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CONTINUUM PERCOLATION AND EUCLIDEAN MINIMAL
SPANNING TREES IN HIGH DIMENSIONS

By Mathew D. Penrose

University of Durham

We prove that for continuum percolation in Rd, parametrized by the
mean number y of points connected to the origin, as d→ ∞ with y fixed
the distribution of the number of points in the cluster at the origin con-
verges to that of the total number of progeny of a branching process with a
Poisson(y) offspring distribution. We also prove that for sufficiently large d
the critical points for the existence of infinite occupied and vacant regions
are distinct. Our results resolve conjectures made by Avram and Bertsimas
in connection with their formula for the growth rate of the length of the
Euclidean minimal spanning tree on n independent uniformly distributed
points in d dimensions as n→∞.

1. Introduction. In the simplest Boolean model of continuum percola-
tion, balls of unit diameter are centered at the points of a homogeneous d-
dimensional Poisson process, and one studies the connected components of
the union of the balls. Equivalently, one studies the components of the graph
on the Poisson points obtained by connecting each pair of points separated by
a distance less than 1. This and related models have been studied in the con-
texts of geometric probability, statistics and physics. For a survey, see Meester
and Roy [14]; also Alexander [2], Grimmett [9], Hall [10] and Penrose [17].

For y > 0, let Py = Py�d� be a homogeneous Poisson process of rate y/cd
on Rd, with an extra point inserted at 0, where cd = πd/2/0��d/2� + 1� is the
volume of the ball of unit radius in dimension d. The added point at the origin
represents a “typical point” of the Poisson process. Let the 1-graph on Py be
the graph with vertices at each point of Py, and edges between each pair of
points X;Y of Py such that �X − Y� < 1, where � · � is the Euclidean norm.
The parameter y is the mean degree of the vertex at 0 in this graph.

Let Cy = Cy�d� denote the set of points of Py in the component containing
0 of the 1-graph on Py; this is analogous to the cluster at the origin in lattice
percolation. Let �Cy� denote the cardinality of Cy, a random variable taking
values in �1;2;3; : : :� ∪ �∞�. Set

f
�d�
k �y� x= P��Cy�d�� = k�; k = 1;2;3; : : : ;∞:(1)

Here the symbol x= denotes definition. Informally, f�d�k �y� is the probability
that a “typical point” of the Poisson process Py\�0� lies in a component of size
k of the 1-graph on Py\�0�. Thus, f�d�k �y� is a natural object of interest in
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continuum percolation; see, for example, [15], [3] and (11) below. For k < ∞,
there is an explicit formula for f�d�k �y� [see [15], Proposition 1(a), or [3], (7)], in
terms of a rather complicated k-fold integral; there is no known closed-form
formula for f�d�∞ �y�. In this paper we derive simple limiting expressions for
these probabilities when the dimension becomes large.

Let Ty denote the total number of progeny from a single ancestor of a
Galton–Watson branching process with Poisson(y) offspring distribution. In
other words, set Ty =

∑∞
n=0Zn, where �Zn� is the Galton–Watson process with

generating function Gy�s� = exp�y�s− 1��, with Z0 = 1. Our main results are
that �Cy� is stochastically dominated by Ty, but that the (possibly defective)
distribution of �Cy�d�� converges weakly to that of Ty as d→∞.

A consequence of our results is the resolution of some conjectures made by
Avram and Bertsimas [3], who were interested in the distributions of �Cy� and
of Ty in connection with the series expansions they developed for the growth
rates, as n becomes large, of certain random minimal spanning trees on n
points, which we describe in detail in Section 3. Our results help to clarify the
relationship between these growth rates.

Another consequence of our results is a proof that, for the Boolean model
described above in sufficiently high dimensions, there is a range of values of y
for which unbounded occupied and vacant regions coexist, partially resolving
a conjecture in [14]. This is explained in Section 4.

In Section 5 we describe a sequential construction of a set equivalent to Cy,
and give a heuristic explanation of the ideas behind our proofs. In Sections 6
and 7 we finally prove the main results.

2. The main results. Let �fk�y�; k ≥ 1� denote the probability function
of Ty; that is, define

fk�y� x= P�Ty = k� =
kk−2

�k− 1�!y
k−1e−ky; k = 1;2;3; : : : :(2)

The equality in (2) can be verified using the formula of Dwass [8] for the
distribution of Ty; see also Jagers [11], Theorem 2.11.2, and Section 3 below.

Our results may be compared with the conjectures in Avram and Bertsimas
[3], page 129. Our f�d�k �y� is written there as f�E�k �y�, while our fk�y� is written
there as f�I�k �y�. Part (b) of our first result confirms Conjecture 1 of [3].

Proposition 1. (a) Let y > 0. Then, for all d; �Cy� is stochastically domi-
nated by Ty: That is,

k∑
j=1

f
�d�
j �y� ≥

k∑
j=1

fj�y� for all k ∈ N:(3)

(b) For y > 0;

lim
d→∞

f
�d�
k �y� = fk�y� for all k ∈ N:(4)
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Our main result says that the limit in (4) can be taken inside the infinite
sum over k ≥ 1. Thus, the distribution of Cy�d� converges to that of Ty as
d→∞.

Theorem 1. Let y > 0. Let t = ψ�y� be the smallest positive solution to the
equation t = exp�y�t− 1��. Then

lim
d→∞

∞∑
j=1

f
�d�
j �y� =

∞∑
j=1

fj�y� = ψ�y�:(5)

The second equality in (5) is simply the classical extinction probability the-
orem for the Galton–Watson process.

