
The Annals of Applied Probability
1996, Vol. 6, No. 1, 138–185

TAYLOR SERIES EXPANSIONS FOR POISSON-DRIVEN
(max, +)-LINEAR SYSTEMS1

By FranÇois Baccelli2 and Volker Schmidt

INRIA–Sophia Valbonne and University of Ulm

We give a Taylor series expansion for the mean value of the canonical

stationary state variables of open �max;+�-linear stochastic systems with

Poisson input process. Probabilistic expressions are derived for coefficients

of all orders, under certain integrability conditions. The coefficients in the

series expansion are the expectations of polynomials, known in explicit

form, of certain random variables defined from the data of the �max;+�-

linear system.

These polynomials are of independent combinatorial interest: their

monomials belong to a subset of those obtained in the multinomial

expansion; they are also invariant under cyclic permutation and under

translations along the main diagonal.

The method for proving these results is based on two ingredients: (1) the

(max;+)-linear representation of the stationary state variables as func-

tionals of the input point process; (2) the series expansion representation

of functionals of marked point processes and, in particular, of Poisson point

processes.

Several applications of these results are proposed in queueing theory

and within the framework of stochastic Petri nets. It is well known that

�max;+�-linear systems allow one to represent stochastic Petri nets be-

longing to the class of event graphs. This class contains various instances

of queueing networks like acyclic or cyclic fork-join queueing networks, fi-

nite or infinite capacity tandem queueing networks with various types of

blocking (manufacturing and communication), synchronized queueing net-

works and so on. It also contains some basic manufacturing models such

as Kanban networks, Job-Shop systems and so forth. The applicability of

this expansion method is discussed for several systems of this type. In the

M/D case (i.e., all service times are deterministic), the approach is quite

practical, as all coefficients of the expansion are obtained in closed form.

In the M/GI case, the computation of the coefficient of order k can be seen

as that of joint distributions in a stochastic PERT graph of an order which

is linear in k.

1. Introduction. Under the notion of an open �max;+�-linear stochastic

system, one understands a sequence �Xn� of random vectors satisfying the

recursion Xn+1 = An ⊗Xn ⊕ Bn+1 ⊗ Tn+1 where the addition ⊕ means tak-

ing the maximum and multiplication ⊗ means +. Here �Tn� is an increasing

sequence of real-valued random variables, and �An� and �Bn� are station-
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ary sequences of random matrices. Such systems allow one to represent the

dynamics of stochastic Petri nets belonging to the class of event graphs (see

[2] and [6]). In particular, this class contains various instances of queueing

networks like acyclic or cyclic fork-join queueing networks, finite or infinite

capacity tandem queueing networks with various types of blocking (manu-

facturing and communication), synchronized queueing networks and so on.

It also contains some basic manufacturing models such as Kanban networks,

Job-Shop systems and so forth. In all these models, Tn is the arrival epoch of

the nth customer in the network and the coordinates Xi
n of the state vector

Xn = �X1
n; : : : ;X

α
n� represent absolute times (like the beginning of the nth

service in the ith queue) which grow to ∞ when n increases unboundedly. For

this reason, one is actually more interested in the differences Wi
n =Xi

n −Tn
(like the waiting time of the nth customer until the beginning of his service in

queue i), which are expected to admit a stationary state Wi = limn→∞W
i
n (in

distribution) under certain rate conditions. Unfortunately, in most cases, and

particularly for systems of dimension α larger than 2, it is impossible to deter-

mine characteristics of the random vector W = �W1; : : : ;Wα� in closed form

(e.g., by complex-variable techniques, which are essentially limited to two un-

bounded coordinates). Even in the case when all system data are exponential,

analytical formulas for the expectation vector EW = �EW1; : : : ;EWα� are only

known for rather specific models; see, for example, [16] and [33]. The only case

in which the stationary (or more precisely the periodic) regime(s) of such mul-

tidimensional �max;+�-linear systems is known in explicit form seems to be

the purely deterministic case ([6], [18] and [19]). This motivated our research

to derive a method which makes it possible to determine an expansion for EW

holding for stochastic systems of any dimension.

Assuming that �Tn� is a homogeneous Poisson process with intensity λ and

that the sequences �An� and �Bn� have certain independence properties, we

derive a series expansion for EW with respect to the arrival intensity λ. For

this, we use a general method which consists of expanding the expectation of

a vector-valued functional of a marked point process using its factorial mo-

ment measures. The roots of this method can be traced back to the following

papers: [3], [10], [11], [13], [14], [21], [30], [34] and [37]. For univariate (non-

marked) point processes, this concept has been developed in [10] starting from

a corresponding first-order expansion obtained in [3]. Related higher-order ex-

pansions for functionals of independently marked Poisson processes have been

considered in [21], [30] and [34], and for more general marked point processes

in [11] and [13]; see also the survey given in [14].

Under certain monotonicity and integrability conditions on �An;Bn�, we

derive a probabilistic expression for the coefficients cik of all orders k of the

expansion

EWi =
m
∑

k=0

cikλ
k + O �λm+1�:

Namely, we show that cik = Epk+1�D
i
0;D

i
1; : : : ;D

i
k�, where Di

n is the ith

component of the random vector Dn = A−1 ⊗ · · · ⊗A−n ⊗B−n. The mappings
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pk: R
k → R are polynomials which are determined explicitly. They are of

independent combinatorial interest. Their monomials belong to a subset of

those obtained in the multinomial expansion; they are also invariant under

cyclic permutation and under translation along the main diagonal.

The applicability of the derived algorithm to determine an approximation

of EW is discussed for several examples of queueing networks. In the M/D

case (i.e., all service times are deterministic), our approach is quite practical

as all coefficients of the expansion are obtained in closed form. In the M/GI

case, the computation of the coefficient of order k can be seen as that of joint

distributions in a stochastic PERT graph of an order which is linear in k, a

problem for which no polynomial algorithms are apparently known. We never-

theless show that expansions of limited order can be obtained in explicit form

along these lines.

One can find several other earlier attempts to approximate characteristics

of queueing systems by expanding them into a series. The derivation of ex-

pansions for characteristics of continuous-time Markov chains associated with

single-server queues and stochastic networks has been studied by several au-

thors (see, e.g., [8], [9], [24] and [35]). There is also an extensive literature

on expansions for non-Markov queues in isolation (see [7], [23], [25]–[27], [32]

and [38]).

In relation to this, we would like to stress that our new approach applies

to:

1. networks with general (and possibly correlated) (see subsection 4.2.2) ser-

vice times, whereas earlier approaches for networks apply essentially to

the all exponential case;

2. a class of systems [�max;+�-linear systems] which is defined via its struc-

tural properties, and not via properties of its Markovian generator.

The paper is organized as follows. In Section 2 some preliminaries are given

including the basic recurrence equations and the �max;+�-representation of

stationary state variables. Section 3 contains the main expansion formula

and the conditions under which this expansion holds. General properties of

the polynomials pk appearing in the coefficients of the expansion are stated

and the polynomials p1; p2; : : : ; p5 up to order 5 are calculated explicitly. In

Section 4 we discuss several examples of discrete event systems, the state vari-

ables of which satisfy the basic recurrence equations, in particular stochastic

event graphs such that all places and transitions are FIFO. For practical ex-

amples of queueing, communication and manufacturing systems that fall in

the class of stochastic event graphs, it is demonstrated how expansions of EW

can be found. The general method of factorial-moment expansion is stated in

Section 5, together with the proof that it is allowed to use this method for ex-

panding EW. Section 6 is devoted to the calculation of the mappings pk which

appear in the expansion coefficients. First we show that the pk’s satisfy a re-

cursive integral equation and next we derive an explicit polynomial solution of

this equation. In Section 7 we show that, under certain tail conditions on the

random variables Di
n, the functions fi�λ� = EWi are infinitely differentiable
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in λ in a right neighborhood of 0, and that, for all n ≥ 1,

lim
λ↓0

�fi�λ���n� = Epn+1�D
i
0;D

i
1; : : : ;D

i
n�:

In that sense, the expansion stated above for EWi is of Taylor type.

2. Preliminaries.

2.1. Basic equations. The basic reference algebra throughout this paper is

the so-called �max;+�-algebra on the real line R, namely the semi-field with

the two operations �⊕;⊗�, where ⊕ is max and ⊗ is +. As in the conventional

algebra, ⊗ has priority over ⊕ in all arithmetic expressions.

Let α ∈ N = �1;2; : : :� be any given natural number. For convenience,

we denote the entries of a matrix A by Ai; j, and the components of an (α-

dimensional) column vectorX byXi; that is, consideringX as an α×1 matrix,

we have Xi;1 =Xi. As in the conventional algebra, we use the same symbols

⊕;⊗ to represent the sum and the product of two reals and two matrices,

respectively. The ⊗-product of two matrices, say A of size p× q and B of size

q× r, is the p× r matrix A⊗B with entries

�A⊗B�i; j =
q
⊕

k=1

Ai; k ⊗Bk; j(1)

and the ⊕-sum of two matrices, say A and B both of size p× q, is the p× q
matrix A⊕B with entries

�A⊕B�i; j = Ai; j ⊕Bi; j:(2)

The main topic of this paper is the set of α-dimensional vectorial recurrence

equations

Xn+1 = An ⊗Xn ⊕Bn+1 ⊗Tn+1;(3)

with initial condition X0, where:

1. �Tn� is a nondecreasing sequence of real-valued random variables (the

epochs of the arrival point process—a Poisson point process in most exam-

ples below);

2. �An� is a sequence of α × α random matrices with real-valued random

entries;

3. �Bn� is a sequence of α × 1 random matrices with real-valued random

entries;

4. �Xn� is the sequence of α-dimensional state vectors.

Various examples of discrete event systems with state variables satisfying an

equation of type (3) are provided in Section 4.

In all the applications presented below, the coordinates of the state vector

Xn represent absolute times (like the beginning of the nth service in a queue)
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which grow to ∞ when n increases unboundedly, and one is actually more

interested in the differences

Wi
n =Xi

n −Tn(4)

(like the waiting time of the nth customer until the beginning of his service in

queue i; see subsection 4.2), which are expected to admit a stationary regime

under certain rate conditions. Let τn = Tn+1 −Tn, n ≥ 0. By subtracting Tn+1

on both sides of (3), it is easily checked that the (new) state vector Wn, given

by (4) and being of dimension α as well, satisfies the linear evolution equation

Wn+1 = An ⊗C�τn� ⊗Wn ⊕Bn+1;(5)

where, for all x ∈ R, C�x� is the α× α matrix with all diagonal entries equal

to −x and all nondiagonal entries equal to ε = −∞.

2.2. Ergodic theorem. Although in this paper we will focus on the case

when the random counting measure
∑

nδTn (where δx denotes the Dirac mea-

sure at point x) is a stationary Poisson process, for the moment let us consider

the more general model where
∑

nδ�Tn;An;Bn�
is an arbitrary stationary and er-

godic marked point process N on the real line, defined on a probability space

��;F ;P�, and such that �An;Bn� is a mark of point Tn. We further assume

that ��;F ;P� is equipped with a group �θt�t∈R of measurable shift opera-

tors θt: � → � such that P is invariant with respect to �θt� and that N is

consistent with �θt�, that is, P ◦ θt = P and N ◦ θt =N�· + t�.
Moreover, we assume that N is simple. That is, with probability 1 there

are no multiple points, and that N has a positive and finite intensity λ. Point

processes on the real line and, in particular, queueing systems with arrival

epochs forming a stationary ergodic marked point process were studied in [4],

[20] and [29]. An important special case of that is the case of a renewal arrival

process and an independent (i.i.d. or Markovian) sequence �An;Bn�, which is

sometimes referred to as the renewal-Markov case.

Let P0 denote the Palm probability ofN, and θ the discrete (pointwise) shift

associated with the continuous-time shifts θt. By T0 we denote the smallest

nonnegative point of N. That is, P0�T0 = 0� = 1 and Tn; n < 0, is the nth

point of N on the negative half-line R
− = �−∞;0�. Let A = A0 and B = B0;

so, for all integers n,

An = A ◦ θn; Bn = B ◦ θn; P0-a.s.(6)

Similarly, let C = C�τ0�. That is, C�τn� = C ◦ θn under P0. Note that the

sequence �An;Bn� is stationary under both P and P0 provided that �Tn� and

�An;Bn� are independent.

The following result is proved in Chapter 7 of [6].

