | 7(s)0,(s)ds = w2 (s d) ,
fow(s)J(s)s (f()w()s }
1, ifno such ¢t exists.

Let 7(¢) be an R%valued process whose jth coordinate is #(¢) and whose
other coordinates are identically 0. Finally, we define an arbitrage

(2.13) w(t) = B(t)(o7'(¢))7(¢){t < 7}.
Observe that the discounted capital gain X(2) associated with this arbitrage

satisfies
P(X(1) >0) =1,

(2.14) P(X(t)=0,0<t<1)=1.
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Next we drop assumption (2.5). Now we assume
(2.15) P(a; <1)>0.
Let P,(-) = P(:|F, Xw) be the regular conditional probability of P given F,.
We clearly have, for w € {a; < 1},
Pw(ft 07(s)ds =, aj(w) <t <1| =1.
Olj(w)

Also, under P, the process {W,(aj(w) + k) — Wi(a(0)): 0 <h <1 - a(w)}is
a standard Brownian motion. So, for every w € {a; < 1}, we can construct a
process 7, that satisfies 7,(¢) = 0,0 <t < a;(), and the capital gain associ-

ated with it X, satisfies
P (X (1) >0)=1,

(2.16) o(Xr (1) > 0) =

P,(X,(t)20,0<t<1)=1.

Now define
(o, t) = o, 0<t<aw)),
’ m,(w,t), aj(w)<t<l.
In order to make sure that o is adapted, we need to construct the processes

{m,} with some care. We select constants r;, | 0 such that ¢, = (a; + 1,) A 1,
¢, = 1/r, will satisfy the following a.s. on {e; < 1}:

(2.17) Y Pw(ftk_l((-)jz(s) A ck) ds < 1) < oo,
k=1 ty
This can be done as follows: after selecting {¢;,,¢;: i =0,...,k — 1}, we

observe that, for w € {aj <1},
1
Pa,(ft"_1 (Of(s) /\—)dssl) -0, r-0.
(aj+r)Al r
So we select 0 < r, <r,_;/2 so that
1 1 1
tp—1
Pl{a; <1} N {P 02(s) A —|ds<1]|>—=}|<—.
[{ J } . { w(j;aj+rk)/\1( J( ) rk) ) kZ}] k2

From the Borel-Cantelli lemma we get (2.17). The construction of 7, contin-
ues now as in the first part of the proof, with only one change: a;(w), takes
the role of 0. This shows that we can assume that 7 is adapted. From (2.16)
we get

P(X(1) > 0) = E(P,(X,(1) > 0))
=P(a;<1)
(2.18) s,
P(X(t)20,0<t<1)=E(P,(X,(t)20,0<t<1))

=1.
So 7 is an arbitrage. O
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3. Proofs of the theorems. For convenience, we repeat the theorems
and corollaries here.

THEOREM 1. There is no arbitrage if and only if P(a=1)=1 and
E(Z,(1)) = 1 for every constant 0 < r < 1.

PrOOF. (Sufficiency.) From Lemma 1 we get E(Z (1)) = 1 for every stop-
ping time 0 < 7 < 1. Let us assume that there exists a portfolio 7 that
satisfies properties (a) and (b) in Definition 3, the definition of arbitrage. Let 7
be the following stopping time:

_ [inf{0 < ¢ < 1: X(¢) +# 0},
1, ifno such ¢ exists.
It follows that #'(¢1)B~1(¢)o(t) = 0 on {¢ < 7}. So
(81)  X(t) = ['7'(s)B ! (s)a(s)[dW(s) + {r < 5)0(s) ds].
0

Since E(Z,(1)) = 1 we can define a probability measure @ by d@ = Z (1) dP.
We observe that Z (¢) X(¢) is a P-local martingale:

dX(t) = @'(t)B Y (t) o (t)(dW(t) + {T < t}0(¢) dt),

dZ. (t) = —Z (t){r<t}0'(¢) dW(¢).
So

d(Z,(t)X(1)) = Z,(¢) dX(¢) + X(t) dZ,(¢) + dX(t) dZ,(t)
= Z(O)[7 (1) B~ ()0 () — X(£){r < t}6'(t)] AW(2).