Theorem 1 shows that as d → ∞ the percolation probability f
�d�
∞ con-

verges to the survival probabilty 1−ψ�y� for the Galton–Watson process with
Poisson(y) offspring distribution. Since ψ�1� = 1 and ψ�y� < 1 for y > 1, it is
easily deduced, from Proposition 1(a) and Theorem 1, that the critical value
yc�d� x= inf�y: f�y�∞ > 0�, above which percolation can occur, satisfies

lim
d→∞

yc�d� = 1:(6)

Equations (5) and (6) are continuum analogues of the results of Kesten [12]
for percolation on the nearest-neighbor integer lattice Zd. The problem of eval-
uating yc�d� arises both physically (see Hall [10], Section 4.7) and in cluster
analysis (see Penrose [17]); in the latter application, d may be arbitrarily
large.

The next result confirms the second part of Conjecture 2 of [3], and is im-
mediate from Proposition 1(b) and Theorem 1, along with a routine weak
convergence argument.

Corollary 1. For each K ∈ N;

lim
d→∞

∑
k≥K

k−1f
�d�
k �y� =

∑
k≥K

k−1fk�y�:(7)

Finally, we show among other things that the first part of Conjecture 2 of
[3] is false.

Proposition 2. Let d ∈ N. For all y ≥ 0; f�d�1 �y� = f1�y�. Also

∑
k≥K

k−1f
�d�
k �y� ≥

∑
k≥K

k−1fk�y�; K = 1;2;(8)

but, for some y1 > 0;

∑
k≥3

k−1f
�d�
k �y� <

∑
k≥3

k−1fk�y�; y < y1:(9)
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The quantity
∑
k≥1 k

−1f
�d�
k �y� has physical significance as the “free energy,”

or mean number per unit volume of components of the 1-graph on Py\�0�,
divided by the intensity y/cd; see Hall [10], Section 4.6, and Penrose [15],
Theorem 2. Equations (7) and (8) show that this quantity is bounded below
by E�T−1

y �, but converges to this lower bound as d→∞.
In applications, it is often natural to consider the connected components of

the union of balls of radius 1/2, centered at the points of Py. Let Vy denote
the volume of the component including 0, which is just the union of such balls
centered at the points of Cy. Clearly, Vy ≤ 2−dcd�Cy�; a further result is that
the distribution of �2d/cd�Vy converges to that of Ty, as d→∞. This can be
proved using (4), (5) and the proof of Lemma 2 below; we omit the details.

3. The relation to minimal spanning trees. Suppose each edge �i; j�
of the complete graph on �1;2; : : : ; n� is assigned a weightD�i; j� = D�j; i�. The
minimal spanning tree (MST) is the connected graph τ on vertices �1;2; : : : ; n�
which minimizes

∑
�i; j�∈τD�i; j�. The quantity thus minimized is the total

length Ln of the MST. Here we are interested in two particular cases where
the D�i; j� are random.

In the d-dimensional Euclidean model, X1;X2; : : : ;Xn are independent
and uniformly distributed over �0;1�d. We set D�i; j� = �Xi −Xj�. For this
model, the total length Ln is known to be almost surely asymptotic to
βn�d−1�/d, where β = β�d� is a positive constant that has not been determined
exactly. See Steele [18]; the method of that paper shows that the mean total
length of the tree is also asymptotic to βn�d−1�/d.

In the independent model with parameters d > 0 and c > 0, the variables
D�i; j�;1 ≤ i < j ≤ n, are mutually independent, positive random variables
with common distribution function �F�x�; x ≥ 0� satisfying

F�x� = cxd�1+ o�1�� as x→ 0:(10)

In this model, the mean total length of the MST is again asymptotic to
βn�d−1�/d, but now with a different (known) constant which we denote
β = β�I��d; c�. The superscript I stands for “independent.”

Progress in the evaluation of the Euclidean constant β�d�, and in unifying
the two models, has been made by Avram and Bertsimas [3]. They derived
closely related series expansions for the constants β�d� and β�I��d; c�, which
we now describe.

For z > 0, let P�d�k;n�z� [respectively, P�d; c�k;n �z�] denote the probability that
if one removes all edges with D�i; j� > z from the complete graph on n
points, a specified point lies in a component with exactly k vertices, for the
d-dimensional Euclidean model (respectively, the independent model with pa-
rameters d and c). Then, for fixed d,

P
�d�
k;n

[(
y

ncd

)1/d]
→ f

�d�
k �y� as n→∞;(11)
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where cd is the volume of the unit ball and f�d�k is given by (1). For fixed d
and c,

P
�d; c�
k;n

[(
y

nc

)1/d]
→ fk�y� as n→∞;

with fk given by (2). These limits are intuitively clear from the relevant
Poisson limit theorems; for explicit proofs, see [3]. For convenience, we re-
state the main result in [3] [note that (1) in Theorem 1 of that paper has a
factor of k−1 missing from the right-hand side].