Theorem 1. Assume that the matrices An;Bn are P0-integrable. If ρ <

1; where ρ = λa and a is the maximal �max;+�-Liapounov exponent of the

sequence �An�; then the sequenceWn couples P0-a.s. with a unique stationary
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sequence �W ◦ θn� on ��;F ;P0�; whereW is the unique finite random-variable

solution of the functional equation

W ◦ θ = A⊗C⊗W⊕B ◦ θ;(7)

which is given by the following matrix-series:

W = B⊕
⊕

n≥1

A ◦ θ−1 ⊗C ◦ θ−1 ⊗ · · · ⊗A ◦ θ−n ⊗C ◦ θ−n ⊗B ◦ θ−n:(8)

Remark. Since C�x� commutes with any matrix, W admits the following

equivalent representation:

W = B0 ⊕
⊕

n≥1

C�−T−n� ⊗Dn;(9)

where

Dn = A−1 ⊗ · · · ⊗A−n ⊗B−n:(10)

The main object of this paper are characteristics of the law F0 of W under P0.

In a single-server queue, F0 boils down to the distribution of the stationary

actual waiting time. In some cases, one is also interested in the law F of W as

defined in (9) under P. This is the law of the X0 vector that a tagged customer

arriving at time 0 would experience, superimposed to the time-stationary ar-

rival pattern. In a single-server queue, F boils down to the distribution of

the stationary virtual waiting time. If N is Poisson, then F and F0 coincide

provided the marks are independent of the epochs of N.

3. Main results. We show that, under some assumptions stated below,

the expectation EW of the stationary state variable W given in (9) is finite

and that the components of EW can be expanded into a finite power series with

respect to the arrival intensity λ. Moreover, we derive an explicit polynomial

expression for the coefficients of this expansion.

As we will see in the next section (see particularly Lemmas 1 to 3), the

assumptions stated below are satisfied whenever the recurrence equations (3)

originate from a so-called open stochastic event graph.

3.1. Support and monotonicity assumptions. We assume that each entry

of An is either a.s. nonnegative or a.s. equal to ε; that is,

�An�i; j ≥ 0 or �An�i; j = ε; P0-a.s.;(11)

and that all entries on the diagonal of An are nonnegative; that is, �An�i; i ≥ 0.

We also assume that there exists an integer 0 < α′ ≤ α such that the first

α′ coordinates of Bn are nonnegative. That is, Bin ≥ 0 for all i ≤ α′. Moreover,

the α-dimensional vectors D0;D1; : : : with D0 = B0 and

Dk =

( k
⊗

n=1

A−n

)

⊗B−k for k ≥ 1;(12)
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are assumed to be such that

0 ≤ Di
0 ≤ Di

1 ≤ · · ·(13)

for all i = 1; : : : ; α′.

3.2. Stochastic assumptions. Throughout the rest of this paper we assume

that �Tn� is a stationary Poisson process with intensity λ and �An;Bn� is a

stationary sequence of random matrices which is independent of �Tn�. Under

these assumptions, the law of �An;Bn� is the same under P and P0. We

assume that

lim
n→∞

⊕

i

��A−1 ⊗A−2 ⊗ · · · ⊗A−n ⊗ �B−n ⊕O��i� = ∞; P0-a.s.;(14)

where O is the α-dimensional column vector with all its components equal to

0. Note that (14) is practically always fulfilled because it is sufficient for (14)

that EAi; i > 0 for some i, where E denotes expectation with respect to P0 (or

equivalently with respect to P for this specific expression). Besides this we

will assume that, for r ∈ N large enough,

λ < r

[

E
⊕

i

{

�A−1 ⊗A−2 ⊗ · · · ⊗A−r ⊗ �B−r ⊕O��i
}
]−1

:(15)

We also assume that, for the same r as above, �Hn� with

Hn =
⊕

i

{(

A−�nr+1� ⊗A−�nr+2� ⊗ · · · ⊗A−�n+1�r ⊗ �B−�n+1�r ⊕O�
)i}

(16)

is a sequence of 1-dependent random variables. Finally, we assume that

E
[

�Hn�
m+3

]

<∞(17)

for some m ∈ N.

3.3. Main theorem.

Theorem 2. Under the above assumptions on �An;Bn�; for all 1 ≤ i ≤ α′;

EWi =
m
∑

k=0

λkEpk+1�D
i
0;D

i
1; : : : ;D

i
k� + O �λm+1�:(18)

The functions pk are the following polynomials:

pk�x0; x1; : : : ; xk−1� =
∑

�i0; i1;:::;ik−1�∈Sk

�−1�qk�i0; i1;:::;ik−1�
x
i0
0

i0!

x
i1
1

i1!
· · ·

x
ik−1

k−1

ik−1!
;(19)

where

Sk = ��i0; i1; : : : ; ik−1� ∈ �0;1; : : :�k: i0+i1+· · ·+ik−1 = k

and if is = l > 1; then is−1 = is−2 = · · · = is−l+1 = 0�
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(the s− j are modulo k� and

qk�i0; i1; : : : ; ik−1� = 1 +
k−1
∑

s=0

1�is > 0�:

In particular, we get

p1�x0� = x0; p2�x0; x1� =
1
2

[

x2
0 + x

2
1 − 2x0x1

]

;(20)

p3�x0; x1; x2� =
1
6

[

x3
0 + x

3
1 + x

3
2 − 3�x2

0x1 + x
2
1x2 + x

2
2x0� + 6x0x1x2

]

;(21)

p4�x0; x1; x2; x3� =
1

24

[

x4
0 + x

4
1 + x

4
2 + x

4
3

− 4�x3
0x1 + x

3
1x2 + x

3
2x3 + x

3
3x0�

− 6�x2
0x

2
2 + x

2
1x

2
3�

+ 12�x2
0x1x2 + x

2
1x2x3 + x

2
2x3x0 + x

2
3x0x1�

− 24x0x1x2x3

]

;

(22)

p5�x0; x1; x2; x3; x4�

= 1
120

[

x5
0 + x

5
1 + x

5
2 + x

5
3 + x

5
4

− 5�x4
0x1 + x

4
1x2 + x

4
2x3 + x

4
3x4 + x

4
4x0�

− 10�x3
0x

2
2 + x

3
1x

2
3 + x

3
2x

2
4 + x

3
3x

2
0 + x

3
4x

2
1�

+ 20�x3
0x1x2 + x

3
1x2x3 + x

3
2x3x4 + x

3
3x4x0 + x

3
4x0x1�

+ 30�x2
0x

2
2x3 + x

2
1x

2
3x4 + x

2
2x

2
4x0 + x

2
3x

2
0x1 + x

2
4x

2
1x2�

− 60�x2
0x1x2x3 + x

2
1x2x3x4 + x

2
2x3x4x0

+ x2
3x4x0x1 + x

2
4x0x1x2� + 120x0x1x2x3x4

]

:

(23)

The proof of Theorem 2 is given in Sections 5 and 6. First, in Section 5,

a general expansion technique for functionals of marked point processes is

used in order to show that an expansion of EWi of the form (18) exists. The

polynomial representation (19) of the coefficients Epk+1�D
i
0;D

i
1; : : : ;D

i
k� is

derived in Section 6. In particular, it is shown that (18) is equivalent to

EWi = Ep1�D
i
0� +

m
∑

k=1

λkEpk+1�0;D
i
1 −D

i
0; : : : ;D

i
k −D

i
0� + O �λm+1�:(24)

However, before stating the proof of Theorem 2 in detail, we give some exam-

ples of application in Section 4.

Remark. We found no earlier use of this class of polynomials in the liter-

ature. Below we summarize some of their key properties (see also Section 6):
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1. The polynomials pk; k ≥ 1, are invariant with respect to circular permu-

tation. That is,

pk�x0; x1; : : : ; xk−1� = pk�x1; x2; : : : ; xk−1; x0�

for all x0; : : : ; xk−1 ∈ R.

2. The polynomials pk; k ≥ 2, are 1-invariant. That is, for all t ∈ R,

pk�x0; x1; : : : ; xk−1� = pk�x0 + t; x1 + t; : : : ; xk−1 + t�:

3. The polynomials pk; k ≥ 1, satisfy the integral recurrence relation:

pk+1�x0; x1; : : : ; xk�

=
k−1
∑

n=0

∫ xn+1−x0

xn−x0

[

pk�x0; : : : ; x0
︸ ︷︷ ︸

n

; xn+1 − u; : : : ; xk − u�

− pk�x0; : : : ; x0
︸ ︷︷ ︸

n+1

; xn+1 − u; : : : ; xk−1 − u�

]

du:

(25)

4. For all k ≥ 2,

pk�0; : : : ;0� = 0;

pk�1; : : : ; k� =
1
2
:

5. For all t ∈ R,

pk�tx0; tx1; : : : ; txk−1� = tkpk�x0; x1; : : : ; xk−1�:

4. Examples. In this section we provide several examples of discrete

event systems with the state variables satisfying a vectorial recurrence equa-

tion of type (3).

4.1. Stochastic event graphs. A Petri net is defined as a tuple PN =
�P ;T ;F ;M0�, where

P = �p1; p2; : : : ; pP� is the set of places;

T = �u1; u2; : : : ; uβ� is the set of transitions;

F ⊆ �P × T � ∪ �T ×P � is the set of arcs;

M0: P → �0;1;2;3; : : : ;M� is the initial marking:

A Petri net is an event graph if each place has not more than one input and

one output arc. A timed Petri net is a net with firing times associated with the

transitions. The firing time of a transition is the time that elapses between

the starting and the completion of the firing of the transition. If firing times

are random variables, we speak of a stochastic Petri net. A typical situation is

when the sequence �σ1
n; : : : ; σ

β
n �n, where σin is the nth firing time of transition

i, is i.i.d. In what follows, these independence conditions are assumed to be

satisfied and will be referred to as a GI-stochastic event graph later on. This



SERIES EXPANSIONS 147

admits as a particular case the situation when the successive firing times of

transition i are i.i.d. for all i, and, in addition, the firing times of the various

transitions are all mutually independent.

Besides this we always assume that the expected firing times are finite. We

remark, however, that all our arguments used below (in particular, those used

in subsection 5.3) remain true in the case when the nth random firing times

of several transitions are realized at once and, therefore, are not independent.

In this way, the tandem queues with identical successive service times consid-

ered, for example, in [15] and [31] can also be investigated by our expansion

results. Moreover, our arguments easily extend to the case that, within the se-

quence of nth, �n+1�th; : : : firing-time vectors, there is a correlation structure

of finite range.

With any stochastic event graph, we associate a set of random matrices

A0�n�;A1�n�; : : : ;AM�n�, all of dimension β×β, defined as follows: M<∞ is

the maximal initial marking. The entry i; j of matrix Ak�n� is the firing time

σ
j

n−k of the �n− k�th firing of transition uj, whenever there is a place p with

k tokens in the initial marking and a path uj → p→ ui (namely an arc from

uj to p and one from p to ui). If there is no such place, this entry is given the

value ε (= −∞).

To the above event graph, we may add an input structure, namely an input

transition u with no input arcs, input places that connect u to the internal

transitions of the net, and a real-valued increasing sequence input function

Tn (with the interpretation that Tn is the epoch of the nth external arrival

to the input transition u). For the sake of simplicity, we will assume that all

input places have a 0 initial marking, so thatM will again denote the maximal

initial marking in all places (including input places). Associated with such a

structure is the sequence of matrices B0�n�, of dimension β × 1, defined as

follows: the entry i;1 of matrix B0�n� is 0 whenever there is an input place p

and a path u→ p→ ui, and ε otherwise.

The following results are taken from [2]. Theorem 3 concerns FIFO event

graphs, that is, event graphs such that all its places and transitions are FIFO.

A sufficient condition for the event graph to be FIFO is that the matricesA1�n�
have no ε on their principal diagonal. We will also assume that this condition

holds. A deterministic event graph [i.e., all internal transitions have a constant

(deterministic) firing time sequence, the value of which may depend on the

transition] is always FIFO, even whenever the last condition is not satisfied.