Since Z (¢)X(¢) is a P-local martingale, it follows that {X(¢): 0 <t < 1}is a
Q-local martingale. However, X(¢) is P-bounded from below by a constant,

hence also @-bounded from below by a constant, so X(¢) is actually a
@-supermartingale and so from Q(X(0) = 0) = 1 we conclude that

(3.2) Ey(X(1)) <0.
However, Q(X(1) > 0) = 1 since P(X(1) > 0) = 1. It follows that
(3.3) Q(X(1) = 0) = 1.

This implies Q(X(¢) =0, 0 <t < 1) =1, because X(¢) is a continuous Q-

supermartingale. We conclude that

(34) P(Z (t)X(t)=0,0<t=<1)=1.

However, Z (t) = 1 and Z_(¢) is continuous because P(a = 1) = 1, so on the

event {r < 1} there exists a random & > 0 such that Z (¢) >0, r<¢ <7+ 4.

We conclude that X(¢) = 0 on 7 <t < 7+ §, which contradicts the definition

of 7. Therefore P(r=1) = 1, so P(X(1) = 0) = 1 and 7 is not an arbitrage.
(Necessity.) It follows from Lemma 2 that P(a = 1) = 1. This condition is

. now being assumed. Let us assume that there exists r € [0, 1) with E(Z,(1))
= ¢ < 1. Define the stopping time

‘= {inf{O <t<1:Z(t) =0},

(3.5) . .
1, ifno such ¢ exists.
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Obviously P(¢ > r) = 1. Choose 8 > 0 such that 6 + ¢ < 1. Let
(3.6) Z*(t) = E(Z.(1) + 8IF,).

The process Z*(¢) is a positive martingale process, so it follows from the
martingale representation theorem [see Lipster and Shiryayev (1977), Theo-
rem 5.9, page 171] that there is an adapted, R%valued process ¢(t) that
satisfies P(/}llo(s)® ds < ) = 1, such that Z*(¢) satisfies

dZ*(t) = Z*(t) e(t) dW (),
Z*(0) =c + 6.
Recall that {Z,(¢)} satisfied the following SDE:
dZ,(t) = ~Z,(t)(r < )6'(¢) aW(2),
Z,(0) = 1.
The quadratic variation of {Z,(¢)} satisfies
(3.9) dlZ,.,Z.1(t) = Z2(t)0'(t)0(t){r <t} dt.
The quadratic covariation of {Z,(¢)} and {Z*(¢)} satisfies
(3.10) dZ.,Z*](t) = —Z,(t)Z*(¢){r < t}¢'()6(2) dt.
It follows from It&’s formula that on {r < ¢ < £} we have

Z*(t) 1z
d(zr(t) ) ~ 7.0 P T gy )

Z+(¢) 1
+ 750 dlZ,,Z,](t) - O] dlZ,,z*](t)
Z*(t)
Z,(t)
Z*(t)
Z,(t)
Z*(t)

=20 (PO + OO)(@W(®) +6(1) dt).

Define the stopping time

(3.7)

(3.8)

o'(t) dW(t)
(3.11)

+ 0'()0(t) dt

+

¢'(£)0(¢) dt

inf{0 < ¢t < 1: Z.(¢) = Z*(¢)},
1, ifno such ¢ exists.

©(3.12) B= {

Since Z,(0)=1>c+86=2*%0) and Z.(1) <Z.(1)+ 6=2%1), we have
P(B<1) =1 Since Z,(B)=Z*(B) =8, we actually have P(B< &)= 1.
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Next we define the following portfolio:

L1y 2@
8.13) m(r) = { BT @) Zgy (o)) + 6(1)), r=<t<B,

0, otherwise.

The capital gain process X(¢) for the portfolio 7 satisfies the following:
if B<r,then X(¢) =0, 0<t<1;
if B>r,then X(¢) =0, 0<t<r;
X - L0 20
(3.15) Z(t)  Z(r)
-Z*(r) = -1, r<t<pg;
Z*(B) Z*(r)
Z(B)  Z.(r)
=1-2Z%r)>0, B=<t<l.
We observe that P(8 < r) < 1because E(Z*(B)) = E(Z*(1)) =c + 6 < 1l and

Z*(B) = 1 on the event { B < r}. It follows that 7 is an arbitrage and we have
a contradiction. This completes the proof. O

(3.14)

1\

X(t) =

(3.16)

COROLLARY 1. Assume (1.10). Then there is no arbitrage if and only if
E(ZyD) = 1.