Theorem 2 (Avram and Bertsimas [3]). In the Euclidean model in dimen-
sion d ≥ 2;

β�d� = lim
n→∞

E�Ln�
n�d−1�/d =

(
dc

1/d
d

)−1
∫ ∞

0

∞∑
k=1

(
k−1f

�d�
k �y�

)
y�1/d�−1 dy;(12)

while in the independent model with parameters d > 0 and c > 0;

β�I��d; c� = lim
n→∞

E�Ln�
n�d−1�/d =

(
dc1/d)−1

∫ ∞
0

∞∑
k=1

(
k−1fk�y�

)
y�1/d�−1 dy:(13)

From this result and Proposition 2 above, it follows that β�d� ≥ β�I��d; cd�.
This too was conjectured in [3]. The corollary (7) to Theorem 1 implies that, for
each y, for large d the integrand in (12) is close to that in (13); it is possible
that, as d → ∞, β�d� is asymptotic to β�I��d; cd�. We do not have a proof,
but see Bertsimas and van Ryzin [4] for an asymptotic expression for β�d� as
d→∞.

4. Coexistence in the Boolean model. In this section we consider the
Boolean model, which we shall denote By, given by the union of balls of di-
ameter 1 centered at the points of Py\�0�. We call the connected components
of By the occupied regions, and the components of Rd\By the vacant regions.
Let Oy (respectively, Vy) denote the occupied region containing 0 (respectively,
the vacant region containing 0), so that just one of Oy and Vy is nonempty.
Define the following critical points, at which phase transitions occur for this
model:

yc = yc�d� = inf�y: P�Oy is unbounded� > 0�;
y∗c = y∗c�d� = sup�y: P�Vy is unbounded� > 0�:

(14)

It is easily seen that the definition of yc�d� in (14) is consistent with that
given just before (6) above.

The number of infinite occupied regions is almost surely 1 if y > yc, and
a.s. 0 if y < yc. The number of infinite vacant regions is a.s. 1 if y < y∗c and
a.s. 0 if y > y∗c. Also, yc = y∗c for d = 2, and

yc ≤ y∗c if d ≥ 3:(15)

All these results can be found in [14], except for (15), which seems to be new.
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We sketch a proof of (15) for d = 3 (the proof for other values of d is sim-
ilar). Let T denote the plane ��x1; x2; x3� ⊂ R3: x3 = 0�. Then Bn ∩ T is a
Boolean model consisting of a collection of disks, centered at the points of a
two-dimensional Poisson process of rate y/c3, and with independent identi-
cally distributed radii whose common distribution is that of ��1/4� −U2�1/2,
where U is uniform on the interval �−1/2;1/2�. If (15) were false, then for
y in the interval �y∗c; yc�, both On ∩T and Vn ∩T would a.s. have no infinite
component. But this cannot happen because of known results for the two-
dimensional Boolean model ([14], Theorem 4.4).

It is conjectured in [14], Chapter 4, that the inequality (15) is strict, which
would imply that for an interval of values of y there coexist a.s. an unbounded
occupied region and an unbounded vacant region. This is believed to be true,
both because of the outcome of simulation studies and because of analogous
known results for lattice percolation [6]. We can confirm that the conjecture
is true, at least for sufficiently large values of d.

Theorem 3. (a) Let pc be the critical probability for Bernoulli site perco-
lation on the nearest-neighbor lattice Z2. Then, for d ≥ 2;

y∗c�d� ≥ 2d−2 log
(

1
pc

)
π1/2

(
0��d+ 1�/2�
0��d+ 2�/2�

)
:(16)

Consequently, there exists d0 ∈ N such that y∗c > yc for d ≥ d0.

Proof. For each �i; j� ∈ Z2, let 0i; j ⊂ Rd be the cube of side 1 centered
at �i; j;0; : : : ;0�. For each �i; j� ∈ Z2, we define two perpendicular cylin-
ders Ui; j and Vi; j contained in 0i; j. Let U0;0 (respectively V0;0) be the
cylinder of radius 1

2 and height 1, with its axis given by the line segment
from �− 1

2 ;0;0; : : : ;0� to � 1
2 ;0;0; : : : ;0� [respectively, from �0;− 1

2 ;0; : : : ;0� to
�0; 1

2 ;0; : : : ;0�]. In other words, set

U0;0 =
{
x = �x1; : : : ; xd� ∈ 00;0:

d∑
i=2

x2
i ≤

1
4

}
;

V0;0 =
{
x = �x1; : : : ; xd� ∈ 00;0: x2

1 +
d∑
i=3

x2
i ≤

1
4

}
:

Using the notation of (17) below, let Ui; j = �i; j;0; : : : ;0� + U0;0, and let
Vi; j = �i; j;0; : : : ;0� +V0;0.

We say �i; j� ∈ Z2 is good if Ui; j ∪ Vi; j contains no points of Py\�0�. If
�i; j� is good, then the straight-line segment from �i − 1

2 ; j;0; : : : ;0� to �i +
1
2 ; j;0; : : : ;0� is contained in a vacant region, as is the line segment from �i; j−
1
2 ;0; : : : ;0� to �i; j + 1

2 ;0; : : : ;0�. Therefore, if there is an infinite connected
set of good sites �i; j� in Z2, there is an infinite connected vacant region.

Since the volume of Ui; j ∪Vi; j is less than 2�2−�d−1�cd−1�,
P��i; j� is good� ≥ exp�−22−d�cd−1/cd�y�:
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Therefore, by a comparison with independent Bernoulli site percolation on Z2,

y ≤ y∗c if exp�−22−d�cd−1/cd�y� > pc;

so that y∗c ≥ 2d−2 log�1/pc��cd/cd−1�; which yields (16).
It follows from (16) that y∗c�d� → ∞ as d → ∞. A comparison with (6)

shows that yc�d� < y∗c�d� for sufficiently large d. 2

5. Sequential construction of the cluster at 0. In this section we de-
scribe a random algorithm for generating the cluster Cy. The algorithm also
applies to the following more general setting. A bounded open set B1 ⊂ Rd
is specified, symmetric in the sense that −x ∈ B1 for all x ∈ B1. Let the B1-
graph on the points of Py be given by putting edges between every X;Y ∈ Py

with X−Y ∈ B1. Let CB1
be the component of this graph including the point

0, and let �CB1
� be the number of vertices of this component.

