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PERPETUAL OPTIONS AND CANADIZATION THROUGH
FLUCTUATION THEORY

BY A. E. KYPRIANOU AND M. R. PISTORIUS

Utrecht University

In this article it is shown that one is able to evaluate the price of perpetual
calls, puts, Russian and integral options directly as the Laplace transform of
a stopping time of an appropriate diffusion using standard fluctuation theory.
This approach is offered in contrast to the approach of optimal stopping
through free boundary problems. Following ideas of Carr [Rev. Fin. Studies
11 (1998) 597–626], we discuss the Canadization of these options as a
method of approximation to their finite time counterparts. Fluctuation theory
is again used in this case.

1. Introduction. We begin by introducing the standard stochastic model of a
complete arbitrage free market. The market consists of a bond and a risky asset.
The value of the bond B = {Bt : t ≥ 0} evolves in time deterministically such that

Bt = B0e
rt , B0 > 0, r ≥ 0, t ≥ 0.(1.1)

The value of the risky asset S = {St : t ≥ 0} is defined on a filtered probability
space (�,F ,F,P) with the following components. � is the space of continuous
functions ω = {ωt}t≥0, from [0,∞) to R with ω0 = 0. F is the smallest σ -algebra
on � such that for every t ≥ 0, the map ω �→ ωt of � to R is F /B-measurable,
where B is the Borel-σ -algebra on R. The probability measure P on (�,F ) is
such that W = W(ω) = {ωt : t ≥ 0} = {Wt : t ≥ 0} is a Wiener process starting
from the origin. Let F 0

t be the σ -algebra generated by W up to time t , then the
filtration F is a flow of σ -algebras {Ft : t ≥ 0}, which are equal to the closure of⋂

s>t F
0
s by the P-null sets of F . The dynamics of the risky asset under P are

given by an exponential of a Brownian motion with drift

St = s exp{σWt + µt},
where s > 0, σ > 0 and µ ∈ R.

An option is a contract between the seller and the buyer, in which the buyer
receives payments of the seller if certain events happen. Options may be divided
into two classes: American-type options, which can be exercised at any time
before the expiration date and European-type options, which have exercise only
at expiration. A perpetual option is an American-type option with no expiration
date. The buyer of a perpetual has the right to exercise it at any time t and receive
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then a payment πt , which depends in some way on the underlying stock price S.
Note that the zero time point is always taken to be the instant at which the contract
commences. Examples of perpetual options are the call, the put, the Russian option
[19, 20], and the integral option [11], with payments πc, πp , πr , πi , respectively,

π
p
t = e−λt (K − St )

+, πc
t = e−λt (St − K)+,(1.2)

πr
t = e−λt max

{
max
u≤t

Su, sψ

}
, πi

t = e−λt

[∫ t

0
Su du + sϕ

]
,(1.3)

where λ,K,ψ,ϕ > 0 are constants.

REMARK. The parameter K is called the strike price, s is usually taken as the
value of the stock at time zero and we use y+ to denote max{y,0}. The parameter λ

can be considered as a continuous dividend rate. In order for the arbitrage-free
price of the Russian, call and integral perpetual option to be finite, λ has to be
positive, whereas the price of the put remains finite for λ = 0. See also [7, 22, 20].
Note that sψ can be understood to be the supremum of the risky asset price process
over some precontract period. Likewise, sϕ can be understood to be the integral of
the stock price over some precontract period.

The payoffs of the perpetual call and put differ fundamentally from that of the
Russian and integral option. The payoffs of call and put only depend on the value
of the underlying stock S at the exercise time, whereas the Russian and integral
options are path dependent options. That is to say that the payoff πt depends on
the whole path of the stock price S from some instant at or before the contract
begins and up to time t .

Two fundamental questions that can be asked of American-type perpetual
options are:

Q1. What is the arbitrage-free price of the option?
Q2. What is an optimal time to exercise?

Theorems 1.1 and 1.2 (see also, e.g., [22] and [10]) give answers to these questions,
but in a form that is not handy from an applied perspective. In order to state these
theorems, we must first introduce a little more notation.

Throughout this article we shall use the letters s and x with the assumed relation

s = exp{σx}
to represent the relationship between the starting points of S and W . We introduce
the measure Px which is a translation of the measure P such that under Px , W is a
Wiener process with inital position W0 = x. Now introduce the measure P

γ
x under

which Wt − γ t is a Wiener process starting from x. The measures P
γ
x and Px are

related through the Girsanov change of measure

dP
γ
x

dPx

∣∣∣∣
Ft

= exp
{
γ (Wt − x) − 1

2
γ 2t

}
.
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Henceforth it is understood that E
γ
x refers to expectation with respect to P

γ
x . Note

the value of the risky asset under P
µ/σ satisfies St = exp{σWt}.

Finally let Tt,∞ be the set of F-stopping times valued in [t,∞) and T t,∞ the
set of F-stopping times valued in [t,∞] where t ≥ 0.

Suppose now that π = {πt : t ≥ 0} is an F-adapted sequence of nonnegative
payments. The following well-established theorem addresses Q1 when the option
holder has even the right never to exercise, corresponding to the case that their
exercise time is infinite with possibly positive probability.

THEOREM 1.1. The artbitrage-free price 	(t, s) for an American-type
perpetual option at time t into the contract, with payments π and S starting at s

satisfies

	(t, s) = ess sup
τ∈T t,∞

E
(r/σ−σ/2)
x

[
e−r(τ−t)πτ

∣∣Ft

]
.

In particular, the arbitrage-free price of the option is given by

sup
τ∈T 0,∞

E
(r/σ−σ/2)
x [e−rτπτ ].(1.4)

If we formulate the problem insisting that the buyer must exercise within an
almost surely finite time, then exactly the same result holds except that T t,∞
should be replaced by Tt,∞.

The next theorem, taken from [22], addresses Q2.

THEOREM 1.2. Suppose that the payments π are Ft -measurable, cadlag,
without negative jumps and

{e−rτπτ : τ ∈ T 0,∞}
is uniformly integrable with respect to P

(r/σ−σ/2). Then

τ ∗ = inf{t ≥ 0 :	(t, s) ≤ πt }
is an optimal exercise time for (1.4).

Again, when the problem of pricing is reformulated so that the buyer must
exercise within an almost surely finite time, in the above theorem we can replace
T 0,∞ by T0,∞.