Theorem 3. For any FIFO event graph, let xin denote the epoch when tran-

sition ui starts firing for the nth time, and let xn be the column vector given

by x′n = �x1
n; x

2
n; : : : ; x

β
n�; where x′n denotes transposition of xn. Then the xn

satisfy the following �max;+�-recurrence equation, for all n ≥M:

xn =
M
⊕

k=0

Ak�n� ⊗ xn−k ⊕B0�n� ⊗Tn;(26)

with the initial conditions x0; x1; : : : ; xM−1.
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Theorem 4 concerns FIFO deadlock-free event graphs, that is, event graphs

such that, for each marking ν: P → �0;1; : : :� reachable from the initial

marking M0 and for each transition τ ∈ T , there exists a marking µ: P →
�0;1; : : :� which is reachable from ν such that τ is enabled from µ. A necessary

and sufficient condition for the event graph to be deadlock-free is that the

matrices A0�n� are strictly lower triangular for an appropriate numbering of

the transitions; that is, all entries i; j of the matrices A0�n� with i ≤ j are

equal to ε. In that case, we define the following matrices:

1. A∗
0�n� is the β× β matrix

A∗
0�n� =

⊕

k≥0

Ak
0�n�;(27)

where, for all A, A0 = E is the �max;+�-identity matrix (i.e., all diagonal

elements are 0, and all nondiagonal elements are ε), and Ak+1 = Ak ⊗
A. The series defined in (27) converges whenever A0�n� is strictly lower

triangular.

2. Ak�n� is the β× β matrix

Ak�n� = A∗
0�n� ⊗Ak�n�:(28)

3. B0�n� is the β× 1 matrix

B0�n� = A∗
0�n� ⊗B0�n�:(29)

4. An is the Mβ×Mβ matrix

An =













A1�n+ 1� A2�n+ 1� · · · · · · AM�n+ 1�

E E · · · E E

E E
:: :

:::
:::

:::
: : : E E E

E : : : E E E













;(30)

where E is the β×β-�max;+�-identity matrix and E denotes the �max;+�-
zero matrix (i.e., the β× β matrix with all entries equal to ε).

5. Bn is the Mβ× 1 matrix

Bn =









B0�n�

ε

:::

ε









:(31)



SERIES EXPANSIONS 149

6. Xn is the Mβ-dimensional vector

Xn =









xn

xn−1

:::

xn−M+1









:(32)

Theorem 4. For any FIFO deadlock-free event graph and for n ≥ M − 1;

theXn satisfy (3), with α =Mβ; and with An and Bn defined in (30) and (31),

respectively.

Remark. There is a converse theorem, proved in [6], which states that, for

all �max;+�-linear equations of type (3), one can construct a FIFO stochastic

event graph with these evolution equations.

Moreover, note that, since the event graph is FIFO, we always have xin ≥
xin−1. So, in the definition (30) of An, we can replace each E matrix of the main

diagonal byE, without altering the solution of the recurrence equations. Thus,

there is an equivalent representation of the system where the An matrix is

An =













A1�n+ 1� A2�n+ 1� · · · · · · AM�n+ 1�

E E · · · E E

E E
:: :

:::
:::

:::
: : : E E E

E : : : E E E













(33)

and has all its diagonal entries nonnegative.

In what follows, we will assume that the network is “input connected,”

namely that B0�n� ≥ 0 for all n. We conclude this section by a few lemmas

showing that, under the stability condition ρ < 1 of Theorem 1, stochastic

Petri nets of this class satisfy the assumptions stated in subsections 3.1 and

3.2 (with α =Mβ and α′ = β).

Lemma 1. Let a denote the maximal �max;+�-Liapounov exponent of �An�.
If λa < 1; then, for r large enough,

λ < r
[

E max
i

{

�A−1 ⊗A−2 ⊗ · · · ⊗A−r ⊗ �B−r ⊕O��i
}
]−1

;(34)

where O denotes theMβ-dimensional vector with all its coordinates equal to 0.

Proof. One of the characterizations of the Liapounov exponent a is

a = lim
r→∞

E maxi; j��A−1 ⊗ · · · ⊗A−r�i; j�

r
(35)
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(see [6]). So, under the condition λa < 1, there exists an integer R such that,

for all r ≥ R,

λ
E maxi; j��A−1 ⊗ · · · ⊗A−r�i; j�

r
< 1:(36)

But

E max
i

��A−1 ⊗ · · · ⊗A−r ⊗ �B−r ⊕O��i�

≤ E

[

max
i; j

��A−1 ⊗ · · · ⊗A−r�i; j�
]

+ E

[

max
i

��B−r�
i�
]

:
(37)

Since the Bn’s are identically distributed and all non-ε entries of B0 are sup-

posed to be integrable, we have

lim
r→∞

E maxi�B
i
−r�

r
= 0:(38)

Thus, (36) and (37) imply that there exists an integer R′ such that (34) holds

for all r ≥ R′. 2

Lemma 2. Consider an input-connected stochastic event graph such that

the sequence �B0�n�� is constant (we assumed this to be the case above). Then,

for all integers s; the sequence

A−s ⊗A−s−1 ⊗ · · · ⊗A−s−n ⊗B−s−n

is nondecreasing in n; in particular, for all i = 1; : : : ; β;

0 ≤ Di
0 ≤ · · · ≤ Di

n ≤ Di
n+1 · · · :

Proof. Since A∗
0�n� ≥ E, we obtain from (29) that

B0�n� ≥ J;(39)

where J denotes the constant vector equal to B0�n� for all n. In view of the

definition of Bn in (31), we obtain

Bn ≥









J

ε

:::

ε









:

Similarly, since all transitions are recycled, the matrices A1�n� are such that

A1�n� ≥ E. So A1�n� defined in (28) is such that

A1�n� ≥ A
∗
0�n�:(40)
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From (39) and (40), we obtain

A1�−n+ 1� ⊗B0�−n� ≥ A
∗
0�−n+ 1� ⊗J = B0�−n+ 1�:(41)

When making use of this inequality in the definitions of An and Dn, we obtain

A−n ⊗B−n ≥ B−n+1;(42)

which completes the proof of the first monotonicity property.

So, in particular, Dn ≥ Dn−1. The only additional property to prove is that,

for the first β coordinates of D0, Di
0 = Bi0 ≥ 0. But this follows from the

assumption that the network is input-connected. 2

Lemma 3. For all GI-stochastic event graphs (i.e., the firing-time sequences

�σ1
n; : : : ; σ

β
n �n are i.i.d. in n� with maximal initial marking equal to M; the

sequence �An;Bn� is M-dependent.

Proof. In view of (30) and (31), the random matrices An and Bn are func-

tions of the random variables

�σ
j
n+1; σ

j
n; : : : ; σ

j

n+1−M; j ∈ T �

only. This means that, under the above independence assumptions, for all n,

the random matrices ��An−l;Bn−l��; l ≥ 0� are independent of the random

matrices ��An+M+k;Bn+M+k��; k ≥ 1�. 2

4.2. Queueing networks. The aim of this subsection is to give a few prac-

tical examples of queueing, communication and manufacturing systems that

fall in the class of stochastic event graphs and to apply our main theorem to

these systems. For all of the examples given here, the maximal initial marking

is M = 1, with the exception of the Kanban system where we take M = 2. We

start with a toy example, the interest of which is purely pedagogical.

4.2.1. Single-server queue. Consider a single-server FIFO queue with in-

finite capacity which is initially empty. This is the system of Figure 1. Here,

Fig. 1. Single-server queue.
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β = 1, An = σn represents the service time of the nth customer, and Bn = 0,

so that (5) reads

Wn+1 = �σn ⊗ �−τn� ⊗Wn� ⊕ 0 with W0 = 0;(43)

which is Lindley’s equation for the actual waiting time Wn+1 of the �n+ 1�th
customer.

In this simple case, D0 = 0 and Dk =
∑k
n=1 σ−n, and direct computations

give

p2�D0;D1� =
1
2
σ2
−1;

p3�D0;D1;D2� =
1
6
�σ3

−2 − σ
3
−1 + 3σ−1σ

2
−2�;

p4�D0;D1;D2;D3� =
1

24

(

σ4
−1 − 2σ4

−2 + σ
4
−3 + 4�σ−1σ

3
−3 − 2σ−1σ

3
−2 + σ−2σ

3
−3�

− 6�σ2
−1σ

2
−2 − σ

2
−2σ

2
−3� + 12�σ−1σ−2σ

2
−3�

)

:

Assume that the stability condition λE�σn� < 1 is satisfied and that E�σ6
n� <

∞, so that we can apply Theorem 2 for the expansion of order m = 3,

whenever the sequence �σn� is i.i.d. From the previous expressions for

pk�D0;D1; : : : ;Dk−1�, we obtain

Ep2�D0;D1� =
E�σ2

n�

2
; Ep3�D0;D1;D2� =

E�σ2
n�E�σn�

2

and

Ep4�D0;D1;D2;D3� =
E�σ2

n�E�σn�
2

2
;

so that

EW = λ
E�σ2

n�

2
+ λ2 E�σ2

n�E�σn�

2
+ λ3 E�σ2

n�E�σn�
2

2
+ O �λ4�:(44)

Of course, in this case, there are far more efficient ways of obtaining such

an expansion, such as a direct use of the Pollaczek–Khinchine mean value

formula, which gives

EW =
λE�σ2

n�

2�1 − λE�σn��
=

E�σ2
n�

2

∞
∑

k=1

λkE�σn�
k−1;(45)

under the sole assumption that E�σ2
n� < ∞, or Takács’s recurrence formula

(see [28], page 201). However, our expansion technique can be extended to

the case when the sequence of service times possesses a correlation structure

of finite range (cf. the remarks at the beginning of subsection 4.1). This and
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related topics for further characteristics of W will be the subject of future

research.

4.2.2. Tandem queues. Consider a network of β single-server FIFO queues

with infinite capacity in tandem (see Figure 2), with all queues initially empty.

For this system, the matrices A0�n�;A1�n� and B0�n� have the following

form:

A0�n� =















ε ε · · · ε ε ε

σ1
n ε · · · ε ε ε

ε σ2
n · · · ε ε ε

:::

ε ε · · · σ
β−2
n ε ε

ε ε · · · ε σ
β−1
n ε















; B0�n� =

















0

ε

ε

:::

ε

ε

ε

















(46)

and

A1�n� =















σ1
n−1 ε ε · · · ε ε

ε σ2
n−1 ε · · · ε ε

ε ε σ3
n−1 · · · ε ε

:::

ε ε ε · · · σ
β−1
n−1 ε

ε ε ε · · · ε σ
β
n−1















:(47)

Therefore, the entries �An�ij of the matrix An are given by

�An�ij =











ε; if i < j;

i−1
∑

k=j

σkn+1 + σ
j
n; if i ≥ j

(48)

Fig. 2. Tandem queues with infinite capacity.
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and

Bn =

















0

σ1
n

σ1
n + σ

2
n

σ1
n + σ

2
n + σ

3
n

:::

β−1∑

k=1

σkn

















:(49)

Then the ith component Wi of the random vector W given by (9) describes the

stationary waiting time of a randomly chosen customer until the beginning of

service on server i, where the matrices Dn in (10) have the following form.

From (48) we get that

�A−1 ⊗A−2�ij =









ε; if i < j;

max
j≤l≤i

{i−1
∑

k=l

σk0 +
l
∑

k=j

σk−1 + σ
j
−2

}

; if i ≥ j

and, for general n ≥ 1, the entries �A−1 ⊗A−2 ⊗ · · · ⊗A−n�ij are equal to



















ε; if i < j;

max
j≤ln−1≤···≤l1≤i

{ i−1
∑

k=l1

σk0 +
l1∑

k=l2

σk−1 + · · · +
ln−2∑

k=ln−1

σk−n+2

+
ln−1∑

k=j

σk−n+1 + σ
j
−n

}

; if i ≥ j:

Thus, using (49), we have

Di
n = �A−1 ⊗A−2 ⊗ · · · ⊗A−n ⊗B−n�

i

= max
1≤ln≤···≤l1≤i

{ i−1
∑

k=l1

σk0 +
l1∑

k=l2

σk−1 + · · · +
ln−1∑

k=ln

σk−n+1 +
ln∑

k=1

σk−n

}
(50)

(see [5] for more details on this formula). Consider now the particular case

when the service times are deterministic. By σi we denote the service time

in queue i ∈ �1; : : : ; β�. Without loss of generality, we can and will assume

that σ1 ≤ σ2 ≤ · · · ≤ σβ. In the other case, say σi > σi+1 for some i < β, we

can consider the ith queue and the �i+1�th queue as one single-server queue

with service time σi+σi+1 because in front of the �i+1�th server the waiting
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room is always empty. By this assumption on service times, we get from (50)

Dn =

















nσ1

σ1 + nσ2

σ1 + σ2 + nσ3

σ1 + σ2 + σ3 + nσ4

:::

β−1
∑

k=1

σk + nσβ

















:(51)

For systems with deterministic service times, we will use the following ab-

breviated notation, which is consistent with the �max;+�-setting. Namely, we

write ik instead of kσi, and ikjl instead of kσi + lσj. With this notation

Dn =














1n

12n

123n

1234n

:::

123 · · ·βn














:(52)

Expansions: deterministic service times case. From (18) and (19) and from

(51), we get the following series expansion for the expected stationary waiting

time EWi which an arbitrarily chosen customer has to spend in the network

until the beginning of his service in queue i, where c1 =
∑i−1
l=1 σ

l; c2 = σi:

EWi = c1 + λ
c2

2

2
+ λ2 c

3
2

2
+ λ3 c

4
2

2
+ · · · :(53)

Note that the coefficient c2
2/2 of the linear term of this expansion is equal to the

expected stationary residual service time in queue i, whereas the coefficients

of the second-order and third-order terms seem to be less intuitive. At first

glance, it looks surprising that the coefficients of all orders depend on c2 =
σi only, but not on the service times σ1; σ2; : : : ; σi−1 in the earlier stations.