For x ∈ Rd, define the translate

x+B1 x= �x+w: w ∈ B1�:(17)

To generate CB1
sequentially, start with the set �0�. Add the points of Py in

B1, say X1; : : : ;XN. Next add the points of Py in �X1 + B1�\B1 (a Poisson
process), and then the points in �X2+B1�\�B1∪�X1+B1��, and so on. At each
stage we add the points of Py in a region that is disjoint from those already
considered, so by the independence properties of Py, at each stage we add a
new Poisson process on the relevant region.

The proofs of the results in Section 2 are based on this procedure. We de-
scribe it more formally by the following algorithm, which generates a sequence
�Fn� of random finite subsets of Rd, with F1 ⊂ F2 ⊂ F3 ⊂ · · · ; and a sec-
ond increasing sequence G1 ⊂ G2 ⊂ G3 ⊂ · · ·, with Gi ⊂ Fi for each i. Set
Ai x=

⋃
x∈Gi
�x+B1�, which represents the region of space already considered

before stage i (the construction of sets Fi+1 and Gi+1), and Fi represents the
set of points of Py in Ai.

Initially set F1 = �0� and G1 = A1 = \, the empty set. Then at each
successive stage i = 1;2;3; : : : of the algorithm, perform the following two
operations:

1. Select xi ∈ Fi\Gi, and set Gi+1 = Gi ∪ �xi�.
2. Writing �B1� for the Lebesgue measure of B1, let Ni be a Poisson variable

with mean �y/cd��B1�, and let Ni points be placed independently and uni-
formly in xi + B1. These points are to be viewed as the offspring of xi.
Throw away those offspring that lie in Ai. Let Fi+1 be the union of the
remaining set of offspring [a Poisson process of rate y/cd on �xi +B1�\Ai]
with Fi.

The algorithm is terminated at stage i if Gi = Fi. In this case, set Fj = Fi

and Gj = Gi for all j > i. In any event, set F∞ =
⋃∞
i=1Fi and �F∞� =

card�F∞�.
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In step 1 of the ith stage, the choice of xi from possibly several candidates is
to be given by a deterministic rule, based on the positions and family trees of
the candidates. Any such rule will be said to specify a version of the algorithm.

Intuitively, the Poisson process on �xi+B1�\Ai may be viewed as the set of
points of Py in that set, so that the result of stage i is to add the points of Py

in �xi +B1�\Ai. Thus, the random set F∞ should have the same distribution
as CB1

(when finite) or a subset of CB1
(when infinite). Therefore, the following

result is clear, given sufficient intuition about the Poisson process. A formal
proof (not given here) can be effected by a discretization argument; see [13].

Lemma 1. For k = 0;1;2;3; : : : and k = ∞, P��F∞� = k� = P��CB1
� = k�:

We shall also require the following modification of the above algorithm.
Specify some open set B2 with B2 ⊃ B1. In step 2 of the algorithm, set A′i x=⋃
x∈Fi\�xi��x + B2� (so that A′i ⊃ Ai), and throw away all offspring lying in

A′i (rather than Ai). Let F′∞ be the set of points produced by this modified
algorithm. This has the distribution of a subset of CB1

. Indeed, there is a
coupling in which F′∞ is a subset of the set F∞ produced by a version of the
original algorithm, and therefore

P��F′∞� = ∞� ≤ P��CB1
� = ∞�:(18)

Heuristics. Here is a rough guide to the ideas behind the proofs of Propo-
sition 1 and Theorem 1. Take B to be the unit ball in the above algorithm, so
that the Poisson variables Ni each have mean y. Assume we use a version of
the algorithm in which xi is selected from the earliest available “generation”
of points of Fi. Then an appropriate subsequence of the sequence F1;F2; : : :
would form a simple branching random walk (BRW), if it were not for the
necessary throwing away of points, a phenomenon we denote “interference.”

The path traced out in Rd by the above BRW consists of edges which in
high dimensions are likely to be (1) of length only just smaller than 1, and (2)
mutually orthogonal. Therefore, the probability of any point being discarded
before generation k vanishes as d → ∞. For example, each point is likely to
be at a distance approximately

√
2 from its grandparent; hence, interference

due to grandparents is unlikely since
√

2 > 1. This argument will give us
Proposition 1.

The proof of Theorem 1 is harder since one is required to consider infinitely
many generations. We lay out a grid of squares on R2, and project Rd onto
R2 in such a way that the projected BRW has successive steps which are
approximately standard bivariate normals. Assuming y > 1, one can fix k
and m such that, with high probability for the projected BRW starting from
m particles in one of the squares, there are m particles of generation k in
each of the neighboring squares. We run a sequence of BRW’s indexed by
the squares of the grid, starting with the square at the origin, each BRW
running for k generations. The zeroth generation of the BRW for square 0 is
the single point at 0, and for each subsequent square the zeroth generation
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of the corresponding BRW consists (if possible) of m points lying “above” that
square (in terms of the projection), taken from the kth generation of one of
the previous BRW’s. The whole collection of BRW’s is a sort of pruned BRW
starting from the origin.