In reviewing the literature concerning perpetual options, one finds two dominant
methods that are used for their evaluation.
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Free boundary problem approach. The first method has been nicely charac-
terized in a series of papers [22, 20, 11] that appeared all together in Volume 39
of Theory of Probability and Its Applications. However, its origin can be traced
back as far as McKean’s paper [15] in 1965. In these papers an approach based on
free boundary problems, sometimes called Stefan problems, is applied to perpet-
ual American call and put options, Russian options and integral options. Based on
heuristic reasoning, the solution to an appropriate free boundary problem is taken
as a candidate price for the option at hand. Then this solution is shown to be equal
to the supremum (1.4) as a consequence of it being a solution to the free boundary
problem.

Fluctuation theory appoach. The second approach [22, 12], used for evaluat-
ing American call and put options, consists of proving that the optimal stopping
time has the form of a hitting time of the stock price at some level, say a. Given that
(K −St )

+ [or indeed (St −K)+] is constant at such a hitting time, the price of the
option is essentially proportional to the Laplace transform of the hitting time op-
timized over the level a. The computations for this procedure are very elementary
once the optimal stopping time is realized as a hitting time.

In the case of the Russian perpetual option, it is also worth mentioning the
paper [9]. In this paper the authors use two important properties to recover the price
of the Russian perpetual. The first is that for a continuous Markov processes Z,
if τv is a hitting time of Z then the expectation Ez(e

−λτvZτv ) is a solution to a
certain elliptic equation with boundary conditions. The second fact is the strong
Markov property. These two essentially are enough to show that the optimal
stopping time is that of a hitting time of an appropriate diffusion and also give
the analytical form of the solution.

Below we give the conclusion of both the fluctuation theory and free boundary
methods for perpetual calls and puts and the conclusion achieved by the first of
these two methods for perpetual Russian and integral options. Recall that r and σ

are parameters of the market (B,S) and λ is a parameter appearing in the claims
outlined in (1.2) and (1.3).

Let x1 < 0 < x2 be the two roots of the quadratic equation

x2 −
(

1 − 2r

σ 2

)
x −

(
2λ + 2r

σ 2

)
= 0.(1.5)

THEOREM 1.3. The arbitrage-free price of a perpetual call and put at time t

into the contract, 	call(t, s) and 	put(t, s), with payoff πc and πp, respectively,
are given by

	call(t, s) = e−λt	C(St ) and 	put(t, s) = e−λt	P(St ),(1.6)

where

	C(s) =
{

(s2 − K)(s/s2)
x2, if s < s2,

s − K, if s ≥ s2,
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and

	P(s) =
{

(K − s1)(s/s1)
x1, if s > s1,

K − s, if s ≤ s1.

Here

s1 = K
x1

x1 − 1
< K

x2

x2 − 1
= s2

are the optimal exercise boundaries. That is to say that the holder should exercise
if the value of the asset exceeds or falls below s2 and s1 in the case of the call and
put, respectively.

Consider now the equation

y2 −
(

1 + 2r

σ 2

)
y −

(
2λ

σ 2

)
= 0(1.7)

with roots y1 < 0 < 1 < y2.

THEOREM 1.4. The arbitrage-free price 	russ(t, s,ψ) of a perpetual Russian
option at time t into the contract with payoff π r satisfies

	russ(t, s,ψ) = e−λtSt	
R(�t ),

where �t := (sup0≤u≤t Su ∨ sψ)/St and

	R(ψ) =
 ψ̃

y2ψ
y1 − y1ψ

y2

y2ψ̃
y1 − y1ψ̃

y2
, 1 ≤ ψ < ψ̃,

ψ, ψ ≥ ψ̃.

(1.8)

Here

ψ̃ =
∣∣∣∣y2

y1

y1 − 1

y2 − 1

∣∣∣∣1/(y2−y1)

is the optimal exercise boundary. That is to say that the holder should exercise if
the process �t exceeds or equals ψ̃ .

THEOREM 1.5. The arbitrage-free price 	int(t, s, ϕ) of a perpetual integral
option at time t into the contract with payoff π i satisfies

	int(t, s, ϕ) = e−λtSt	
I(�t ),

where �t := (
∫ t

0 Su du + ϕs)/St and

	I(ϕ) =
ϕ∗ u(ϕ)

u(ϕ∗)
, 0 ≤ ϕ < ϕ∗,

ϕ, ϕ ≥ ϕ∗,
(1.9)
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where

u(ϕ) =
∫ ∞

0
e−2z/σ 2

z−y2(1 + ϕz)y1 dz

and ϕ∗ is the root of the equation ϕu′(ϕ) = u(ϕ). Here ϕ∗ is the optimal exercise
boundary, such that the holder should exercise once the process �t exceeds or
equals ϕ∗.

In this paper we shall show that the pricing of Russian and integral perpetual
options can also be reduced to evaluating a Laplace transform of the hitting time of
an appropriate diffusion, followed by a simple optimization over the hitting level.
These new proofs will rely heavily on fluctuation theory of Brownian motion and
Bessel processes thus remaining loyal to ideas used in pricing perpetual calls and
puts as explained in the second method above.

Several different proofs for pricing perpetual Russian options and one proof for
the pricing of integral options already exist: [19, 20, 7, 11, 9]. One might therefore
question the motivation behind providing alternative proofs. The first reason is
that the methods used in this paper can be and have been applied in markets where
the underlying is assumed to be driven by a spectrally one-sided Lévy process. The
interested reader is refered to [1]. The free boundary problem approach in principle
may also be applicable in this case. However, knowledge of solutions to integro-
differential equations is needed as opposed to fluctuation theory of Lévy processes.
The existence of solutions to such integro-differential equations in general is less
understood than the availible tools for fluctuation theory. Secondly, the fluctuation
techniques also give us an approach to deal with the issue of Canadization.

The rest of this paper is organized as follows. In the next section, for the sake
of completeness and later reflection, we review the derivation of the arbitrage-free
price of perpetual calls and puts in the context of fluctuation theory. Continuing in
this vein, in Section 3 we show how the value of the Russian perpetual option
can be established in a similar way. The strength of Section 3 centers around
Theorem 3.2 which evaluates the Laplace transform of a hitting time of a Brownian
motion reflected at its supremum. Section 4 deals with the integral option. In this
case the optimal stopping time turns out to be that of a Bessel squared process
with drift. This follows from the close relationship between exponential Brownian
motion and Bessel squared processes (cf. [25, 26]). This connection also appears
in the study of Asian options in [8].