However, the fact that

EWi = c1 + λ
c2

2

2

(
1

1 − λc2

)

is well known in queueing theory. For example, it can easily be concluded from

an invariance property derived in [22] for tandem queues with infinite buffers

and constant service times.

Expansions: random service times case. Assume that

E�σin�
m+3 <∞ for every i ∈ �1; : : : ; β�:(54)
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It is easy to see that the integrability condition (17) is then satisfied. More-

over, from (20) and (50), we get the following expression for the absolute term

Ep1�D
i
0� in the expansion (18), of EWi:

Ep1�D
i
0� = EDi

0 =
i−1
∑

k=1

Eσk0 :

In the same way we get the following expression for the coefficient Ep2�D
i
0;D

i
1�

of the linear term:

Ep2�D
i
0;D

i
1� =

1
2
E�Di

1 −D
i
0�

2

and for the coefficient Ep3�D
i
0;D

i
1;D

i
2� of the quadratic term

Ep3�D
i
0;D

i
1;D

i
2�

= 1
6

{

E�Di
1 −D

i
0�

3 + E�Di
2 −D

i
0�

3 − 3E�Di
1 −D

i
0�

2�Di
2 −D

i
0�
}

;

where

Di
1 −D

i
0 = max

1≤l≤i

{

σ l−1 +
l−1
∑

k=1

�σk−1 − σ
k
0 �

}

and

Di
2 −D

i
0 = max

1≤l2≤l1≤i

{

σ
l2
−2 +

l2−1
∑

k=1

�σk−2 − σ
k
0 � + σ

l1
−1 +

l1−1
∑

k=l2

�σk−1 − σ
k
0 �

}

:

Let us now consider a few special cases:

1. Assume that β = i = 2 and σ1
n = c is deterministic. Then we have

D2
1 −D

2
0 = max�c; σ2

−1� and D2
2 −D

2
0 = max�2c; c+ σ2

−1; σ
2
−2 + σ

2
−1�:

With the notation G�x� = P�σ2
n ≤ x�, this gives

Ep2�D
2
0;D

2
1� =

1
2

{

c2G�c� +
∫ ∞

c
x2 dG�x�

}

and

Ep3�D
2
0;D

2
1;D

2
2�

= 1
6

{

c3G�c� +
∫ ∞

c
x3 dG�x� + 8c3�G�c��2 +G�c�

∫ ∞

c
�c+ x�3 dG�x�

+
∫ ∞

c

∫ ∞

c
�x+ y�3 dG�y�dG�x� − 6c3�G�c��2

− 3G�c�
∫ ∞

c
x2�c+ x�dG�x� − 3

∫ ∞

c

∫ ∞

c
x2�x+ y�dG�y�dG�x�

}
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= 1
6

{

c2G�c�
[

c+ 1 +G�c��2c− 1� + 3G̃1�c�
]

+ 3G̃1�c�G̃2�c� − 2G�x�G̃3�c�
}

;

where G̃j�c� =
∫∞

c
xj dG�x�.

2. Assume now that β = 3 and σi−n = σ�n� for all i, a model which was, for

instance, considered in [15]. In this case, we obtain the following expres-

sions:

D3
0 = 2σ�0�;

D3
1 = σ�1� + 2 max�σ�0�; σ�1��;

D3
2 = σ�1� + σ�2� + 2 max�σ�0�; σ�1�; σ�2��;

so that

E�W3� = 2E�σ�0�� + λ 1
2
�E�σ�0�� + 2E��σ�1� − σ�0��+��

+ λ2 1
6
�2E�σ�0�� + 2E�max��σ�1� − σ�0��+; σ�2�σ�0���� + O �λ3�;

where x+ = max�x;0�.

4.2.3. Blocking queues in tandem. Consider a system of four single-server

FIFO queues in tandem depicted by the Petri net of Figure 3. The first sta-

tion, which is fed by the arrival point process, has an infinite capacity buffer,

whereas all other stations have no buffering capacity. Here, the mechanism

is that of “blocking after service”; that is, in each station, a customer can al-

ways start its service but once its service is completed, the customer can only

proceed to the downstream station whenever this one is empty (this is also

called manufacturing blocking). In Figure 3, the places of type p1 represent

the recycling of the servers, the places of type p2 represent the servers and

the places of type p3 are used to enforce the blocking. The transition that

precedes place p2 in station 1 has a constant firing time equal to σ1, whereas

the transition which follows this place has a firing time equal to 0. A similar

structure is repeated in all stations, the only difference being in the value

Fig. 3. Blocking after service.
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of the service times which are equal to σi in station i. In the initial state,

all stations are empty. Let us take as state variables the variables xin where

xin gives the time when customer n leaves station i (or equivalently the time

when the transition which follows the place of type p2 in station i starts its

nth firing).

When eliminating the state variables corresponding to the transitions that

precede the places of type p2, we obtain that the resulting state vectors xn
satisfy a recurrence equation of type (26) with

A0�n� =








ε ε ε ε

2 ε ε ε

ε 3 ε ε

ε ε 4 ε







; A1�n� =








1 0 ε ε

ε 2 0 ε

ε ε 3 0

ε ε ε 4







; B0�n� =








1

ε

ε

ε







:

Let us assume that σ1 ≤ σ2 ≤ σ3 ≤ σ4. Then

A = A∗
0�0� ⊗A1�0� =








1 0 ε ε

12 2 0 ε

123 23 3 0

1234 234 34 4







;

B = A∗
0�0� ⊗B0�0� =








1

12

123

1234







:

Finally, the matrices Dn defined in (10) are given by

D0 =








1

12

123

1234







; D1 =








12

123

1234

12342







; D2 =








123

1234

12342

12343








(55)

and, for n ≥ 3,

Dn =








1234n−2

1234n−1

1234n

1234n+1







:(56)

The results are easily generalized to a general dimension β, and the vectors

Wn = �W1
n; : : : ;W

β
n� satisfy the recurrence equation

Wn+1 = A⊗C�τn� ⊗Wn ⊕B;
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with

A =












1 0 ε ε ε · · ·

12 2 0 ε ε · · ·

123 23 3 0 ε · · ·

:::

123 · · ·β 23 · · ·β · · · β












and

B =












1

12

123

:::

123 · · ·β












:

Using the fact that σ1 < σ2 < · · · < σβ, we get that, for n ≤ β,

An =














123 · · ·n 23 · · ·n · · · n 0 ε ε · · ·

123 · · ·n+ 1 23 · · ·n+ 1 · · · · · · n+ 1 0 ε · · ·

:::

123 · · ·β 23 · · ·β · · · β

123 · · ·β2 23 · · ·β2 · · · β2

123 · · ·βn 23 · · ·βn · · · βn














;

whereas, for n ≥ β,

An =









12 · · ·βn−β 2 · · ·βn−β · · · βn−β

12 · · ·βn+1−β 2 · · ·βn+1−β · · · βn+1−β

:::

12 · · ·βn 2 · · ·βn · · · βn









:

This gives

Dn = An ⊗B =


















�n+1�∧β
∑

k=1

σk + �n+ 1 − β�+σβ

�n+2�∧β
∑

k=1

σk + �n+ 2 − β�+σβ

:::

β
∑

k=1

σk + nσβ


















:
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Expansions. Using the same approach as before, we obtain

EWi = d0 + λ
�d1 − d0�

2

2
+ λ2 1

6
��d1 − d0�

3 + �d2 − d0�
3

− 3�d1 − d0�
2�d2 − d0��

+ λ3 1

24

[

�d1 − d0�
4 + �d2 − d0�

4 + �d3 − d0�
4

− 4��d1 − d0�
3�d2 − d0� + �d2 − d0�

3�d3 − d0��

− 6�d1 − d0�
2�d3 − d0�

2 + 12�d1 − d0�
2

+ 12�d1 − d0�
2�d2 − d0��d3 − d0�

]

+ O �λ4�;

where

dn�= Di
n� =

�n+i�∧β
∑

j=1

σj + �n+ i− β�+σβ:

Take i = 1 and assume that β ≥ 4. Then, from the above expansion, we get

EW1 = σ1 + λ
�σ2�2

2
+ λ2 �σ

3�3 − �σ2�3 + 3σ2�σ3�2

6
+ O �λ3�:

Observe that, in the above expansion of EWi, the coefficient of the kth-order

term depends only on the service times σ2; σ3; : : : ; σk+i of the first k+i servers.

In particular, this coefficient does not depend on β provided that the total

number of queues is sufficiently large.

What about blocking before service? Consider a system of β = 5 single-

server FIFO queues in tandem with “blocking before service”; that is, in each

station, a customer can only start its service whenever the downstream station

is empty (this is also called communication blocking). The Petri net descrip-

tion is given in Figure 4. The places of type p1 represent the recycling of the

Fig. 4. Blocking before service.
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servers. A sequence of random variables σin is associated with server i, indi-

cating the successive service times there. The places of type p2 represent the

servers and the places of type p3 are used to enforce the blocking. Notice that

the number of tokens in circuits containing places of types p2 and p3 rep-

resents the maximal capacity for each station (in service and in the queue),

which is 1 in this example. Let σi be the (deterministic) service time in station

i ∈ �1; : : : ;5�. We assume that σ1 ≤ σ2 ≤ · · · ≤ σ5. Then, for xin defined as the

time when the service of customer n is started in station i, the framework of

subsection 4.1 applies with

A0�n� =











ε ε ε ε ε

1 ε ε ε ε

ε 2 ε ε ε

ε ε 3 ε ε

ε ε ε 4 ε











; A1�n� =











1 2 ε ε ε

ε 2 3 ε ε

ε ε 3 4 ε

ε ε ε 4 5

ε ε ε ε 5











; B0�n� =











0

ε

ε

ε

ε











;

and so

A = A∗
0�0� ⊗A1�0� =











1 2 ε ε ε

12 12 3 ε ε

122 122 23 4 ε

1223 1223 232 34 5

12234 12234 2324 342 45











;

B = A∗
0�0� ⊗B0�0� =











0

1

12

123

1234











:

Finally, for the matrices Dn defined in (10), we have, with the notation γ =
σ4 + σ5 = 45,

D0 =











0

1

12

123

1234











; D1 =











12

123

1234

123γ

1234γ











;

D2 =











1223

12324

1234γ

123γ2

1234γ2











; D3 =











122324

12324γ

1234γ2

123γ3

1234γ3











(57)
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and, for n ≥ 4,

Dn =











122324γn−3

12324γn−2

1234γn−1

123γn

1234γn











:(58)

Using the same type of techniques as in the previous example, we obtain the

following expansion for the waiting time W1 in the first buffer:

EW1 =
λ

2
�σ1 + σ2�2

+
λ2

6
��σ1 + σ2�3 + �σ1 + 2σ2 + σ3�3 − 3�σ1 + σ2�2�σ1 + 2σ2 + σ3��

+ O �λ3�:

4.2.4. Kanban system. Let us consider the Kanban system with two stages

given in Figure 5. For more details on this type of manufacturing systems, see

[17]. Let us just mention that Kanban lines describe ways to operate multi-

stage production lines, and that each stage describes the environment of one

machine. In this picture, stage 1 corresponds to the set of places p1 to p5:

place p1 is the input buffer of the machine of stage 1, place p2 is the machine

itself (the cycle containing places p2 and p4 being present to translate the fact

that only one object can be manufactured by machine 1 at a given time) and

Fig. 5. A two-stage Kanban system.
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place p3 represents the output buffer of machine 1. The cycle which contains

place p5 translates the maximum total buffer capacity within stage 1. For

this example, this total capacity is 2 (i.e., the total number of objects in the

environment of machine 1, be it in the input buffer, being processed by the

machine or in the output buffer, is at most 2), which translates into the fact

that there are two tokens in place p5. As in our previous examples, whenever

the total capacity of the downstream stage (corresponding to the environment

of machine 2) is reached, no object can move from the output buffer of machine

1 (p3) to the input buffer of machine 2.