Proor. (Necessity.) It follows from Theorem 1 that the no-arbitrage as-
sumption implies E(Z,(1)) = 1.

(Sufficiency.) Assume E(Z,(1)) = 1. Since (1.10) clearly implies P(a = 1) =
1, all that we need to show in order to establish absence of arbitrage is
E(Z,(1)) = 1 for every 0 <r < 1. Fix 0 < r < 1. Since Z,(¢) is a martingale,
then

(3.17)  E(Z(VIF) = Z(r).
On the other hand,

(3.18) E(Zy(VIF,) = Zy(r) E(Z,()IF,).
Putting (3.17) and (3.18) together gives

(3.19) Zy(r) = Zy(")E(Z,(VIF,).

Since (1.10) implies P(Z,(r) > 0) = 1, it follows from (3.19) that E(Z,.(1IF,)
~ =1, which implies E(Z,(1)) = 1. O

"COROLLARY 2. Assume (1.11). Then there is no arbitrage if and only if
there exists a probability measure @ equivalent to P such that W*(t) is a
Q-Brownian motion.
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ProoF. This follows immediately from Corollary 1 and the Girsanov
theorem [see Lipster and Shiryayev (1977), Theorem 6.3, page 232]. O

COROLLARY 3., Assume (1.11). There is an arbitrage m whose capital gain
process X satzsﬁes P(X(t) > —1,0 <t < 1) = 1, if and only if there exists o,
an adapted, R%-valued process that satisfies P([tle(s)I* ds < ®) = 1, so that

n(1) = 5 B (o (D) (o2) + 0(2),

where the process Y(t), defined by
Y(¢) - exp{/¢(s) aw(s) - [

satisfies P(Y(1) > Zy(1)) = 1 and P(Y()) > Z,(1)) > 0. The capital gain pro-
cess of w is X(¢) = Y(£)/Zy(¢) — 1.

tII¢(S)|I s}

Proor. (Sufficiency.) This is proved by performing the same calculation as
(8.11) with Y(¢) and Z,(¢) taking the role of Z*(¢) and Z,(¢), respectively:

Y(t) Y (1)
d =z Pm o (£))(dW(t) + 6(t) dt).

Zy(t)
By choosing 7 as prescribed in the corollary, we see that its capital gain is
X(t) =Y(t)/Z(t) — 1, so 7 is an arbitrage.

(Necessity.) Let us assume that there is an arbitrage = whose capital gain
process X satisfies P(X(¢) +1>0,0<t < 1) = 1. Let f be the following
Ré-valued process:

7' (¢)B7(t)o(2)
f'(t) = .
1+X(2)
From assumptions (1.4) and (1.5) and from the fact that min{X(¢) + 1:
0<t<1}>0,as, it follows that P(/; IIf(s)II2 ds < ®) = 1.
From (1.8) we get

1+X(¢) =1+ [;(1 +X(s))F'(s)[dW(s) + 6(s) ds]

Il 2
—exp{ff's)dW()_f(f()” ~r(0(s)| d }

Now set ¢(¢) = f(¢) — 6(¢). Obviously P([¢ll¢(s)l|? ds' < ) = 1. A simple cal-
culation shows that

Y 1£(s)I?
Zo((?) _eXp{f’N (5) aw(s )‘f( & —f’(s)o(s)) ds}.

We conclude that 1 + X(¢) = Y(¢)/Z(¢). Since 7 is an arbitrage it follows
that P(Y(1)/Zy(1) > 1) = 1 and P(Y(1)/Z,(1) > 1) > 0. O
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THEOREM 2. There is no approximate arbitrage if and only if there exists a
probability measure @ equivalent to P such that W*(t) is a Q-Brownian
motion.

ProoF. (Sufficiency.) Let {m,} be a sequence of portfolios that satisfies (a)
and (b) in Definition 4. Let {X,} be its respective sequence of discounted
capital gains; X,(¢) is a @-local martingale which is bounded below by a
constant, and hence it is a @-supermartingale. So, for all n,

(3.20) Eo(X,(1)) <0.