Recently it has been proposed by Carr in [6] that finite expiry American-type
options can be approximated by a randomization of the expiry date using an
independent exponential distribution. This is what Carr refers to as Canadization.
The effect of randomization is to make the optimal exercise boundary a constant,
just as in the perpetual case. A better approximation to a fixed time expiry than
this can be made by randomizing using a sum of n independent exponential
distributions (hence an Erlang distribution) whose total mean is the length of the



PERPETUAL OPTIONS AND CANADIZATION 1083

contract. As n tends to infinity, it is possible to show convergence to the price of
the finite expiry American option. These ideas work equally well for the Russian
and integral option and we discuss them in Section 5.

On a final note we should say that the use of fluctuation theory, as indicated in
the title of this paper, in effect constitutes only half of the pricing procedure. There
is still a strength of optimal stopping theory found in Theorems 1.1 and 1.2 which
give the foundation on which we build. For standard references in the context of
these the reader is referred to [21], [17] and [12].

2. Perpetual call and put options. Combining Theorem 1.1 with the actual
form of the system of payments for call and put (1.2), we find by a simple
Markovian decompostion of the process St that the price 	call,	put of a perpetual
call and put satisfy (1.6), where

	call(t, s) = e−λt	C(St ) = e−λt sup
τ∈T 0,∞

E
(r/σ−σ/2)
x

[
e−(r+λ)τ (Sτ − K)+

]
,(2.1)

	put(t, s) = e−λt	P(St ) = e−λt sup
τ∈T 0,∞

E
(r/σ−σ/2)
x

[
e−(r+λ)τ (K − Sτ )

+].(2.2)

PROPOSITION 2.1. The optimal stopping times in (2.1) and (2.2) are of the
form

inf{t ≥ 0 :St ≥ eσh} and inf{t ≥ 0 :St ≤ eσ l},
respectively, where h and l are real constants.

PROOF. By choosing τ = 0, we see that 	C(s) ≥ (s − K)+, 	P(s) ≥
(K − s)+; that is, perpetual calls and puts are always at least as valuable as the
direct payoff. Noting that the function x �→ (x − K)+ is increasing and convex,
we see 	C(·) is increasing and convex, since integration and taking the supremum
preserve monotonicity and convexity. Furthermore, 	C is bounded above by
supτ E

(r/σ−σ/2)
x [e−(r+λ)τSτ ] ≤ ∞. Similarly, by the properties of x �→ (K − x)+,

	P(·) is bounded by K , decreasing and convex. Theorem 1.2 implies the optimal
stopping times for the call and put are given by inf{t ≥ 0 :	C(St ) = (St − K)+}
and inf{t ≥ 0 :	P(St ) = (K −St )

+}, respectively, which combined with the above
remarks completes the proof. �

REMARK. If we define for any Borel set B ,

τW
B = inf{t ≥ 0 :Wt ∈ B},

then both the stopping times in the above proposition can be expressed, respec-

tively, as τW[h,∞) and τW
(−∞,l] under P

(r/σ−σ/2)
x .
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By Proposition 2.1, the supremum over all stopping times in T 0,∞ in (2.1)
and (2.2) is equal to the supremum over all hitting times {τW[h,∞) :h ∈ R} and
{τW

(−∞,l] : l ∈ R}, respectively. Thanks to the continuity of Brownian motion, there
is no overshoot at these stopping times. Thus the prices 	call, 	put are given by

	C(s) = suph∈R V
(1)
h (s) and 	P(s) = supl∈R V

(2)
l (s) where

V
(1)
h (s) =

{
E

(r/σ−σ/2)
x

[
e
−(r+λ)τW[h,∞)

]
(eσh − K)+, log s < σh,

(s − K)+, log s ≥ σh,
(2.3)

and

V
(2)
l (s) =

{
E

(r/σ−σ/2)
x

[
e
−(r+λ)τW

(−∞,l]
]
(K − eσ l)+, log s > σ l,

(K − s)+, log s ≤ σ l.
(2.4)

REMARK. The functions V
(1)
h and V

(2)
l in (2.3) and (2.4) have a clear financial

interpretation. V
(1)
h is the value of an option that “knocks in” on exceedance of the

level expσh with call rebate; that is, the option expires as soon as the stock exceeds
the level expσh and pays out then the amount (expσh−K)+. By optimizing over
all possible values of h we find the value of the perpetual call. Similarly, V (2)

l is the
value function of an option which expires if the stock value falls below the level
expσ l and then pays out the amount (K − expσ l)+.

Thus, the computation of the prices 	call,	put boils down to the computation of
the Laplace transform of a hitting time of Brownian motion at a certain (constant)
level, followed by an optimization over that level. This Laplace transform has a
well-known explicit formula to be found in any standard text on Brownian motion
and can, for example, easily be derived using the Wald martingale. We thus quote
without reference that

E
(r/σ−σ/2)
x

[
e
−(r+λ)τW[h,∞)

]
= e−σx2(h−x)

and

E
(r/σ−σ/2)
x

[
e
−(r+λ)τW

(−∞,l]
]
= eσx1(x−l)

when h > x and l < x, respectively. Recall that x1 and x2 are the roots of the
quadratic equation (1.5).

The proof of Theorem 1.3 follows as a simple optimization procedure in (2.3)
and (2.4).

REMARK. Notice the optimal stopping times for the optimal stopping prob-
lem are not necessarily finite, depending on the sign of r − σ 2/2. If, for example,
r < σ 2/2 and the risky asset starts below the optimal exercise value s2, the optimal
stopping time for a call is infinite with positive P

(r/σ−σ/2)-probability. Had we in-
sisted that the holder should exercise in an almost surely finite time, there would
have been no optimal exercise strategy in this case.
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3. Perpetual Russian option. Following the lead of [22], the first step in
solving this problem consists in recognizing that under P

(r/σ−σ/2)
x , s−1e−rtSt acts

as a Girsanov change of measure, which adds an extra drift σ to the Wiener
process W . If we insist now that the claimants of the Russian option must exercise
within an almost surely finite time we can use the above change of measure
together with Theorem 1.1 to get

	russ(t, s,ψ) = St ess sup
τ∈Tt,∞

E
(r/σ+σ/2)
x

[
e−λτ Sτ ∨ ψs

Sτ

∣∣∣Ft

]
,(3.1)

where St := max0≤u≤t Su. Introduce the new stochastic process � = {�t, t ≥ 0}
with �t = (St ∨ ψs)/St . Note that it can be easily verified that � is a Markov
process (see [20]). Suppose now that the underlying Brownian motion has been
running not since time zero, but since some time −M < 0 and further that,
given F0, the exponential of the current distance of the Brownian motion from its
previous maximum is ψ . In this instance � can be understood to be the exponential
of the excursions of a Brownian motion with drift away from its maximum given
that at time zero its value is ψ . With this in mind, for each γ ∈ R let us introduce
a new measure P