We say a square is “occupied” if the BRW for the corresponding step of the
algorithm produces at least m particles at the kth generation lying above each
neighboring square. The probability that the square 0 is occupied is close to
1− ψ�y�, while other squares have probability close to 1 of being occupied.

To make this algorithm really correspond to a version of the algorithm above
for producingF∞, we must throw some of the particles of the BRW’s away. The
key to the proof is the fact that the probability of interference is small at each
step, and therefore, even with interference taken into account, the probability
that the algorithm produces an infinite path from 0 is close to 1 − ψ�y� by a
comparison with (oriented) site percolation of occupied squares on the grid.

At each step the BRW runs for only a fixed finite number of generations.
By the same argument as for Proposition 1, for large d the chances of inter-
ference due to any particular previous step are small. Finally, the chance of
interference due to far-away steps can be made 0, if we truncate the (two-
dimensional normal) distribution of the steps of the projected random walk at
some large range ρ; indeed, the projected BRW starting from a given square
can then only spread within a range ρk from that square, and so cannot inter-
fere with any BRW from a distance greater than 2ρk from that square. If ρ is
sufficiently large, the truncation need not invalidate any of the earlier parts
of the argument.

6. Proof of propositions.

Proof of Proposition 1. In this section and the next, let B be the unit
ball �x ∈ Rd: �x� < 1�. Let �Zd

n; n = 0;1;2; : : :� be the following BRW in
Rd. Here Zd

n is a random subset of Rd. Each element (or “particle”) of Zd
n

is replaced in Zd
n+1 by a Poisson number of offspring with mean y, and the

offspring of a particle at x are uniformly distributed over x+B. Set Z0 to be
a single particle at 0. The distribution of the total progeny

∑∞
n=0 card�Zd

n� is
that of Ty.

Let the particles of this BRW be ordered as follows; all members of an earlier
generation precede all members of a later generation, and the members of any
particular generation are ranked in order of increasing modulus. Modify the
BRW by throwing away any particle X that lies in any translate of B centered
at a particle of the BRW that precedes the parent of X in the above ordering.
Also throw away all descendants of any particle thus discarded.

It is not hard to see that this construction is equivalent to a version of
the algorithm described in Section 5 (with B1 = B). The throwing away of
branches of the BRW corresponds to the discarding of offspring in Ai at stage
i of that algorithm. The construction shows by an explicit coupling that �F∞�
given by the algorithm is stochastically dominated by Ty, and therefore, by
Lemma 1, so is �Cy�.
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To prove part (b), that f�d�k �y� → fk�y� as d → ∞, it suffices to prove the
following lemma.

Lemma 2. Let y ≥ 0 and k ∈ N. Then limd→∞�
∑k
j=1 f

�d�
j �y� −

∑k
j=1 fj�y��

= 0:

Proof. The quantity inside the limit is the probability that, in the above
construction, (i) the BRW has total progeny greater than k, and (ii) after
throwing away some of the branches in the prescribed manner, we are left
with at most k particles. This event is contained in the complement of the
event, denoted Ek, that none of the first k particles in the above ordering of
the BRW is thrown away.

Let Wi denote the position of the ith particle of the BRW (in the given
ordering). Let E′i denote the event that (i) none of the offspring of Wi lies in
the union of the unit balls centered at its predecessors W1; : : : ;Wi−1; (ii) no
two of its offspring are separated by a distance less than 1; and (iii) each of
its offspring lies outside the Euclidean ball of radius 3/4 centered at Wi.

SetFk =
⋂k
i=1E

′
i. Clearly,Ek ⊃ Fk−1. The next lemma shows that P�F1� →

1 as d→∞, and that, for each k > 1, P�Fk�Fk−1� → 1 as d→∞; therefore,
P�Ek� → 1, which completes the proof.

Lemma 3. Suppose X�d� and Y�d� are independent and uniformly dis-
tributed on B. Then

lim
d→∞

P��X�d�� > 3/4� = 1;(19)

lim
d→∞
�sup�P��X�d� − x� ≤ 1�: x ∈ Rd; �x� ≥ 3/4�� = 0(20)

and

lim
d→∞

P��X�d� − Y�d�� ≤ 1� = 0:(21)

Proof. The first conclusion (19) is trivial. To prove (20), note that

�X�d� − x�2 = �x�2 + �X�d��2 − 2�X�d� · x�:

By (19), it suffices to prove that X�d� · x converges to 0 in probabil-
ity, uniformly on �x: �3/4� ≤ �x� ≤ 2�. Write X�d� in coordinates as
�X1�d�;X2�d�; : : : ;Xd�d��. By symmetry, X�d� · x has the same distribution
as �x�X1�d�. Again, by symmetry, E��X1�d��2� ≤ 1/d, so X1�d� converges to
0 in L2, hence in probability.

Finally, (21) follows at once from (19) and (20). 2
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Proof of Proposition 2. Clearly, �Cy� = 1 if and only if there are no
points of Py in the unit ball centered at 0. Therefore, f�d�1 �y� = exp�−y� =
f1�y�. The inequality

∑
k≥K

k−1f
�d�
k �y� ≥

∑
k≥K

k−1fk�y�

holds for K = 1 by the stochastic domination in part (a) of Proposition 1. It
then holds also for K = 2 because f�d�1 �y� = f1�y�. However, we now show
that, for fixed d and small enough y, the inequality is false for K = 3.