In this example, the only nonzero firing times in stage 1 are those associ-

ated with the transition which precedes place p2, and we will denote σ1
n the

duration of its nth firing (with a similar notation for the corresponding tran-

sition of stage 2). Of course, this firing time is just the manufacturing time of

the nth object manufactured by machine i. We have added loops on all tran-

sitions in order to fulfill our assumption on diagonal terms of the A matrices.

Adding them is of no importance since all other transitions have deterministic

firing times all equal to 0. So we have a stochastic event graph with β = 7

internal transitions and M = 2. By numbering the transitions from 1 to 7

from left to right (excluding u), we obtain the following characteristics, for

xn = �x1
n; : : : ; x

7
n�,

A0�n� =
















ε ε ε ε ε ε ε

0 ε ε ε ε ε ε

ε σ1
n ε ε ε ε ε

ε ε 0 ε ε ε ε

ε ε ε 0 ε ε ε

ε ε ε ε σ2
n ε ε

ε ε ε ε ε 0 ε
















; A1�n� =
















0 ε ε ε ε ε ε

ε σ1
n−1 0 ε ε ε ε

ε ε 0 ε ε ε ε

ε ε ε 0 ε ε ε

ε ε ε ε σ2
n−1 0 ε

ε ε ε ε ε 0 ε

ε ε ε ε ε ε 0
















and

A2�n� =
















ε ε ε 0 ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε 0

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε

ε ε ε ε ε ε ε
















; B0�n� =
















0

ε

ε

ε

ε

ε

ε
















:

We can easily reduce the dimension by eliminating the variables x2 and x5,

considering only the vector x′n = �x1
n; x

3
n; x

4
n; x

6
n; x

7
n�. The elimination of x2
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goes as follows, departing from the initial seven-dimensional system:

x1
n = x1

n−1 ⊕ x
4
n−2 ⊕ un;

x2
n = x1

n ⊕ �x2
n−2 ⊗ σ

1
n−1� ⊕ x

3
n−1;

x3
n = �x2

n ⊗ σ
1
n� ⊕ x

3
n−1;

x4
n = x3

n ⊕ x
4
n−1 ⊕ x

7
n−2;

x5
n = x4

n ⊕ �x5
n−1 ⊗ σ

2
n−1� ⊕ x

6
n−1;

x6
n = �x5

n ⊗ σ
2
n� ⊕ x

6
n−1;

x7
n = x6

n ⊕ x
7
n−1:

(59)

Using the second line of (59), we get

x3
n = �x1

n ⊗ σ
1
n� ⊕ �x2

n−1 ⊗ σ
1
n−1 ⊗ σ

1
n� ⊕ �x3

n−1 ⊗ σ
1
n� ⊕ x

3
n−1

= �x1
n ⊗ σ

1
n� ⊕ �x2

n−1 ⊗ σ
1
n−1 ⊗ σ

1
n� ⊕ �x3

n−1 ⊗ σ
1
n�

= �x1
n ⊗ σ

1
n� ⊕ �x3

n−1 ⊗ σ
1
n�;

where the reason for the last equality is due to the third line of (59); that is,

x3
n−1 ≥ x2

n−1 ⊗ σ
1
n−1

and therefore

x3
n−1 ⊗ σ

1
n ≥ x2

n−1 ⊗ σ
1
n−1 ⊗ σ

1
n:

The elimination of x5 is similar.

The reduced vector x′n = �x1
n; x

3
n; x

4
n; x

6
n; x

7
n� satisfies the same recursion of

order 2, but with the five-dimensional matrices:

Ã0�n� =











ε ε ε ε ε

σ1
n ε ε ε ε

ε 0 ε ε ε

ε ε σ2
n ε ε

ε ε ε 0 ε











; Ã1�n� =











0 ε ε ε ε

ε σ1
n ε ε ε

ε ε 0 ε ε

ε ε ε σ2
n ε

ε ε ε ε 0











and

Ã2�n� =











ε ε 0 ε ε

ε ε ε ε ε

ε ε ε ε 0

ε ε ε ε ε

ε ε ε ε ε











; B̃0�n� =











0

ε

ε

ε

ε











:
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In this reduced dimension, the A∗
0�n� matrix (we drop the ∼ from now on, as

we will only work with the five-dimensional system) is given by

A∗
0�n� =











0 ε ε ε ε

σ1
n 0 ε ε ε

σ1
n 0 0 ε ε

σ1
n + σ

2
n σ2

n σ2
n 0 ε

σ1
n + σ

2
n σ2

n σ2
n 0 0











:

From this, we can compute the matrices A1�n� and A2�n� and the vector

B0�n�:

A1�n� =











0 ε ε ε ε

σ1
n σ1

n ε ε ε

σ1
n σ1

n 0 ε ε

σ1
n + σ

2
n σ1

n + σ
2
n σ2

n σ2
n ε

σ1
n + σ

2
n σ1

n + σ
2
n σ2

n σ2
n 0











;

A2�n� =











ε ε 0 ε ε

ε ε σ1
n ε ε

ε ε σ1
n ε 0

ε ε σ1
n + σ

2
n ε σ2

n

ε ε σ1
n + σ

2
n ε σ2

n











; B0�n� =











0

σ1
n

σ1
n

σ1
n + σ

2
n

σ1
n + σ

2
n











:

So, the matrix An is given by

An =























0 ε ε ε ε ε ε 0 ε ε

σ1
n+1 σ1

n+1 ε ε ε ε ε σ1
n+1 ε ε

σ1
n+1 σ1

n+1 0 ε ε ε ε σ1
n+1 ε 0

σ1
n+1 + σ

2
n+1 σ1

n+1 + σ
2
n+1 σ2

n+1 σ2
n+1 ε ε ε σ1

n+1 + σ
2
n+1 ε σ2

n+1

σ1
n+1 + σ

2
n+1 σ1

n+1 + σ
2
n+1 σ2

n+1 σ2
n+1 0 ε ε σ1

n+1 + σ
2
n+1 ε σ2

n+1

0 ε ε ε ε 0 ε ε ε ε

ε 0 ε ε ε ε 0 ε ε ε

ε ε 0 ε ε ε ε 0 ε ε

ε ε ε 0 ε ε ε ε 0 ε

ε ε ε ε 0 ε ε ε ε 0























:
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From this, we obtain the following expressions:

D1
0 = 0;

D2
0 = D3

0 = σ1
0 ;

D4
0 = D5

0 = σ1
0 + σ2

0 ;

D1
1 = 0;

D2
1 = D3

1 = σ1
−1 + σ

1
0 ;

D4
1 = D5

1 = max�σ1
−1 + σ

1
0 + σ2

0 ; σ
1
−1 + σ

2
−1 + σ

2
0�;

D1
2 = σ1

−2;

D2
2 = σ1

−2 + σ
1
−1 + σ

1
0 ;

D3
2 = max�σ1

−2 + σ
1
−1 + σ

1
0 ; σ

1
−2 + σ

2
−2�;

D4
2 = D5

2 = max
{

σ1
−2 + σ

1
−1 + σ

1
0 + σ2

0 ; σ
1
−2 + σ

1
−1 + σ

2
−1 + σ

2
0 ;

σ1
−2 + σ

2
−2 + σ

2
−1 + σ

2
0

}

:

Expansions: deterministic case. Consider the deterministic case. From

what precedes, D5
0 = σ1 + σ2, D5

1 = D5
0 + max�σ1; σ2� and D5

2 = D5
1 +

max�σ1; σ2�. Therefore, we obtain the following expansion for the sta-

tionary total system time S, which coincides with coordinate W7 of the

seven-dimensional system, or equivalently with W5 of the five-dimensional

one:

ES = σ1 + σ2 + λ
�max�σ1; σ2��2

2
+ λ2 �max�σ1; σ2��3

2
+ O �λ3�;(60)

under the stability condition ρ < 1 of Theorem 1 which here takes the form

λmax�σ1; σ2� < 1.

Expansions: stochastic case. Consider the time which elapses between the

arrival of an object and the time it leaves machine 1, that is, variable W3

of the five-dimensional system. From what precedes, whenever the system

is stable and under the assumption that the random variables σ1
n and σ2

n,

with distribution functions G1 and G2, respectively, are independent and have

moments of order 5, we obtain

EW3 = E�σ1� + λ
c1

2
+ λ2 c2

6
+ O �λ3�:(61)

The coefficients are given by the following integrals:

c1 =
∫

R+

x2G1�dx�;(62)

an expression which does not depend on G2, whereas

c2 =
∫

R
4
+

h�x0; x1; x2; y�G1�dx0�G1�dx1�G1�dx2�G2�dy�;(63)
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with

h�x0; x1; x2; y� = x3
1 + �max�x1 + x2; x2 + y− x0��

3

− 3x2
1 max�x1 + x2; x2 + y− x0�:

A similar expansion can be derived for S, involving a six-dimensional integral

for the computation of the coefficient of λ2 and so on.

4.3. Remarks on the computation of the coefficients. As we have seen,

the computation of the coefficients reduces to the computation of certain

d-dimensional integrals such as (63), for instance.

In case of exponentially distributed firing times (or more generally of firing

times with rational Laplace transforms), such integrals can always be reduced

to the integration of polynomial–exponential functions (functions involving

products of two types of functions:

1. exponentials of linear functions of x0; x1; : : :

2. polynomials in x0; x1; : : :)

over polyhedrons, which leads to closed-form expressions.

5. Factorial moment expansion. In order to prove the series expansion

stated in subsection 3.1, we will use a general idea which consists of expand-

ing the expectation of vector-valued functionals of marked point processes.

More precisely, we use a formula which expresses this expectation by a sum

of integrals of much simpler functionals w.r.t. higher-order factorial moment

measures of the underlying point process, with a remainder term which is the

integral of a functional with respect to a higher-order Palm measure. For uni-

variate (unmarked) point processes, this concept has been developed in [10]

starting from a corresponding first-order expansion obtained in [3]. Related

higher-order expansions for functionals of independently marked Poisson pro-

cesses have been considered in [21], [30] and [34], and for more general marked

point processes in [11] and [13]; see also the survey given in [14]. In the present

paper we will concentrate on higher-order expansions for the expectation of

vector-valued functionals of weakly independently marked Poisson processes.

5.1. Expansion kernels. For any given natural number α, let ψ be an R
α-

valued functional of a marked point process, that is, a measurable mapping

ψ: M×K
∞ → R

α, where M is the space of all realizations of the point process

�Tn� and K
∞ is the space of all sequences Z = �Zn� of potential marks. We

assume that the mark space K is a complete separable metric space. Note

that the sequence �Tn� of points may be infinite, finite or empty, whereas the

sequence Z = �Zn� of potential marks is always two-sided infinite. Let Zn

denote the mark of point Tn.

As in subsection 2.1, we represent a realization �tn� of the point process

�Tn� by the counting measure µ =
∑

n δtn . Then M is the set of all counting

measures µ which are locally finite and such that µ��s�� is either 0 or 1 for
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all s ∈ R. By o we denote the null measure, representing an input with no

arrivals [i.e., o�R� = 0].