γ

ψ under which we assume that �0 = ψ and that Wt − γ t is a
Wiener process. We shall reserve the special notation P

γ = P
γ

1 . In light of the fact
that � is a Markov process we can thus rewrite (3.1) as

	russ(t, s,ψ) = e−λtSt	
R(�t )(3.2)

with

	R(ψ) = sup
τ∈T0,∞

E
(r/σ+σ/2)

ψ [e−λτ�τ ],

where E
γ

ψ is expectation with respect to P
γ

ψ and, in effect, we may now take
�t := St/St (which is not a function of s). Moreover, on account of Theorem 1.2,
the optimal stopping time in (3.2) is given by

inf{s ≥ 0 :	R(�s) ≤ �s}.(3.3)

PROPOSITION 3.1. The optimal stopping time in (3.2) is given by

τ ∗ = inf{t ≥ 0 :�s ≥ ψ̃}(3.4)

for some constant ψ̃ ≥ 0.

PROOF. By choosing the stopping time τ = 0 we see that 	R(ψ) ≥ ψ . Now
note that we can write

	R(ψ) = sup
τ∈T0,∞

E
(r/σ+σ/2)

1 [e−λτ (Sτ ∨ ψs)/Sτ ],

where the dependency on s is superficial as it disappears through cancelation in
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the ratio. Since for every ω ∈ � the function ψ �→ (Sτ ∨ ψs)/Sτ is a convex
increasing function, 	R(·) inherits these properties, as integration over ω and
taking the supremum over τ preserve monotonicity and convexity. Combining
these facts with Theorem 1.2 completes the proof of optimality of τ ∗. Finally, from
the expression for the Laplace transform of a hitting time of � of the form (3.4),
stated in the forthcoming Theorem 3.2, we deduce that the optimal level ψ̃ is finite

[since under P
(r/σ+σ/2)

the Laplace transform is o(ψ̃−1)(ψ̃ → ∞)] and also that
the stopping time τ ∗ is almost surely finite. Thus τ ∗ ∈ T0,∞. �

It can now be seen that, just as in the previous section, the valuation of the
Russian option can be achieved by the evaluation of the Laplace transform of a
crossing time. The following theorem tells us what we need to know.

THEOREM 3.2. For Borel sets B let

τ�
B = inf{t ≥ 0 : log�t ∈ B}.

Setting η =
√

2λ + γ 2/σ , we have for logψ ∈ [0, b] and γ ∈ R,

E
γ

ψ

[
e
−λτ�[b,∞)

]
=

(
ψ

eb

)γ /σ ση cosh(η logψ) − γ sinh(η log ψ)

ση cosh(ηb) − γ sinh(ηb)
.

PROOF OF THEOREM 1.4. From (3.2), Proposition 3.1, the continuity of
Brownian motion and then Theorem 3.2, it follows as a matter of checking that
	R(ψ) is equal to the supremum over all m ≥ 1 of V

(3)
m (ψ) where

V (3)
m (ψ) =

m
y2ψ

y1 − y1ψ
y2

y2my1 − y1my2
, 1 ≤ ψ ≤ m,

ψ, ψ > m.

Here y1 and y2 are the two solutions to the quadratic equation (1.7). By elementary
optimization we find that 	R is given by (1.8). �

We conclude this section by proving Theorem 3.2.

PROOF OF THEOREM 3.2. First we prove the identity for σ = 1 and ψ = 1.
The process {log�t = Wt − Wt : t ≥ 0} can be written as the excursion process
of W away from its supremum Wt = sups≤t Wt . Now let L = {Lt : t ≥ 0} be local
time at zero of W − W . It is well known that this process can be taken as simply
the supremum; that is, L = W . Setting η =

√
2λ + γ 2, we use Girsanov’s theorem

to find that

E
γ
[
e
−λτ�[b,∞)

]
= E

[
e
−(λ+γ 2/2)τ�[b,∞)+γW(τ�[b,∞))

]
= E

η
[
e
(γ−η)W(τ�[b,∞))

]
= E

η
[
e
(γ−η)(W(τ�[b,∞))−W(τ�[b,∞))+W(τ�[b,∞))

]
(3.5)

= e(η−γ )b
E

η
[
e
(γ−η)L(τ�[b,∞))

]
,
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where we used that L = W .
Now recall that, since log � is recurrent under P

η
, Itô theory of excursions tells

us that under P
η

the suprema of excursions of log� away from zero {ht : t ≥ 0}
form a Poisson point process indexed by the local time L. Since L(τ�[b,∞)) is the
time in this Poisson point process at which the first excursion with height greater
or equal to b occurs, L(τ�[b,∞)) is exponentially distributed with parameter ν[b,∞)

where ν is the characteristic measure of the Poisson point process h.
In order to proceed with the right-hand side of (3.5) we need to supply an

expression for ν[b,∞). Under P
η and for x > 0, the set {τW[y,∞) < τW

(−∞,−x]}
coincides with the set {ht ≤ t + x; 0 ≤ t ≤ y} of excursions of W away from its
supremum, upto local time y, which have height smaller than x + t at local time t .
Let Nt(b) denote the number of excursions of maximal height greater or equal to b

up to local time t . Then,

P
η(ht ≤ t + x; 0 ≤ t ≤ y)

(3.6)
= P

η(Nt(x + t) = 0, 0 ≤ t ≤ y
) = exp

{
−
∫ y

0
ν
([x + t,∞)

)
dt

}
.

On the other hand, we know from diffusion theory [18] that

P
η(τW[y,∞) < τW

(−∞,−x]
) = s(0) − s(−x)

s(y) − s(−x)
, x > 0,(3.7)

where s denotes the scale function of a Brownian motion with drift η[s(x) =
(1−e−2ηx)/2η]. Comparing (3.6) and (3.7) we find for positive x that ν([x,∞)) =
s′(x)/s(x).