As y → 0, f3�y� and f
�d�
3 �y� are both O�y2�, whereas

∑
k>3 fk�y� and∑

k>3 f
�d�
k �y� are O�y3�. Therefore, it suffices to show that there are constants

c1 < c2 such that, as y→ 0,
∑
k≥3

f
�d�
k �y� ∼ c1y

2;(22)

while
∑
k≥3

fk�y� ∼ c2y
2:(23)

Let N1 and N2 be independent Poisson(y) variables, where N1 represents the
size of the first generation and N2 represents the number of offspring of the
(only) member of the first generation in the case where N1 = 1. Then

∑
k≥3

fk�y� = P�N1 ≥ 2� +P�N1 = 1; N2 ≥ 1�

= �e−yy2/2� + e−2yy2 + o�y2�;
so that (23) holds with c2 = 3/2.

Set γ x= P��X + Y� > 1�, where X and Y are independent and uniform on
the unit ball. Consider the construction of F∞ via a BRW, as described in
the previous section. In this construction, no members of generation 1 will
be thrown away (as their parent has no predecessor). However, given that
generations 1 and 2 of the BRW are of size 1, the particle in generation 2 is
discarded with probability 1− γ. Therefore,

∑
k≥3

f
�d�
k �y� = P�N1 ≥ 2� + γP�N1 = 1�P�N2 = 1� + o�y2�;

so that (22) holds with c1 = �1/2� + γ. 2

7. Proof of Theorem 1. Define the linear mapping L: Rd→ R2 by

L�x1; x2; : : : ; xd� = d1/2�x1; x2�:(24)

The next result is an extension of the well-known fact that a single coordinate
of a uniformly distributed variable on a high-dimensional sphere is approxi-
mately normal.
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Lemma 4. Suppose X�d� = �X1�d�; : : : ;Xd�d�� is uniformly distributed
over �x ∈ Rd: �x� < 1�. Then the two-dimensional random vector L�X�d��
converges in distribution to the bivariate normal distribution, written N�0; I�;
with mean 0 and the identity matrix I as covariance matrix.

Proof. Let Zi; i ≥ 1, be independent N�0;1� random variables. For each
d, set Yi�d� = d−1/2Zi, set Y�d� = �Y1�d�;Y2�d�; : : : ;Yd�d�� and Rd =
�Y�d��. Let Ud be an independent random variable, distributed over �0;1�
with density dyd−1; 0 < y < 1. By the strong law of large numbers, Rd → 1
as d→∞, so that Ud/Rd converges to 1 in probability.

Set X�d� = �Ud/Rd�Y�d�. Then X�d� is uniformly distributed over the unit
ball. Since L�Y�d�� has the N�0; I� distribution, it follows that L�X�d�� =
�Ud/Rd�L�Y�d�� →N�0; I� in distribution (see Billingsley [5], page 28, exer-
cise 1). 2

Proof of Theorem 1. It follows from (3) in Proposition 1 that

lim inf
d→∞

∞∑
j=1

f
�d�
j �y� ≥ ψ�y�:

Therefore, it suffices to show that, for any y with ψ�y� < 1 (i.e., y > 1) and
any ε > 0,

lim sup
d→∞

∞∑
j=1

f
�d�
j �y� ≤ ψ�y� + 3ε:(25)

With X�d� as in Lemma 4 and with Z ∼N�0; I�, the two-dimensional stan-
dard normal, for ρ > 0 define yρ�d� and yρ�∞� by

P��L�X�d��� < ρ� = yρ�d�/y; P��Z� < ρ� = yρ�∞�/y:(26)

We shall show that ρ can be chosen so that, for large d, with probability close
to 1−ψ�y�, there is an infinite path from 0 in the 1-graph on Py, consisting of
Poisson points Yi satisfying �L�Yi+1 −Yi�� < ρ. In other words, we consider
the Bρ-graph on Py, where we set

Bρ x= �x ∈ Rd: �x� < 1 and �L�x�� < ρ�:(27)

We shall show there exists ρ such that, for large d,

P�CBρ is infinite� ≥ 1− ψ�y� − 2ε;(28)

and (25) will then follow at once.
The argument to prove (28) is similar to that in Penrose [16] and elsewhere,

a comparison with oriented percolation on the lattice L x= ��i; j� ∈ Z2: i ≥
0; �j� ≤ i; �i + j�/2 ∈ Z�, with oriented edges from �i; j� to �i + 1; j ± 1�.
We can (and do) choose δ ∈ �0; ε/3� such that, for oriented site percolation on
L with parameter p ≥ 1 − 5δ, the probability exceeds 1 − ε that there is an
infinite path from 0 of occupied sites in L . See Durrett [7]. For �i; j� ∈ L , let
Ai; j be the closed square of side 1 in R2 centered at �i; j�.
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Let �Zd
n; n = 0;1;2; : : :� be the d-dimensional branching random walk

(BRW) described in Section 6, in which a particle at x has a Poisson(y) number
of offspring, uniformly distributed on the unit ball x+B. Let Zd; ρ

n be the BRW
of the same form, except that the number of offspring is Poisson with mean
yρ�d�, and the offspring are placed uniformly on x+Bρ.

Let Z∞n be the BRW in R2 with the Poisson(y) offspring distribution, whose
steps have the N�0; I� distribution. Let Z∞; ρn be the BRW in R2 with the
Poisson�yρ�∞�� offspring distribution, whose steps have the distribution of
an N�0; I� variable conditioned to lie in the disk of radius ρ. For A ⊂ R2, let
Z∞n �A� denote the number of particles of the nth generation of the BRW �Z∞n �
in A, and likewise for Z∞; ρn , Zd

n and Zd; ρ
n .