For every s ∈ R, let the restriction µ�s of µ ∈ F be defined by

µ�s�D� = µ�D ∩ �s;∞��:

Furthermore, for any s ∈ R and z ∈ K
∞, let

ψs�µ; z� = ψ�µ�s + δs; z� − ψ�µ�
s; z�:(64)

Let k ≥ 1 be an arbitrary, but fixed integer. For any s1; : : : ; sk ∈ R, let

ψs1;:::;sk
be defined by iteration of the mapping ψ→ ψs, that is,

ψs1;:::;sk
�µ; z� = �: : : �ψs1

�s2
: : :�sk�µ; z�:

Note that the functional ψs1;:::;sk
can be written in the form

ψs1;:::;sk
�µ; z� =











k
∑

j=0

�−1�k−j
∑

π∈Kk;j

ψ

(

µ�sk +
∑

i∈π

δsi; z

)

; for s1 < · · · < sk;

0; otherwise,

(65)

where Kk; j denotes the collection of all the subsets of �1; : : : ; k� containing j

elements. Following [10], we call the functional ψ continuous at ∞ if

lim
s→∞

ψ�µ�s + ν; z� = ψ�ν; z�; lim
s→−∞

ψ�µ�s; z� = ψ�µ; z�(66)

for all µ; ν ∈ M ; z ∈ K
∞ with ν�R� <∞.

5.2. General representation formula. For the stationary Poisson process

�Tn� with intensity λ and for the stationary sequence Z = �Zn� of K -valued

random variables which is independent of �Tn�, let Pλ denote the distribution

of �Tn�, and Q the distribution of Z.

A slight variant of the following result is given in [30].

Theorem 5. Let m ≥ 1 be a fixed integer. If the functional ψ is continuous

at ∞; then
∫

R
k

∫

K ∞

∫

M

∣
∣ψis1;:::;sk

�µ; z�
∣
∣Pλ�dµ�Q�dz�ds1 · · ·dsk <∞(67)

for all k = 1; : : : ;m and if

lim sup
λ→0

∫

R
m+1

∫

K ∞

∫

M

∣
∣ψis1;:::;sm+1

�µ; z�
∣
∣Pλ�dµ�Q�dz�ds1 · · ·dsm+1 <∞(68)

for the ith component ψi of ψ; then

Eψi��Tn;Zn��

= Eψi�o; �Zn�� +
m
∑

k=1

λk
∫

R
k
Eψis1;:::;sk

�o; �Zn��ds1 · · ·dsk + O �λm+1�:
(69)
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5.3. Expansion of EWi. In this section we return to the stationary state

variable W given in (9) assuming again that the stationary sequence �Zn� =
�An;Bn� of random matrices possesses the monotonicity, boundedness and

independence properties formulated in subsections 3.1 and 3.2. This means,

in particular, that �Tn;An;Bn� is a so-called weakly independently marked

Poisson process where the mark space K is the product of two matrix spaces

(of α × α- and α × 1-dimensional matrices, respectively). Our goal is to use

Theorem 5 in order to show that an expansion of EWi of the form (18) exists.

For doing this we consider the following functional ψ given by

ψ�µ; z� = b0 ⊕
µ��−∞;0��

⊕

n=1

a−1 ⊗ · · · ⊗ a−n ⊗C�−t−n� ⊗ b−n

= d0 ⊕ �t−1 ⊗ d1� ⊕ �t−2 ⊗ d2� ⊕ · · · ;

(70)

where µ =
∑

n δtn and z = �an; bn� and where an and bn denote the realizations

of the random matrices An and Bn, respectively. In the last expression, the

meaning of the products t ⊗ d, where t is a real number and d is a vector,

is the same as in the conventional algebra; that is, each coordinate of d is

“multiplied” by t.

5.3.1. Integrability. First we show that the expectation EWi exists for each

i ∈ �1; : : : ; α′�. This follows from a corresponding result for the expectation of

the maximum of a random walk with negative drift.

Let r be as defined in subsection 3.2, and let

hn =
⊕

i

{(

a−�rn+1� ⊗ a−�rn+2� ⊗ · · · ⊗ a−r�n+1� ⊗ �b−r�n+1� ⊕O�
)i}

(71)

denote the realizations of Hn defined in (16). Using (70) and the monotonicity

assumption on the sequence din, we obtain the following bounds:

dil + t−l ≤ d
i
�n+1�r + t−�nr+1�; ∀ nr < l ≤ �n+ 1�r;

for all 1 ≤ i ≤ α′. It is easy to check that, in addition,

di�n+1�r ≤ h0 + h1 + · · · + hn:(72)

Therefore, for all 1 ≤ i ≤ α′,

ψi�µ; z� ≤ max
j

�b
j
0� + sup

n≥0

��h0 + · · · + hn� + t−�rn+1��
+

≤ max
j

�b
j
0� + h0 + sup

n≥1

{ n
∑

k=1

�hk + �t−�rk+1� − t−�r�k−1�+1���

}+

≤ max
j

�b
j
0� + ϕ�µ; z�;

(73)
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where

ϕ�µ; z� = h0 + sup
n≥1

{ n
∑

k=1

�h2k + �t−�r2k+1� − t−�r�2k−1�+1���

}+

+ sup
n≥1

{ n
∑

k=1

�h2k−1 + �t−�r�2k−1�+1� − t−�r�2k−2�+1���

}+

:

(74)

Because �Hn� is a sequence of 1-dependent random variables, the random

variables H2;H4; : : : are i.i.d. and independent of the i.i.d. random variables

−�T−�2r+1� −T−�r+1��;−�T−�4r+1� −T−�3r+1��; : : : which are Erlang distributed

with expectation rλ−1. Since the sequences H1;H3; : : : and −�T−�r+1� −
T−1�;−�T−�3r+1� − T−�2r+1��; : : : have the same properties, the finiteness of

EWi now follows from the well-known fact that, under condition (15), the ran-

dom walks, the realizations of which are considered in (74), have negative

drifts and that, under (17), the expectations of their maxima are finite (see,

e.g., Theorem VIII.2.1 in [1]).

5.3.2. Conditions for the expansion. It is easily checked that the functional

ψ given by (70) is a.s. finite and a.s. continuous at ∞ whenever ρ < 1 (both

properties follow directly from the backward monotone construction that is

used for proving the existence of a solution of (7) of Theorem 1; see Chapter 7

of [6]). We now show that the conditions (67) and (68) are fulfilled.

Let us first prove that (67) holds for k = 1. For all l ∈ �0;1; : : :� and

s ∈ �t−�l+1�; t−l�, we have

ψ�µ�s; z� = d0 ⊕
l
⊕

n=1

�dn ⊗ t−n�;

ψ�µ�s + δs; z� = d0 ⊕
l
⊕

n=1

�dn ⊗ t−n� ⊕ �dl+1 ⊗ s� = ψ�µ�s; z� ⊕ �s⊗ dl+1�:

Note that t−l+d
i
l+1 < 0 implies s⊗dil+1 < 0, which, in turn, implies ψis�µ; z� =

0. Thus,

∣
∣ψis�µ; z�

∣
∣ ≤

[

di0 ⊕ d
i
1 ⊕

∞
⊕

n=2

�din ⊗ t−�n−1��

]

× 1
(

t−l + d
i
l+1 > 0

)

≤
[

max
j

{

d
j
0 + d

j
1

}

+ max
i; j

��a−1�i; j� + ϕ�µ; z ◦ θ
−1�

]

× 1
(

t−l + d
i
l+1 > 0

)

;

(75)

where ϕ�µ; z� was defined in (74).

Lemma 4. If E��Hn�
q+1� <∞; then

E�ϕq��Tn�; �Zn��� <∞;(76)

where the mapping ϕ is given in (74).
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Proof. See Theorem VIII.2.1 in [1].

Lemma 5. There exists a random variable ρ�µ; z� such that

1
(

t−l + d
i
l+1 > 0

)

≤ 1�−s < ρ�µ; z��;(77)

and if E��Hn�
q+1� <∞; then

E�ρq��Tn�; �Zn��� <∞:(78)

The proof is subdivided into two parts.

Definition of the upper bound. For deriving the upper bound (77), we use

an estimate which is similar to that constructed in (74). However, instead

of considering the differences between Hn and r interarrival times, we will

compare Hn to r− 1 interarrival times.

First, the fact that s ∈ �t−�l+1�; t−l� implies that

1
(

t−l + d
i
l+1 > 0

)

≤ 1�−s < β�µ; z��;

where

β�µ; z� = sup
p≥0

{

−t−�p+1�: d
i
−�p+1� + t−p > 0

}

:

In addition, we have

β�µ; z� = sup
m=0;:::;r−2

sup
q≥0

{

−t−�q�r−1�+m+1�: d
i
q�r−1�+m+1 + t−�q�r−1�+m� > 0

}

≤ �−t−2r2� + γ�µ; z�;

with

γ�µ; z� = sup
m=0;:::;r−2

sup
q≥r

{

−t−�q+1��r−1�: d
i
q�r−1�+m+1 + t−�q�r−1�+m� > 0

}

≤ sup
q≥r

{

−t−�q+1��r−1�: d
i
qr + t−q�r−1� > 0

}

≤ sup
q≥1

{

−t−�q+1��r−1�: h0 + · · · + hq−1 + t−q�r−1� > 0
}

;

where we used (72). So, we have

γ�µ; z� ≤ sup
q≥1

{

−t−�q+1��r−1�:
q−1
∑

p=0

hp + �t−�p+1��r−1� − t−p�r−1�� > 0

}

:(79)

Let us introduce the following notation:

ξ0
q =

∑

�j: 0≤2j≤q−1�

�h2j + t−�2j+1��r−1� − t−2j�r−1��

and

ξ1
q =

∑

�j: 0≤2j−1≤q−1�

�h2j−1 + t−2j�r−1� − t−�2j−1��r−1��:



172 F. BACCELLI AND V. SCHMIDT

Then the expression on the right-hand side of (79) is equal to

sup
q≥1

{

−t−�q+1��r−1�: ξ
0
q + ξ

1
q > 0

}

;

so that

γ�µ; z� ≤ sup
q≥1

{

−t−�q+1��r−1�: ξ
0
q > 0 or ξ1

q > 0
}

≤ sup
q≥1

{

−t−�q+1��r−1�: ξ
0
q > 0

}

+ sup
q≥1

{

−t−�q+1��r−1�: ξ
1
q > 0

}

:

Now, each of the terms in this last sum can be bounded from above as follows

(we consider the first term only, the second one can be handled analogously):

sup
q≥1

{

−t−�q+1��r−1�: ξ
0
q > 0

}

≤ ζ1;0�µ; z� + ζ0;0�µ; z�;

with

ζ1;0�µ; z� = sup
q≥1

{

−
∑

�j: 0≤2j+1≤q+1�

�t−�2j+1��r−1� − t−2j�r−1��: ξ
0
q > 0

}

(80)

and

ζ0;0�µ; z� = sup
q≥1

{

−
∑

�j: 0≤2j≤q+1�

�t−2j�r−1� − t−�2j−1��r−1��: ξ
0
q > 0

}

:(81)

We now define

ρ�µ; z� = �−t−2r2� + ζ1;0�µ; z� + ζ0;0�µ; z� + ζ1;1�µ; z� + ζ0;1�µ; z�;(82)

where the last two terms are defined in a symmetrical way.

Integrability. In order to prove that ρ��Tn�; �Zn�� admits a finite mth

moment, it is enough to prove that ζ1;0��Tn�; �Zn�� and ζ0;0��Tn�; �Zn�� do.

Lemma 6. Themth moment of ζ1;0 is finite provided that E��Hn�
m+1� <∞.

Proof. The variable ζ1;0�µ; z� is related to the realization of a last exit

time of the random walk with increments h2p + t−�2p+1��r−1� − t−2p�r−1�; this

random walk has a negative drift when r is large enough. This follows from

(14) and (15) which imply that

λ < �r− 1��EHn�
−1(83)

for r ∈ N large enough. More precisely, ζ1;0��Tn�; �Zn�� can be bounded from

above by the sum of two random variables:
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1. V, the customer–Palm age variable of the busy period of a stable Er−1/GI/1

queue:

V = sup

{

−
n
∑

q=0

(

T−�2q+1��r−1� −T−2q�r−1�

)

:

n
∑

q=0

�H2q +T−�2q+1��r−1� −T−2q�r−1�� > 0

}

:

2. C, the length of one full busy cycle (here the busy cycle which precedes the

busy period containing customer 0) in this queue.

In order to prove the desired integrability result, we use Corollary 1a of

[36], which states that, under the assumption E��Hn�
m+1� < ∞, both the

busy cycle–Palm distributions of busy periods and busy cycles have �m+ 1�th
moments.

So, the random variable C has a finite �m+ 1�th moment.

In order to prove a similar property for the mth moment of V, we first

derive a bound on this variable. Let G�x� = P�T0 −T−�r−1� ≤ x� and let τ̃

be a random variable with distribution function G̃�x� given by

G̃�x� =

∫ x

0
�1 −G�u��du

∫∞

0
�1 −G�u��du

:

Because T0 − T−�r−1� is Erlang distributed, we have G�x� ≤ G̃�x� for all x.