Now returning to the right-hand side of (3.5), we have that L(τ�[b,∞)) is
exponentially distributed with parameter s′(b)/s(b) and hence

E
η
[
e
−(η−γ )L(τ�[b,∞))

]
= s′(b)

(η − γ )s(b) + s′(b)
.

After some algebra we then recover the result in Theorem 3.2 for ψ = 1.
Consider now the case that logψ ∈ (0, b) and σ = 1. Note that, {log�t, t ≤

τ�
(0,b)c} has under P

γ

ψ the same law as {−Wt, t ≤ τW
(−b,0)c} under P

γ
− logψ . Set A :=

A(logψ − b, logψ) equal to the event that W exits the interval logψ + (−b,0)

below and let Ac denote the complement. The strong Markov property of � now
implies that

E
γ

ψ

[
e
−λτ�[b,∞)

]
= E

γ
[
e
−λτW

(−∞,−(b−log ψ)]1A

]
+ E

γ
[
e
−λτW[logψ,∞)1Ac

]
· E

γ
[
e
−λτ�[b,∞)

]
.

The first and second expectation follow from (3.7) applied to a Wiener process
killed at an independent exponential time with parameter λ, which has as scale
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function proportional to e−γ x sinh(ηx). The third expectation follows from the
first part of the proof. A simple algebraic exercise leads to the stated result.

In order to remove the condition σ = 1, it suffices to consider the Laplace
transform of the first time the process log�1/σ enters [b/σ,∞). �

4. Perpetual integral option. Analogously to what was done at the begining
of the last section and following the procedure in [22], we combine Theorem 1.1
with the Girsanov density s−1 exp{−rt}St under P

(r/σ−σ/2)
x and insist that the

option holder must exercise in an almost surely finite time to achieve

	int(t, s, ϕ) = St ess sup
τ∈Tt,∞

E
(r/σ+σ/2)
x

[
e−λτ

∫ τ
t Su du + (sϕ + ∫ t

0 Su du)

Sτ

∣∣∣Ft

]
.

We introduce the new stochastic process � = {�t, t ≥ 0} with

�t :=
∫ t

0 Su du + sϕ

St

,

which can easily be verified to be a Markov process. For convenience let us
now assume that the Brownian motion driving the stock has been observed since
some time −M ≤ 0 and we shall interpret the constant ϕ to be the quantity
s−1 ∫ 0

−M Su du (and assume that this is F0 measurable). Thus if P̃
γ
ϕ is the

probability measure under which W is a P
γ
0 -Brownian motion but the process �

has value at time zero equal to ϕ, then it follows that

	int(t, s, ϕ) = e−λtSt	
I(�t)

with

	I(ϕ) = sup
τ∈T0,∞

Ẽ
(r/σ+σ/2)
ϕ [e−λτ�τ ],(4.1)

where Ẽ
γ
ϕ is expectation with respect to P̃

γ
ϕ and, in effect, we may now take

�t := ∫ t
−M Su du/St (which is not a function of s).

As before we have the following result, which characterizes the optimal
stopping time in (4.1) as a hitting time of the process �.

PROPOSITION 4.1. The optimal stopping time in (4.1) is a hitting time of the
form

inf{t ≥ 0 :�t ≥ ϕ̃}, ϕ̃ ≥ 0.(4.2)

Analogously as in Proposition 3.1, we can prove the form of the optimal
stopping time. The finiteness of the optimal stopping time follows from the
forthcoming Theorem 4.2.

The problem of pricing the perpetual integral option, just as in the case of the
perpetual Russian option, is reduced to the evaluation of a Laplace transform of
a stopping time of a Markov process. The following theorem essentially gives the
analytical structure to the final price given in Theorem 1.5.
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THEOREM 4.2. For Borel sets B let

τ�
B = inf{t ≥ 0 :�t ∈ B}.

For ϕ ∈ [0, b), λ ≥ 0 and γ ≥ 0, we have

Ẽ
γ
ϕ

[
e
−λτ�[b,∞)

]
= uλ(ϕ)

uλ(b)
,(4.3)

where the function uλ is given by

uλ(x) =
∫ ∞

0
e−2y/σ 2

y−(z1+1)(1 + yx)z2 dy

with z1 < z2 the roots of z2 − (2γ/σ )z − (2λ/σ 2) = 0. In particular, P̃
γ
ϕ (τ�[b,∞) <

∞) = 1.

We shall shortly prove this theorem but let us proceed by showing that the price
of the integral option can now be quickly obtained.

PROOF OF THEOREM 1.5. The proof is given along the same lines as the
proof of Theorem 1.4. We start by noting that Proposition 4.1, in conjunction with
relation (4.1), the continuity of � and Theorem 4.2 with γ = r/σ + σ/2, implies
that 	I(ϕ) is equal to the supremum over all m ≥ 1 of V

(4)
m (ϕ) where

V (4)
m (ϕ) = m · uλ(ϕ)/uλ(m), 0 ≤ ϕ ≤ m.

The function f (m) := m/uλ(m) is positive and differentiable such that f (0) = 0
and f (m) decreases to 0 as m → ∞. Since uλ is increasing and strictly convex
it thus follows that there is a unique point in [0,∞) satisfying f ′(m) = 0 or
equivalently uλ(m) = mu′

λ(m). The theorem is proved. �

We now conclude this section by proving the main result, Theorem 4.2. We will
set σ = 1. The case of general σ is reduced to the case σ = 1 by noting that, by
the scaling property of Brownian motion, {�t, t ≥ 0} has the same law under P̃

γ
φ

as {σ−2�σ 2t , t ≥ 0} under P̃
γ /σ

ϕσ 2 .
The main idea behind the proof is to take advantage of Lamperti’s relation [13];

namely that for a Bessel process R(γ ) with dimension d = 2(γ + 1) (or index
γ ≥ 0) starting in R(γ )(0) = 1,

exp(Wt + γ t) = [
R(2γ )(A

(γ )
t /4)

]2
,(4.4)

where

A
(γ )
t =

∫ t

0
exp(Ws + γ s) ds.
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See [18] for background on Bessel processes. Thus τ�[b,∞) may be considered to
be of the form

τ�[b,∞) = inf

{
t ≥ 0 :R(2γ )

(
1

4
A

(γ )
t

)
≤
√

4

b

(
1

4
A

(γ )
t

)
+ ϕ

b

}
.

One can now see that the necessary fluctuation theory we need concerns Bessel
processes. Unlike the case of the Russian option, the necessary fluctuation results
we shall apply are quite deep and specific. We summarize them in the following
two lemmas whose proofs can be found in [25] and [24], respectively. The first
lemma is not too difficult to recover from the Girsanov theorem, but the second
needs considerably more work to prove.