Let y > 1. By the proof of Lemma 2 of [16] (but see the remark below),
there exist m > 0 and k > 0 such that, for sufficiently large d,

P�Z∞k �A1;1� ≥m and Z∞k �A1;−1� ≥m� > 1− δ if �Z∞0 �A0;0�� ≥m:(29)

The proof of (3.3) of [16] uses the multivariate local limit theorem, but this is
not required here because the individual steps of the BRW �Z∞n � are already
normal, and the distribution of the sum of independent normal variables is
known exactly. This was pointed out to the author by R. Meester.

By the proof of Lemma 3 of [16] (again, a slight simplification is possible
here), there exists k1 > 0 such that, for sufficiently large d,

P�Z∞k1
�A1;1� ≥m and Z∞k1

�A1;−1� ≥m� > 1− ψ�y� − δ if Z∞0 = �0�:(30)

By an obvious coupling (discard all offspring at a distance greater than ρ from
the parent), given the same initial value the point process Z∞; ρn converges
weakly to Z∞n as ρ→∞, in the sense of, for example, Aldous and Steele [1].
Therefore, it is possible to take ρ to be so big that (29) and (30) are still true
with the process �Z∞n � replaced by �Z∞; ρn �. Similarly, by Lemma 4 we can then
find d0 such that for d ≥ d0 they still hold with �Z∞; ρn � replaced by the image
under L of �Zd; ρ

n �; that is, there exist ρ and d0 such that, for d ≥ d0,

P
[
Z
d; ρ
k �L−1�A1;1�� > m and Zd; ρ

k �L−1�A1;−1�� > m
]
> 1− δ;

if �Zd; ρ
0 �L−1�A0;0��� ≥m;

(31)

and

P
[
Z
d; ρ
k1
�L−1�A1;1�� > m and Zd; ρ

k1
�L−1�A1;−1�� > m

]
> 1− ψ�y� − δ;

if Zd; ρ
0 = �0�:

(32)

The value of ρ remains fixed for the remainder of the proof.
Choose k2 so large that for a Galton–Watson process �Zn� with generating

function Gy, the total number of progeny in the first k generations (from m
ancestors) or in the first k1 generations (from one ancestor) is unlikely to
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exceed k2, that is, so that

max
(
P

[ k∑
n=0

Zn > k2

∣∣∣∣Z0 =m
]
; P

[ k1∑
n=0

Zn > k2

∣∣∣∣Z0 = 1
])

< δ:(33)

We now describe an algorithm which may be viewed as a version of the
modified algorithm for generating F′∞ in Section 5, taking B1 to be Bρ and B2
to be the unit ball B. The aim is to show that the algorithm continues forever,
so that �F′∞� = ∞, with probability at least 1 − ψ�y� − 2ε; this will give us
(28) by the corollary (18) of Lemma 1. The algorithm consists of a sequence of
steps, indexed by the sites �i; j� of the lattice L . Each step consists of a copy
of the BRW �Zd; ρ

n �, run for a finite number of generations. The steps are to
be performed in the order �0;0�, �1;−1�, �1;1�, �2;−2�, �2;0�, �2;2�, �3;−3�,
�3;−1�, : : : : Step �0;0� is special since here the BRW runs for k1 generations
and starts from a single point at 0. In each subsequent step �i; j�, the BRW
runs for k generations and starts from a set of m points in L−1�Ai; j�. Initially,
we set each site �i; j� of L to be “vacant,” but we shall change its status to
“occupied” if step �i; j� is “successful.”

Step �0;0� is to run a BRW Z
d; ρ
n ; n = 0;1; : : : ; k1, with Zd; ρ

0 = �0�. Order
the particles of the BRW as follows. Particles of an earlier generation are to
precede those of a later one. Within generation n, n > 0, particles with distinct
parents inherit the ordering placed on their parents, while siblings are ordered
by modulus.

Now modify this branching process as follows. Consider successively each
point X of the BRW after generation 0 (in the ordering given, starting with
the point of smallest modulus in Zd;ρ

1 ), and remove X (along with its descen-
dants) if it lies in any translate of B centered at an (unremoved) particle that
precedes X in the ordering, and is not a sibling or parent of X. If at the end
of this procedure more than k2 particles remain, remove all but the first k2 of
the remaining particles in the ordering. Let the set F consist of all remain-
ing particles in generations 0;1;2; : : : ; k1. This corresponds to the set Fi in
the algorithm of Section 5, at the end of step �0;0�, while Gi at this point
consists of all remaining particles except those in generation k1.

Step �0;0� is deemed to be “successful” if (i) Zd; ρ
k1
�L−1�A1;1�� ≥m and

Z
d; ρ
k1
�L−1�A1;−1�� ≥m; (ii) no particle has cause to be removed; and (iii) no

particle of generation k1 lies within a distance less than 3/4 of its parent or sib-
lings. If step �0;0� is successful, change the status of site �0;0� to “occupied.”
If it is unsuccessful, the algorithm is terminated.