Now, it follows from Definition 4(b) that P(X,(1) < 0) » 0, so we have
Q(X,(1) < 0) - 0. Since Q(X,(1) > C) = 1 we must have E,(X,(1) A 0) - 0.
However, Ey(X,(1) A 0) - 0 and (3.20) together imply

(3.21) Ey(X,(1)) — 0.

So X,(1) — 0 in Q-probability, hence in P-probability. This means that {m,}
does not satisfy Definition 4(c), and it is not an approximate arbitrage.

(Necessity.) If there is no approximate arbitrage, then, of course, there is
no arbitrage. So we learn from Theorem 1 that P(a = 1) = 1 and E(Z,(1)) =
1. All we need to prove is that P(Z,(1) > 0) = 1, because then an application
of the Girsanov theorem will finish the proof. We will assume that P(Z,(1) =

0) > 0 and construct an approximate arbitrage.
For all n let the following hold:

;- inf{0 < ¢ < 1: Z,(¢) = 1/n},
" 1, ifno such ¢ exists;

llo(s)l?
_Jinflr, <t <1 [* o(s)dw(s) + [° (s) ds =1},
B, = (n) ) 2

(3.22) 1, ifno such ¢ exists;

Y, (t) = exp{fot{fn <s< Bn}(e’(s) dW(s) + ”0(;))” ds)};

m(8) = {1, <t < B,)Y, () B(¢)(o7(2)) 6(2).
Let X,(¢) be the discounted capital gain of portfolio 7, at time ¢. We will
prove that {m,} is an approximate arbitrage. We get

1+X,(¢8)

(3.23) =1+ fotﬂ,i(S)B‘l(s)a(s)[dW(s) + 6(s) ds]

—1+ [(:Yn(s){'rn <s < B)(0'(s) dW(s) + 10(s)II ds).
It follows from the definition of Y, that
Y (t) = 1+ [Vo(s){7 <5 < B} (6'(5) dW(s) + 10(s)II* ds).
0
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So we have

(3.24) 1+X,(t) = Y,(¢).

Since Y, (¢) is positive, we get that {X,} satisfies Definition 4(a) with C = —1.
Next we observe that

(325) {Zo(1) = 0} c {7, < 1},
because Z(¢) is continuous. We also have
2
MAU=0M;“;f%@dWQ)+ﬁwM§W ds > oo, t > 1},
So we get
(3.26) (Z(1) = 0} < {1, < B, < 1}.
From (3.22) and (3.24) we conclude that
(3.27) {7, < B, <1} C {X,(1) = exp(1) — 1 > 0}.

It follows that {X,(1) < 0} < {r, < 1} N {Z,(1) > 0}, but continuity of the pro-
cess Z, implies that P({r, < 1} N {Z,(1) > 0}) — 0, and this proves that {X,}
satisfies Definition 4(b). Definition 4(c) follows from (3.26) and (3.27):

P(X,(1) = exp(1) — 1) > P(Z,(1) =0) >0 forall n.

So {m,} is an approximate arbitrage. O

4. Some examples. Here are some simple examples that we have en-
countered while doing this work. In all of them we assume d =1, o0 = 1 and
r=0.

ExampLE 1. This is an example where (1.11) holds and E(Z,(1) < 1. It
looks somehow simpler than a related example in Lipster and Shiryaev
[(1977), page 222]. It follows from Corollary 2 that there is an arbitrage. Let

(4.1) 0(t) ={t<r}(1—-¢)"",
where 7 is a stopping time defined by

. e 1 ¢ 1
(4.2) ;e 1nf{t: —j(;de(s) —fomds= —1},

1, ifno such ¢ exists.

Since we have

. t 1 t 1 .
—f dW(s) —/—-——2—ds—> — oo, t—>1las,,
0l-s 02(1—5s)

it follows that P(r < 1) = 1,’so (1.11) holds and E(Z,(1)) = exp(—1) < 1.

EXAMPLE 2. In this example P(a = 1) = 1, E(Z,(1)) = 1 and P(Z,(1) = 0)
> 0. It follows from Theorem 2 that there is an approximate arbitrage. We
will show that there is no arbitrage.
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Let
(4.3) 0(¢) ={t<By1-1t)",
where B is a stopping time defined by

. ¢ 1 t 1
(44) B = lnfti—j;l_de(s)—‘[()z(_l'_—s)—z—dS=1},

1, ifno such ¢ exists.