LEMMA 4.3. Let P̂
γ
x be the law of a Bessel process with index γ started from

x > 0 and Ê
γ
x expectation with respect to this measure. For any stopping time T ,

define IT = ∫ T
0 [R(s)]−2 ds where {R(t) : t ≥ 0} is a Bessel process. Suppose that

T is P̂
γ
x -almost surely finite then, for λ ≥ 0,

Êγ
x [e−λIT ] = Êν

x

[(
x

R(T )

)(ν−γ )]
,

where ν =
√

2λ + γ 2.

LEMMA 4.4. Define for Bessel processes {R(t) : t ≥ 0} stopping times of the
form

T (b) = inf
{
t ≥ 0 :R(t) ≤ b

√
1 + t

}
.

For any γ ≥ 0, x > b and m ≥ 0, we have

Êγ
x

[(
1

1 + T (b)

)m]
= U(m,γ + 1, x2/2)

U(m,γ + 1, b2/2)
,(4.5)

where U is the confluent hypergeometric Kummer’s function of the second kind.
That is to say that for real valued a, b, z,

U(a, b, z) = 1

�(a)

∫ ∞
0

e−zt ta−1(1 + t)b−a−1 dt.(4.6)

(See [14] for a description of this class of functions.)

PROOF OF THEOREM 4.2. We give the proof for σ = 1. The first thing to note
is that the time change A

(γ )
t satisfies the inverse relation (see [18])

4
∫ A

(γ )
t /4

0

[
R(2γ )(s)

]−2
ds = t, t ≥ 0.(4.7)
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Thus we can rewrite τ�[b,∞) in the form

τ�[b,∞) = 4
∫ T̃

0
[R(s)]−2 ds(4.8)

under P̂
(2γ )
1 , where

T̃ = inf
{
t :R(t) ≤ √

(4t + ϕ)/b
}
.

Bessel processes have a scaling property that can be considered to be inherited
from Brownian motion. Namely that if R is a Bessel with index γ with R(0) = 1,
then for any constant c > 0, R′ := {c−1/2R(ct), t ≥ 0} is also a Bessel process with
index γ but starting from c−1/2 times its original position. It thus follows after a
brief calculation that T̃ is equal in P̂

(2γ )
1 -law to (ϕ/4) · T (

√
4/b) under P̂

(2γ )
z

where z = (4/ϕ)1/2. It is not hard to verify that lima↓0 U(a, b, z) = 1, where U is
given in (4.6). From (4.5) we see that for γ ≥ 0 and x > b,

P̂ γ
x

(
T (b) < ∞) = lim

m↓0
Êγ

x

[(
1

1 + T (b)

)m

I
(
T (b) < ∞)]= 1.

Hence, by the previous remark, also T̃ is finite P̂ (2γ )-almost surely and, since
R(γ ) with γ ≥ 0 does not reach zero, we deduce that P̃

γ
ϕ (τ�[b,∞) < ∞) = 1.

Combining this observation with Lemma 4.3, one can check that

Ẽ
γ
ϕ

[
e
−λτ�[b,∞)

]
=

(
b

ϕ

)−z1

Ê
(z2−z1)√

4/ϕ

[(
1

1 + T (
√

4/b)

)−z1
]
.(4.9)

Applying Lemma 4.4 one finds, after some algebra, the stated expression. �

5. Canadization. From a financial point of view, perpetual options may be
considered as rather theoretical objects, since in the real world options never have
an infinite time of expiration. As we will show later, perpetual-type options can be
linked to American-type options of finite expiration.

Let us consider an American-type option with finite expiration T and system of
payoff functions {πt : 0 ≤ t ≤ T }, which are cadlag and without negative jumps.
The holder of the option has the right to exercise it at any time before T . If the
holder does not exercise before this finite time then he receives a payment πT

at expiry. By considering Theorems 1.1 and 1.2 for the sequence of payments
{πt∧T : t ≥ 0} we have the arbitrage-free price of this American type

	T (x) = sup
τ∈T0,T

E
(r/σ−σ/2)
x [e−rτπτ ]

with optimal stopping time

τ ∗ = inf{0 ≤ t ≤ T :	T (t) ≤ πt},
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where the hedging capital, as in Section 1, is given by

	T (t, x) = ess sup
τ∈Tt,T

E
(r/σ−σ/2)
x [e−r(τ−t)πτ |Ft ].

Unlike the perpetual case, the optimal stopping time is (in general) not a hitting
time of a level. In many cases it will be the crossing time of a nonflat space time
boundary. For this optimal exercise boundary no explicit formulas are known. For
an account of the American put with finite time of expiration see, for example,
[16]. Since no explicit solution is known for this problem, we consider instead a
reasonable approximation. We follow the lead of [6]. The idea is to randomize T

in a sensible way, that is, to replace T by an independent random variable.
Let T1, T2, . . . be a sequence of independent exponential variables with mean T ,

which are also independent of F and denote their probability measures and
expectation, respectively, by P and E. An n-step approximation is understood
to mean replacing the claim process πt∧T by πt∧T (n) where T (n) = n−1 ∑n

1 Ti ,
which has a Gamma(n,n/T )-distribution. Note by the strong law of large numbers
T (n) → T almost surely as n tends to infinity. The next result shows that this
approximation procedure makes sense.

PROPOSITION 5.1. Let the payments π be {Ft } adapted, cadlag and with-
out negative jumps and suppose there are ε,C > 0 such that the family
{e−rτπτ : τ ∈ T0,T +ε} is uniformly integrable with respect to P

(r/σ−σ/2) and
supτ∈T0,∞,u>T +ε E

(r/σ−σ/2)[e−r(τ∧u)πτ∧u] ≤ C. Then the sequence {	(n) :n ≥ 1}
given by

	(n)(x) = sup
τ∈T0,∞

E × E
(r/σ−σ/2)
x

[
e−r(τ∧T (n))πτ∧T (n)

]
converges for each x to 	T (x) as n tends to infinity.