Assuming step �0;0� to have been successful, proceed with step �1;−1� as
follows. Let the set S1;−1 consist of the m particles in L−1�A1;−1� of the k1th
generation of step �0;0� with smallest modulus. Such a set exists by condition
(i) for the success of step �0;0�. Run another BRW, this time of k generations,
again denoted �Zd; ρ

n �, this time with Zd; ρ
0 = S1;−1. Again, order the particles

of the new BRW by the same rule as in step �0;0�. Consider successively each
particle X after generation 0 of the new BRW, in the ordering given, and
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remove X (along with its descendants) if it lies in a translate of B centered at
any unremoved particle of the BRW preceding X in the ordering, other than
its parent and siblings, or at any point of the set F created in step �0;0�,
other than the parent of X. Then remove all but the first k2 of the remaining
particles of this new BRW. Add all the remaining particles of this new BRW
to the set F. The new set F corresponds to the set Fi in the algorithm of
Section 5, at the end of step �1;−1�.

Step �1;−1� is deemed to be a success if, for this BRW, (i)Zd; ρ
k �L−1�A2;0�� ≥

m and Z
d; ρ
k �L−1�A2;−2�� ≥m; (ii) no particle of this BRW has cause to be

removed; and (iii) no particle of generation k lies within a distance 3/4 of its
parent or siblings. If this step is a success, change the status of �1;−1� to
“occupied.”

Now perform step �1;1�, and continue in the same manner. At each stage,
pick the next site �i; j� in the ordering of L which has not already been
considered and for which there is an oriented path of occupied sites in L from
�0;0� to �i− 1; j− 1� [which we call event E−�i; j��, or to �i− 1; j+ 1� [which
we call event E+�i; j��. If no such site �i; j� exists, the algorithm terminates.
For any �i; j� having been thus picked, if event E+�i; j� has occurred let Si; j
consist of the m particles in L−1�Ai; j� with smallest modulus out of those in
generation k (or k1 in the case i = 1) of the BRW of step �i−1; j+1�. If event
E−�i; j� has occurred but E+�i; j� has not, let Si; j be defined similarly using
the BRW of step �i− 1; j− 1� instead of �i− 1; j+ 1�.

Then in step �i; j�, run a new BRW, again denoted �Zd; ρ
n �, for k generations

as before, now with Z
d; ρ
0 = Si; j. Again order the particles of the new BRW

as in the case of step �0;0�, and consider successively each particle X subse-
quent to generation 0, removing X (along with its descendants) if it lies in
the translate of B centered at any unremoved particle of the BRW preceding
X in the ordering, other than its parent or siblings, or at any particle of the
set F existing at the start of step �i; j�, other than the parent of X. Then
remove all but the first k2 of the remaining particles of the BRW, and add the
remaining particles to the set F.

Step �i; j� is “successful” if (i) it produces at least m sites of the kth
generation in L−1�Ai+1; j+1� and at least m sites of the kth generation in
L−1�Ai+1; j−1� and if it satisfies conditions (ii) and (iii) described for step
�1;−1� above. If step �i; j� is “successful,” the status of site �i; j� is changed
to “occupied.”

The resulting sequence of BRW’s is equivalent to a version of the algorithm
for generating F′∞ described in Section 5. If the algorithm never terminates,
then F′∞ is infinite.

For sufficiently large d, the probability that step �0;0� is successful exceeds
1−ψ�y�−3δ, by (32), (33) and Lemma 3. We now show that if d is sufficiently
large, then, for each �i; j� other than �0;0� in L , given that �i; j� is picked at
all, the probability that step �i; j� satisfies conditions (i)–(iii) to be “successful”
exceeds 1− 5δ.

Condition (ii) fails if (a) the total progeny of the k-generation BRW of step
�i; j� exceeds k2, or (b) one of the particles in the BRW of step �i; j� lies in
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the translate of B centered at one of its predecessors (other than its parent or
siblings) in that BRW, or (c) one of the particles in the BRW of step �i; j� lies
in a translate of B centered at a particle already in F as a result an earlier
step of the algorithm. By (33) and Lemma 3,

P�(ii) fails by (a) or (b) in step �i; j�� < 2δ:(34)

If condition (ii) fails by (c), one of the first k2 particles in the BRW of
step �i; j� lies in a translate of B centered at a particle created at an earlier
step of the algorithm, say step �i′; j′�. Since the steps of the projected BRW
�L�Zd; ρ

n �� are of length at most ρ, it is impossible for this to happen unless
�x − y� ≤ �2k + k1�ρ, for some x ∈ Ai; j and y ∈ Ai′; j′ . The number of such
�i′; j′� is bounded above by some constant K, independent of i; j and d, and,
for each such �i′; j′�, at most k2 sites are added to F. Using the fact that the
previous successful step �i − 1; j + 1� or �i − 1; j − 1� satisfies conditions (ii)
and (iii), we have

P�(ii) fails by (c) only, in step �i; j�� ≤ k2
2K sup

�x�≥3/4
�P��X − x� ≤ 1��;(35)

where X is uniform on Bρ. By Lemma 3, for sufficiently large d, this upper
bound is at most δ. Also, by (31), for large enough d we have

P�(ii) holds but (i) fails in step �i; j�� ≤ δ;(36)

and by Lemma 3, for large d,

P�(iii) fails in step �i; j�� ≤ δ:(37)

It follows from (34)–(37) that for sufficiently large d the probability that step
�i; j� is successful exceeds 1−5δ. A comparison with oriented percolation with
parameter 1−5δ shows that the branching random walk algorithm continues
forever, with probability at least �1− ψ�y� − 3δ��1− ε�, the first factor being
the lower bound on the probability of success in step �0;0�. Then (28) follows
by Lemma 1 and the choice of δ. 2
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