This means that we can assume that T0−T−�r−1� ≥ τ̃ with probability 1. Thus,

V = sup

{

−
n
∑

q=0

�T−�2q+1��r−1� −T−2q�r−1��:

n
∑

q=0

�H2q +T−�2q+1��r−1� −T−2q�r−1�� > 0

}

≤ sup

{

−
n
∑

q=0

�T−�2q+1��r−1� −T−2q�r−1��:

H0 − τ̃ +
n
∑

q=1

�H2q +T−�2q+1��r−1� −T−2q�r−1�� > 0

}

≤ Ṽ+ �T0 −T−�r−1��;

where Ṽ has the same distribution as the (continuous-time) stationary age

variable of the busy period of an Er−1/GI/1 queue.

But for EṼm < ∞ to hold, it is enough that the �m + 1�th moment of full

busy periods be finite. 2

Lemma 7. Themth moment of ζ0;0 is finite provided that E��Hn�
m+1� <∞.
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Proof. The differences t−2j�r−1� − t−�2j−1��r−1� considered before the colon

in (81) and the differences t−�2j+1��r−1� − t−2j�r−1� considered in the definition

of ξ0
q are realizations of independent sequences of random variables. Thus, for

proving the finiteness of the moment of order m of ζ0;0, it suffices to prove the

finiteness of the moment of order m for the random variable

N =
∑

q≥1

1�ξ0
q > 0�;

which counts the number of customers served in the busy period which con-

tains customer 0.

But this again follows from Corollary 1a of [36], where it is shown that

the number of customers served per busy period has a finite moment of order

m+ 1 if the service times have a finite moment of the same order. 2

From (75) and Lemma 5, we finally get that

E

∫

R

�ψis��Tn�; �Zn���ds

≤ E

{[

max
i

�Bi0 + �A−1 ⊗B−1�
i� + max

i; j
��A−1�i; j� + ϕ��Tn�; �Zn+1��

]

× �ρ��Tn�; �Zn���
}

≤ 3E

{[

max
i

�Bi0 + �A−1 ⊗B−1�
i�
]2

+
[

max
i; j

��A−1�i; j�
]2

+ �ϕ��Tn�; �Zn+1���
2 + �ρ��Tn�; �Zn���

2
}

;

where the obvious inequality xy ≤ x2 + y2 was used. Thus, (76) and (78) give
∫

R

∫

K ∞

∫

M

∣
∣ψis�µ; z�

∣
∣Pλ�dµ�Q�dz�ds <∞;

provided that E��Hn�
3� <∞. This completes the proof of (67) for k = 1.

We now prove (67), for all k = 1; : : : ;m, and (68), under the assumption

that E��Hn�
m+3� <∞.

For this, we take r > k such that

λ < �r− k�
[

E max
i

��A−1 ⊗A−2 ⊗ · · · ⊗A−r ⊗ �B−r ⊕O��i�
]−1

[this is possible in view of (14) and (15)]. For r as above, we have

∣
∣ψis1;:::;sk

�µ; z�
∣
∣ ≤ 2kϕk�µ; z�

k
∏

j=1

1�βk�µ; z� > −sj�;(84)

where

ϕk�µ; z� = max
j

{ k
∑

n=0

djn

}

+ max
i; j

��a−1 ⊗ · · · ⊗ a−k�i; j� + ϕ�µ; z ◦ θ
−k�(85)



SERIES EXPANSIONS 175

and

βk�µ; z� = sup
p≥0

{

−t−�p+1�: d
i
p+k + t−p > 0

}

:(86)

The proof of (84) is similar to that of (75). For this, we use the representation

formula (65) for ψs1;:::;sk
�µ; z�.

First, observe that in this sum there are at most 2k terms, each bounded

from above by ϕk�µ; z�.
Next, observe that these terms can be grouped into pairs of terms with

different signs, where the corresponding subsets π and π ′ differ only in one

element, say sj. Take sk ∈ �t−�l+1�; t−l� and s1 < · · · < sk. If t−l + dil+k < 0,

then sk + dil+k < 0, which, in turn, implies that sj + dil+k−�j−1� < 0 for all

j = 1; : : : ; k, so that all these pairs actually compensate. So, it is enough to

consider s1; : : : ; sk such that −sj < βk�µ; z� for all j = 1; : : : ; k. This leads to

the factor
∏k
j=1 1�βk�µ; z� > −sj�.

Thus, we get

E

∫

R
k

∣
∣ψis1;:::;sk

��Tn�; �Zn��
∣
∣ds1 · · ·dsk

≤ 2kE�ϕk��Tn�; �Zn���
k+1

E�βk��Tn�; �Zn���
k+1;

using the inequality �xy�k≤xk+1+yk+1. The finiteness of E�ϕk��Tn�; �Zn���
k+1

easily follows from our assumptions.

In order to get an upper bound on βk�µ; z�, we can proceed as in the case

k = 1, by considering the differences between Hn and r−k interarrival times.

This gives

βk�µ; z� = sup
m=0;:::;r−�k+1�

sup
q≥0

{

−t−�q�r−k�+m+1�: d
i
q�r−k�+m+k + t−�q�r−k�+m� > 0

}

≤ �−t−2r2� + γk�µ; z�;

with

γk�µ; z� = sup
m=0;:::;r−�k+1�

sup
q≥r

�−t−�q+1��r−k�: d
i
q�r−k�+m+k + t−�q�r−k�+m� > 0�

≤ sup
q≥r

�−t−�q+1��r−k�: d
i
qr + t−q�r−k� > 0�

≤ sup
q≥r

�−t−�q+1��r−k�: h0 + · · · + hq−1 + t−q�r−k� > 0�:

The rest of the proof of (67) for all k = 1; : : : ;m is based on arguments similar

to those in the case k = 1.

In order to show (68), observe that the random variables ϕ��Tn�; �Zn��
and, consequently, also the random variables ϕk��Tn�; �Zn�� are stochasti-

cally decreasing as λ → 0. Moreover, one can even construct a probability

space such that this monotonicity property holds pathwise. This follows from

the well-known fact that a stationary Poisson process with a smaller intensity

can be obtained by thinning from a stationary Poisson process with a larger
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intensity. Another consequence of this is that, for each fixed s1 < 0, the func-

tion ls1
�λ� = sup�l: s1 < t−l�λ�� is pathwise decreasing. Since dil is increasing

in l, this means that the set of those s1, for which ψs1;:::;sk
is not equal to 0, is

a decreasing function of λ. Thus, (68) holds because, from the above proof for

(67), it follows now that the integral in (68) is uniformly bounded as λ→ 0.

6. Calculation of coefficients.

6.1. Recursion formula. It turns out that, for the functional ψ given by

(70) and under the monotonicity assumption (13), the coefficients of λk in the

series expansion (69) can be determined recursively. Because of (12), (70) can

be rewritten in the form

ψ�µ; z� = d0 ⊕
µ��−∞;0��

⊕

n=1

C�−t−n� ⊗ dn;(87)

where d0; d1; : : : denotes the realizations of the sequence of α-dimensional

random vectors D0;D1; : : : defined in (12); that is, dk = �
⊕k

n=1 a−n� ⊗ b−k
whose ith components dik satisfy

di0 ≤ di1 ≤ · · ·(88)

for every i ∈ �1; : : : ; α′�. This gives

ψi�µ; z� = di0 ⊕
µ��−∞;0��

⊕

n=1

�din + t−n�:(89)

Using the notation

pk+1�d
i
0; d

i
1; : : : ; d

i
k� =

∫

R
k
ψis1;:::;sk

�o; z�ds1 · · ·dsk(90)

for the coefficients of λk in (69), we obtain the following result.

Theorem 6. For each k ≥ 1 and i ∈ �1; : : : ; α′�; it holds that

pk+1�d
i
0; d

i
1; : : : ; d

i
k�

=
k−1
∑

n=0

∫ din+1−d
i
0

din−d
i
0

[

pk�d
i
0; : : : ; d

i
0

︸ ︷︷ ︸

n

; din+1 − u; : : : ; d
i
k − u�

− pk�d
i
0; : : : ; d

i
0

︸ ︷︷ ︸

n+1

; din+1 − u; : : : ; d
i
k−1 − u�

]

du:

(91)
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Proof. From (65) and (89) we get

pk+1�d
i
0; d

i
1; : : : ; d

i
k�

=
∫ ∞

0

∫ ∞

s1

· · ·
∫ ∞

sk−1

ψi−s1;:::;−sk
�o; z�dsk · · ·ds1

=
∫ ∞

0

∫ ∞

s1

· · ·
∫ ∞

sk−1

k
∑

l=0

�−1�k−l
∑

π∈Kk; l

di0 ⊕
l
⊕

j=1

(

dij − sπ�j�
)

dsk · · ·ds1;

where �sπ�1�; : : : ; sπ�l�� with sπ�1� < · · · < sπ�l� is the subset of those l compo-

nents selected from �s1; : : : ; sk� by π ∈Kk; l. We decompose the outer integral

in the following way:

∫ ∞

0
· · · =

k−1
∑

n=0

∫ din+1−d
i
0

din−d
i
0

· · · :

Next, for each of these summands, we decompose the inner sum:
∑

π∈Kk; l

· · · =
∑

π∈Kk; l; π31

· · · +
∑

π∈Kk; l; πÕ1

· · · :

Furthermore,

∫ din+1−d
i
0

din−d
i
0

∫ ∞

s1

· · ·
∫ ∞

sk−1

k
∑

l=1

�−1�k−l
∑

π∈Kk; l; π31

di0 ⊕
l
⊕

j=1

(

dij − sπ�j�
)

dsk · · ·ds1

=
∫ din+1−d

i
0

din−d
i
0

∫ ∞

s1

· · ·
∫ ∞

sk−1

k
∑

l=1

�−1�k−l
∑

π∈Kk; l; π31

di0 ⊕
min�n;l�
⊕

j=1

(

dij − sπ�j�
)

⊕
l
⊕

j=min�n;l�+1

(

dij − sπ�j�
)

dsk · · ·ds1

because, from din − d
i
0 ≤ s1, it follows that

dij − sπ�j� ≤ d
i
j − s1 ≤ din − s1 ≤ di0

for all j ≤ min�n; l�. By the substitution sπ�j� → sπ�j� − s1, this gives the plus

term in (91). The minus term in (91) follows analogously. 2

6.2. Polynomial solution. Now we derive the more explicit expression for

the coefficients Epk+1�D
i
0;D

i
1; : : : ;D

i
k� of λk in the series expansion of EWi as

stated in Theorem 2. For each nondecreasing sequence x0; x1; : : : of nonnega-

tive numbers (i.e., 0 ≤ x0 ≤ x1 ≤ · · ·), we consider a sequence of numbers

p1�x0�; p2�x0; x1�; : : : ; pk�x0; x1; : : : ; xk−1�; : : : ;

which satisfy the integral recursion formula (25), with

p1�x0� = x0; p2�x0; x1� =
1
2

[

x2
0 + x

2
1 − 2x0x1

]

:(92)
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It is easy to see that the functions p1; p2 given in (92) satisfy (25) for k = 1,

because

∫ x1−x0

0
��x1 − u� − x0�du = 1

2
�x2

1 − x
2
0� − x0�x1 − x0�

= 1
2

[

x2
0 + x

2
1 − 2x0x1

]

= p2�x0; x1�:

Theorem 7. The functions pk being the solution of (25) and (92) coincide

with the polynomials of (19) in Theorem 2.