PROOF. For simplicity, write gt = e−rtπt , γ = (r/σ − σ/2) and P
γ
x = P ×

P
(r/σ−σ/2)
x . By an extension of Theorem 1.2 to the finite expiration case, we know

there exists an optimal stopping time τ ∗ ∈ T0,T such that 	T = E
γ [gτ∗ ]. Note that

τ ∗ ∈ T0,∞ and hence 	(n) ≥ Eγ [gτ∗∧T (n)]. By Fatou’s lemma and the fact that
g has only nonnegative jumps, we find that

lim inf
n→∞ 	(n)(x) ≥ lim inf

n→∞ Eγ
x

[
gτ∗∧T (n)

]≥ Eγ
x

[
lim inf
n→∞ gτ∗∧T (n)

]
≥ E

γ
x [gτ∗∧T ] = 	T (0, x).

To finish the proof we thus have to prove that

lim sup
n→∞

	(n)(x) = lim sup
n→∞

sup
τ∈T0,∞

Eγ
x

[
gτ∧T (n)

]≤ 	T (x).
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Using the bound on E
γ
x [gτ∧T (n) |T (n)], we find that

	(n)(x) ≤ sup
τ∈T0,∞

Eγ
x

[
gτ∧T (n)1{T (n)≤T +ε}

]+ sup
τ∈T0,∞

Eγ
x

[
gτ∧T (n)1{T (n)>T +ε}

]
≤ sup

τ∈T0,∞
E

γ
x [gτ∧(T +ε)] + C · P (

T (n) > T + ε
)
,

which after taking the lim sup for n → ∞ converges to 	T +ε(x), by virtue of the
fact that T (n) converges to T almost surely. The proof is complete by showing that
	T +ε(x) tends to 	T (x) as ε tends to zero. To do so, note that∣∣∣∣ sup

τ∈T0,∞
E

γ
x [gτ∧(T +ε)] − sup

τ∈T0,∞
E

γ
x [gτ∧T ]

∣∣∣∣
≤ sup

τ∈T0,∞
E

γ
x

[|gτ∧(T +ε) − gτ∧T |]
= sup

τ∈T0,∞
E

γ
x

[|gτ − gT |1{T <τ≤T +ε}
]

≤ E
γ
x

[|gτε − gT |1{T <τε≤T +ε}
]+ ε,

where τε is an ε-optimal stopping time; that is, τε is chosen such that

sup
τ∈T0,∞

E
γ
x

[|gτ − gT |1{T <τ≤T +ε}
]− ε ≤ E

γ
x

[|gτε − gT |1{T <τε≤T +ε}
]
.

(The existence of this ε-optimal stopping time follows since there is always a
sequence of stopping times approximating the supremum on the left-hand side.)
The expectation on the right-hand side of the previous line converges to zero by
uniform integrability. Hence it follows that 	T +ε(x) can be made arbitrarily close
to 	T (x) by making ε sufficiently small. �

REMARK. If the value function T �→ 	T considered as function of the
expiration T is a concave function, we find from Jensen’s inequality that

	T = 	E[T̃ ] ≥ E[	T̃ ] ≥ sup
τ∈T0,∞

E × E
(r/σ−σ/2)
x

[
e−r(τ∧T̃ )πτ∧T̃

]
,

where T̃ is a random variable independent of F with P -expectation T .
The Canadization of an American-type option is the one-step approximation

as described above. That is to say, the expiration date is randomized by an
independent exponential distribution with parameter α = T −1. In all the cases we
are interested in, American calls and puts, Russians and integrals, their Canadized
prices are of the form

	̂(γ ) = sup
τ∈T0,∞

Eγ

[
e−r(τ∧T1)f (�τ∧T1)

]
= sup

τ∈T0,∞
Eγ

[
e−(r+α)τf (�τ ) + α

∫ τ

0
e−(r+α)sf (�s) ds

]
,
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where � = {�t : t ≥ 0} is a continuous Markov process starting from γ under some
measure whose expectation operator is Eγ and f is a nonnegative, monotone
increasing, convex function. It can be easily checked using Theorem 1.2 that the
optimal stopping time is of the form

τ ∗ = inf
{
t ≥ 0 : 	̂(�t ) ≤ f (�t)

}
.

Hence on account of the properties of f , we can reason as in the previous sections
to conclude that τ ∗ is hitting time of the Markov process �.

In the following examples, note that it is no longer necessary that the
parameter λ is positive in order to guarantee the existence of a solution. A finite,
albeit random, expiry date removes this necessity.

5.1. One-step American put approximation (λ = 0). The first approximation
	

put
T1

(s) to the price of an American put with expiration T

	
put
T (s) = sup

τ∈T0,T

E
(r/σ−σ/2)
x [e−rτ (K − Sτ )

+]

is equal to the supremum over all l > 0 of

E
(r/σ−σ/2)
x

[
e−(r+α)τ(l)(K − Sτ(l))

+]+αE
(r/σ−σ/2)
x

[∫ τ(l)

0
e−(r+α)t (K − St )

+ dt

]
,

where τ (l) = τW
(−∞,l] and α = T −1. Using the resolvent of the Brownian motion

killed upon entering the negative halfline (see, e.g., [4])

α−1
P

γ
x

(
We(α) ∈ dy, e(α) < τW

(−∞,0]
)/

dy

= 2�−1e−x2y
(
e−ρx sinh(�x) − 1{x≥y}eρ(x−y) sinh(�x)

)
,

where 2� = x2 − x1 and 2ρ = x2 + x1 with x1 < x2 are the roots of x2 − (1 −
2r/σ 2)x − 2(α + r)/σ 2 = 0 and e(α) is an independent exponential random
variable with parameter α, we find after some algebra 	

put
T1

(s) to be equal to(
s

K

)x1

K

(
x2

x2 − x1

α

α + r
− x2 − 1

x2 − x1

)
+
(

s

l∗

)x1

K
x2

x2 − x1

r

r + α
, if s ≥ K,

K
α

r + α
− s +

(
s

K

)x2

K

(
1 − x1

x2 − x1
+ x1

x2 − x1

α

α + r

)
+
(

s

l∗

)x1

K
x2

x2 − x1

r

r + α
, if s ∈ (l∗,K),

K − s, if s ≤ l∗,
where the optimal exercise level is given by

l∗ = K

( −rx1

r + α − rx1

)1/x2

.
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5.2. One-step Russian option approximation (λ = 0). According to the
preceding, a first approximation to the price of a Russian option with expiry T

	russ
T (s,ψ) = s · 	R

T (ψ) = s · sup
τ∈T0,T

E
(r/σ+σ/2)

ψ [�τ ]

is equal to 	russ
T1

(s,ψ) = s · 	R
T1

(ψ) where 	R
T1

(ψ) is equal to the supremum over
all b > 0 of

eb
E

γ

ψ

[
e
−ατ�[b,∞)