We get that Z(¢) is bounded by exp(1). Since Z(¢) is a local martingale, it is
actually a martingale and E(Z,(1)) = 1. So we conclude from Corollary 1 that
there does not exist an arbitrage. We observe next that Z,(1) € {0, exp(1)} a.s.
It follows that P(Z,(1) = 0) =1 — exp(—1) > 0.

ExaMpLE 3. This example is a minor modification of Example 2. As in
Example 2 we will have P(a = 1) = 1, E(Z,(1)) = 1 and P(Z,(1) = 0) > 0,
but there exists an arbitrage.

Let

{t<B}(05—-1t)"", if0o<¢t<05,
(4.5) 6(¢) =10, if 0.5 < ¢ < 1and Z,(0.5) > 0,
1-t)"" if0.5 < ¢ < 1and Z,(0.5) = 0,

where B is a stopping time defined by

. ) ¢ 1 t 1 B
(46) B= 1nf{t$0.5. —j‘;l—_de(S) —j;)mds— 1},

0.5, ifno such ¢ exists.

By arguing as in Example 2, we get E(Z,(0.5)) = 1 and P(Z,(0.5) = 0) > 0.
However, Zy(1) = Z((0.5) a.s., so indeed E(Z,(1)) = 1 and P(Z,(1) = 0) > 0.
The existence of an arbitrage follows from Theorem 1 since E(Z,4(1)) =
exp(—1) < 1.

ExampLE 4. In this example P(a < 1) > 0 and E(Z,(1) =1 for every
0 <r <1 Let ¢: R - (0.25,1) be measurable and strictly increasing. Define

(4.7) B = ¢(W(0.25)),

where B is a stopping time and P(B =r) = 0,0 < r < 1. Define the stopping
time

{

(4.8) 7=

S
inf{0.25 <t<p: —f s
0.25 -

B, ifno such ¢ exists.

dw g
(s)_f()4252(B—s)2 °T }’
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Now we define 6(¢):

0, if0 <t < 0.25,
{t<r}(B—1t)"", if0.25<t<8,
0

(4.9) 0(z) = , ifB<t<landr<p,
(t—B)7", ifB<t<landr=p.

We have

(4.10) P(a<1l)y=P(B=r17)>0.

Since Z,(¢) is bounded and a local martingale, it is a martingale and
E(Z,(1)) = 1. Our goal is to show that E(Z (1)) =1, 0<r <1 Fix r. We
have

Zy(r) = E(Z(1)IF,)
= Zy(r)E(Z(VIF,).
It follows that
(4.11) E(Z(1){Zy(r) > 0}) = P(Zy(r) > 0).

Next observe that on { 8 < r, 7= B} we have

1 1
Zr(].) = exp{—frlg—_———ﬁ— dW(S) - [-1.2(3——3)-5 ds}.

Let P_() be the regular conditional probability of P given F,. With respect to
P, we{B<r, =B}, we have B = B(w) is a constant, [}(1/(s — B)*)ds <
o and {W(r + h) — W(r): 0 < h} is a standard Brownian motion. So, for every
we{B<r,r=B}, Z(t)is a P, -martingale and E_(Z,.(1)) = 1. We conclude
that

(412) E(Zr(l){B<r’T=B})=P(B<r,T=B)'

Since {Z,(r)=0}={B<r, 7=}, we get from (4.11) and (4.12) that
E(Z. (1) = 1.

ExaMpLE 5. Here we assume (1.11), E(Z,(1)) <1 and that there is a
constant D > 0 such that P(Zy(1) < D) = 1. Let

_ |inf{0 <t: Z(2) = D},
1, ifno such ¢ exists
Observe that P(r < 1) > 0; otherwise Zy(¢), as a uniformly bounded local
martingale, will be a martingale and then we would have E(Z,(1)) = 1. Using
Corollary 3, we can construct an arbitrage by taking
0, if0<t<r,
w(t) = 6(¢)D

, ifr<t<]1.
Zy(t)
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The capital gain of this 7 satisfies
0, if r=1.

xy={_D _
Zy(1)

1, ifr<1.

This is a different arbitrage than the one which follows from the proof of
Theorem 1.
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