]
+ αE

γ

ψ

[∫ τ�[b,∞)

0
e−αt�t dt

]
(5.1)

with α = T −1 and γ = (r/σ + σ/2). By an application of Itô’s lemma to the
process exp(−αt)�t , we find that

E
γ

ψ

[∫ τ�[b,∞)

0
e−αt�t dt

]

= − 1

r + α

(
eb

E
γ

ψ

[
e
−ατ�[b,∞)

]
− ψ − E

γ

ψ

[∫ τ�[b,∞)

0
e−αtS−1

t dMt

])
,

where Mt = St . Recalling that W = L and setting A = {τ�{0} < τ�[b,∞)} the second
expectation on the right-hand side can now be written

σE
γ

ψ

[∫ τ�[b,∞)

0
e−αt�t dLt

]
= σE

γ

ψ

[
e
−ατ�{0}1A

]
×
∫ ∞

0
dt E

[
e−(α+γ 2/2)L−1(t)+γ t1{sup0≤s<L−1(t)

Ws−Ws<b/σ }
]
.

An application of the Girsanov theorem together with the techniques used in the
proof of Theorem 3.2 concerning the two-sided exit problem yields

E
γ

ψ

[
e
−ατ�{0}1A

]
= ψγ/σ (ebη/σψ−η/σ − e−bη/σψη/σ )

2 sinh(bη/σ )
,

where η =
√

2α + γ 2. The integral on the right-hand side of the last but one display
can also be written∫ ∞

0
dt P

η
(

sup
0≤s<L−1(t)

(Ws − Ws) < b/σ

)
eγ t−ηt

= sinh(bη/σ )

η cosh(bη/σ ) − γ sinh(bη/σ )
,

where the equality follows by using the fact that the first excursion of height
exceeding b/σ appears after a length of local time which is exponentially
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distributed with parameter s′(b/σ )/s(b/σ ) where the scale function s(x) is taken
proportional to e−ηx sinh(ηx).

Thus, after some algebra, we find that the first approximation is given by

	russ
T1

(s,ψ) = s ·
{

r

r + α
b∗

y2ψ
y1 − y1ψ

y2

y2b
y1∗ − y1b

y2∗
+ α

r + α

(
ψ + b

y2∗ ψy1 − b
y1∗ ψy2

y2b
y1∗ − y1b

y2∗

)}
,

where y1 = (γ + η)/σ and y2 = (γ − η)/σ are the roots of y2 − (1 + 2r/σ 2)y −
2α/σ 2 = 0 and the optimal exercise level b∗ is the unique solution of

r
(
y2(1 − y1)b

y1 + y1(y2 − 1)by2
)+ α(y2 − y1)b

y1+y2−1 = 0.(5.2)

Note that uniqueness follows since the function of b in (5.2) is concave and
differentiable with a positive derivative at 1.

5.3. One-step integral option approximation (λ = 0). We now show how to
find an approximation to the price of the integral option with expiry T ; that is, we
approximate

	int
T (s, ϕ) = s · 	I

T (ϕ) = s · sup
τ∈T0,T

Ẽ
(r/σ+σ/2)
ϕ [�τ ].

The first approximation 	I
T1

to the price 	I
T is given by the supremum over all

b > 0 of

bẼ
(r/σ+σ/2)
ϕ

[
e
−ατ�[b,∞)

]
+ αẼ

(r/σ+σ/2)
ϕ

[∫ τ�[b,∞)

0
e−αt�t dt

]
,

where α = T −1. An application of Itô’s lemma to �t shows that

d�t = (1 − r�t) dt − σ�t dW
(r/σ+σ/2)
t ,

where W(r/σ+σ/2) = {Wt − (r/σ + σ/2)t, t ≥ 0} is a standard Wiener process
under P

(r/σ+σ/2). Applying now partial integration to exp(−αt)�t results in

αẼ
(r/σ+σ/2)
ϕ

[∫ τ�[b,∞)

0
e−αt�t dt

]
= 1

α + r

(
1 + αϕ − (1 + αb)Ẽ(r/σ+σ/2)

ϕ

[
e
−ατ�[b,∞)

])
.

Recalling formula (4.3) we find

	int
T1

(s, ϕ) = s ·
{

1 + αϕ

α + r
+ m∗r − 1

α + r

uα(ϕ)

uα(m∗)

}
,

where, following the line of reasoning of the proof of Theorem 1.5, m∗ > 0 is
uniquely determined by u′

α(m∗)(rm∗ − 1) = uα(m∗)r .
For related work on analytical approximation to Asian or integral-type options,

see also [5].
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5.4. n-step Russian option approximation (λ = 0). On a final note we
consider how one would evaluate an n-step approximation by using a dynamic
programming algorithm with the Russian option. Let αn = α/n and write ei =
n−1Ti for i = 1, . . . , n. Define the subsequent stages hn, . . . , h1 by

hn(ψ) = sup
τ∈T0,∞

E
(r/σ+σ/2)

ψ

[
�τ∧en

]
= sup

τ∈T0,∞
E

(r/σ+σ/2)

ψ

[
e−αnτ�τ + αn

∫ τ

0
e−αnt�t dt

]
and for m = n − 1, . . . ,1,

hm(ψ) = sup
τ∈T0,∞

E
(r/σ+σ/2)

ψ

[
�τ∧∑n

m ei

]
= sup

τ∈T0,∞
E

(r/σ+σ/2)

ψ

[
e−αnτ�τ + αn

∫ τ

0
e−αnthm+1(�t ) dt

]
.

Using the Markov property it can be checked that the price 	(n)(x) of the
n-approximation is equal to h1(ψ), the final outcome of the above dynamic
programming algorithm, for all possible starting values ψ of the Markov process.
Note that each step in the dynamic programming algorithm requires a solution of
a problem of the form

sup
τ∈T0,∞

Eγ

[
e−αnτ f (�τ ) + αn

∫ τ

0
e−αnsg(�s) ds

]
,

where g is another nonnegative, convex, monotone increasing function. It can be
reasoned similarly to previously using Theorem 1.2 that for each stage of the
algorithm, the optimal stopping time is still a hitting time. Note that the optimal
stopping time for the nth approximation 	(n) is a randomized F-stopping time. In
future work, we will investigate the convergence properties of these randomized
stopping times. The American and integral options can be dealt with similarly.
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