Proof. By induction with respect to k ≥ 2, from (25) we easily get that

pk is translation invariant in the sense that

pk�x0 + u;x1 + u; : : : ; xk−1 + u� = pk�x0; x1; : : : ; xk−1�(93)

for each u ≥ 0 and k = 2;3; : : : : Using (93), we can rewrite the recursion

formula (25) as follows:

pk+1�x0; x1; : : : ; xk�

=
k−1
∑

n=0

∫ xn+1−x0

xn−x0

[

pk�x0 + u; : : : ; x0 + u
︸ ︷︷ ︸

n

; xn+1; : : : ; xk�

− pk�x0 + u; : : : ; x0 + u
︸ ︷︷ ︸

n+1

; xn+1; : : : ; xk−1�
]

du:

Thus, we have

pk+1�x0; x1; : : : ; xk� =
k−1
∑

n=0

∫ xn+1

xn

[

pk�v; : : : ; v
︸ ︷︷ ︸

n

; xn+1; : : : ; xk�

− pk�v; : : : ; v
︸ ︷︷ ︸

n+1

; xn+1; : : : ; xk−1�
]

dv:

(94)

Clearly, for k = 1;2, formulas (92) and (19) coincide. Assuming now that (19)

is true for some natural k, we show that it also holds for k + 1. By inserting

(19) into the right-hand side of (94), we get

pk+1�x0; x1; : : : ; xk�

=
k−1
∑

n=0

∑

�i0; i1;:::;ik−1�∈Sk

�−1�qk�i0; i1;:::;ik−1�
∫ xn+1

xn

[
vi0+···+in−1

i0! · · · in−1!

x
in
n+1

in!
· · ·

x
ik−1

k

ik−1!

−
vi0+···+in

i0! · · · in!

x
in+1

n+1

in+1!
· · ·

x
ik−1

k−1

ik−1!

]

dv
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=
k−1
∑

n=0

∑

�i0; i1;:::;ik−1�∈Sk

�−1�qk�i0; i1;:::;ik−1�

×

[
x
i0+···+in+1

n+1

�i0 + · · · + in−1 + 1�i0! · · · in!

x
in+1

n+2

in+1!
· · ·

x
ik−1

k

ik−1!

−
x
i0+···+in−1+1
n

�i0 + · · · + in−1 + 1�i0! · · · in−1!

x
in
n+1

in!
· · ·

x
ik−1

k

ik−1!

−
x
i0+···+in+1+1

n+1

�i0 + · · · + in + 1�i0! · · · in+1!

x
in+2

n+2

in+2!
· · ·

x
ik−1

k−1

ik−1!

+
x
i0+···+in+1
n

�i0 + · · · + in + 1�i0! · · · in!

x
in+1

n+1

in+1!
· · ·

x
ik−1

k−1

ik−1!

]

:

Next we reorder the summands of the last expression. This gives

pk+1�x0; x1; : : : ; xk� = I0 +
k−1
∑

n=1

In + Ik;

where

I0 =
∑

�i0; i1;:::;ik−1�∈Sk

�−1�qk�i0; i1;:::;ik−1�

[
x
i0+1

0

�i0 + 1�i0!

x
i1
1

i1!
· · ·

x
ik−1

k−1

ik−1!

x1
0

1!

x
i0
1

i0!
· · ·

x
ik−1

k

ik−1!

]

;

Ik =
∑

�i0; i1;:::;ik−1�∈Sk

�−1�qk�i0; i1;:::;ik−1�

[
1

i0 + · · · + ik−2 + 1
−

1

i0 + · · · + ik−1 + 1

]

×
x
i0+···+ik−1+1

k

i0! · · · ik−1!

and, for 1 ≤ n ≤ k− 1,

In =
∑

�i0; i1;:::;ik−1�∈Sk

�−1�qk�i0; i1;:::;ik−1�

×

[(
1

i0 + · · · + in−2 + 1
−

1

i0 + · · · + in−1 + 1

)
x
i0+···+in−1+1
n

i0! · · · in−1!

x
in
n+1

in!
· · ·

x
ik−1

k

ik−1!

−

(
1

i0 + · · · + in−1 + 1
−

1

i0 + · · · + in + 1

)
x
i0+···+in+1
n

i0! · · · in!

x
in+1

n+1

in+1!
· · ·

x
ik−1

k−1

ik−1!

]

:

Thus, the proof of (19) will be finished if we show that, for each n = 0;1; : : : ; k,

In =
∑

��i0; i1;:::;ik�∈Sk+1: i0=···=in−1=0; in≥n+1�

�−1�qk+1�i0; i1;:::;ik�
x
i0
0

i0!

x
i1
1

i1!
· · ·
x
ik
k

ik!
:(95)
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It can easily be seen that (95) holds for n = 0. Namely, in the sum which

defines I0, each nonnegative term in the brackets with i0 = 0 appears once

more as a minus term (with ik−1 = 0). Consequently, these terms cancel each

other out. Furthermore,

qk�i0; i1; : : : ; ik−1� = qk+1�i0 + 1; i1; : : : ; ik−1;0�

and

qk�i0; i1; : : : ; ik−1� + 1 = qk+1�1; i0; i1; : : : ; ik−1�:

This gives (95) for n = 0. In order to prove (95) for n = 1;2; : : : ; k − 1, we

proceed in the following way. Observe that, in the brackets of the definition

of In for 1 ≤ n ≤ k − 1, the nonnegative terms with in−1 = 0 and the minus

terms with in = 0 vanish. Furthermore, we have i0 + · · · + in−1 ≥ n if in−1 > 0

and, analogously, i0 + · · · + in ≥ n + 1 if in > 0. Thus, it suffices to use the

following fact: for each j ∈ �2;3; : : :� and n ∈ �0;1; : : : ; j− 2�, the sum

I
�n�
j =

∑

�i0; i1;:::;in�∈S
�n�
j−1

�−1�qn�i0; i1;:::;in�

×

(
1

i0 + · · · + in−1 + 1
−

1

i0 + · · · + in + 1

)
1

i0! · · · in!
;

where

S
�n�
j−1 =

{

�i0; i1; : : : ; in� ∈ �0;1; : : :�n+1: i0 + i1 + · · · + in = j− 1 in > 0

and if is = l > 1, then is−1 = is−2 = · · · = i�s−l+1�+
= 0

}

simplifies to

I
�n�
j =

j− �n+ 1�

j!
:(96)

This gives (95) for n = 1;2; : : : ; k− 1. Moreover, from (96), putting j = k+ 1

and n = k − 1, we get (95) for n = k. Finally, we show how (96) follows from

standard combinatorial formulas. From the definition of S
�n�
j−1 we get that,

in the sum defining I
�n�
j , the variable in either equals j − 1 or belongs to

�1; : : : ; n�. With the notation i = in, this gives

I
�n�
j =

j− 1

j!
−

n
∑

i=1

i

i!�j− i�j

∑

�i0; i1;:::;in−i�∈S
�n−i�
j−i−1

�−1�qn−i�i0;i1;:::;in−i�
1

i0! · · · in−i!
:
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With the notation s = min�l: il > 0�, the inner sum of the last expression can

be written in the following form:

∑

�i0; i1;:::;in−i�∈S
�n−i�
j−i−1

�−1�qn−i�i0;i1;:::;in−i�
1

i0! · · · in−i!

=
n−i
∑

s=0

1

�j− 1 − n+ s�!

n−i−s
∑

r=1

�−1�r
∑

�i1+···+ir=n−i−s: il>0�

1

i1! · · · ir!

=
n−i
∑

s=0

�−1�n−i−s

�j− 1 − n+ s�!�n− i− s�!
:

Thus, we have

I
�n�
j =

j− 1

j!
−

n
∑

i=1

1

�i− 1�!�j− i�j

n−i
∑

s=0

�−1�n−i−s

�j− 1 − n+ s�!�n− i− s�!

=
j− 1

j!
−
n−1
∑

s=0

�−1�s
1

j s!

n−s
∑

i=1

1

�i− 1�!�j− i��j− 1 − i− s�!
:

Now it remains to show that

n−1
∑

s=0

�−1�s
1

js!

n−s
∑

i=1

1

�i− 1�!�j− i��j− 1 − i− s�!
=
n

j!
:(97)

It is easy to see that (97) holds for n = 1;2. Assuming that (97) is true for

some n ≤ j− 3, we show that it also holds for n+ 1. Namely,

n
∑

s=0

�−1�s
1

js!

n+1−s
∑

i=1

1

�i− 1�!�j− i��j− 1 − i− s�!

=
n

j!
+

n
∑

s=0

�−1�s
1

js!

1

�n− s�!�j+ s− n− 1��j− n− 2�!

=
n

j!
+

1

j�j− n− 2�!

n
∑

s=0

�−1�s
1

s!�n− s�!�j+ s− n− 1�

=
n

j!
+

1

j�j− n− 2�!

1

�j− n− 1��j− n� · · · �j− 1�

=
n

j!
+

1

j!
=
n+ 1

j!
:

Thus, (97) is proved. This completes the proof of Theorem 7. 2

7. Differentiability, admissibility. In general, the conditions of Theo-

rem 5, which were checked for �max;+�-linear systems in subsection 5.3, are

not sufficient to ensure any differentiability property.

The aim of the present section is to show that, under certain tail conditions

on the random variables Di
n defined in (10) (which boil down to Cramér-type
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conditions on the firing times in the Petri net case), the functions fi�λ� = EWi,

i = 1; : : : ; α′, are actually infinitely differentiable in λ in a right neighborhood

of 0, and that, for all n ≥ 1,

lim
λ↓0

�fi�λ���n� = Epn+1�D
i
0;D

i
1; : : : ;D

i
n�;(98)

where the polynomials pk and the random variables Di
k are those defined in

Theorem 2.

In that sense, the expansion given in Theorem 2 is a Taylor-type expansion

indeed.

The proof of this property is based on the notion of admissibility defined in

[34], which is sufficient to grant the above differentiability property as well

as the formula

lim
λ↓0

�fi�λ���n� =
∫

R
k
Eψis1;:::;sk

�o; �Zn��ds1 : : : dsk(99)

(see Theorem 5 for the notation), which, in turn, implies (98) in view of The-

orem 7.

Theorem 8. Let Fn = ⊕α
i=1��A−1 ⊗ · · · ⊗A−n⊗ �B−n⊕ 0��i�. If there exists

θ∗ > 0 such that, for all θ ∈ �0; θ∗�;

EeθFn ≤ Lθ�φ�θ��
n(100)

for some finite functions φ�θ� > 1 and Lθ; then the functional ψ defined in (70)

is admissible.

Proof. In order to prove the admissibility of ψ, we have to show that there

exist constants K;N <∞ and 1 < a <∞, θ > 0, such that, for all s < t < 0,
∫ ∫ ∣

∣ψ�µ�t; z� − ψ�µ�s; z�
∣
∣ Pλ�dµ� C �l; j��Q�dz� ≤K�j+ l�Naj+le−θt;(101)

where C �l; j� = �µ′: µ′��s; t�� = l; µ′��t;0�� = j�. Let B
i�l; j� be the event

B
i�l; j� =

{ j+l
⋂

n=j+1

�din − t−n < 0�

}

:(102)

On B
i�l; j� ∩ �C �l; j� ×K

∞�, we have ψ�µ�t; z� = ψ�µ�s; z�, so that
∫ ∫ ∣

∣ψ�µ�t; z� − ψ�µ�s; z�
∣
∣ Pλ�dµ � C �l; j��Q�dz�

=
∫ ∫ ∣

∣ψ�µ�t; z� − ψ�µ�s; z�
∣
∣1

Bi�l; j� Pλ�dµ � C �l; j��Q�dz� ≤ f1/2g1/2;

where

f =
∫ ∫

�ψ�µ�t; z� − ψ�µ�s; z��2 Pλ�dµ � C �l; j��Q�dz�(103)

and

g = P
(

Bi�l; j� � C �l; j� ×K
∞
)

:(104)
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Using now the special form of ψ and the independence assumptions, we obtain

f ≤ E
[(

Di
l+j

)2
� C �l; j� ×K

∞
]

= E
[(

Di
l+j

)2]
:(105)

Let χn = maxi; j��A−n�i; j + �B−n�j ⊕ 0�. We have, for all n ≥ 1,

�Di
n�

2 ≤

( n
∑

p=1

χp

)2

≤ n
n
∑

p=1

�χp�
2

and so f ≤ n2κ; with κ = E�χ1�
2 = E�maxiD

i
1�

2 <∞.

As for g, we have

g = P

( j+l
⋃

n=j+1

�Di
n −T−n > 0�� C �l; j� ×K

∞

)

≤ P
(

Di
j+l > t� C �l; j� ×K

∞
)

= P
(

Di
j+l > t

)

= P�exp�uDi
j+l� > e

ut� ≤ E�exp�uDi
j+l��e

−ut

≤ Luφ�u�
j+le−ut;

where u is any real number in the interval �0; θ∗�, and where we used

Chebyshev’s inequality and assumption (100) in order to derive the last two

inequalities. Finally, admissibility is proved with θ = u/2, a = �φ�u��1/2,

N = 1 and K =
√

κLu. 2

Remark. In a stochastic event graph, (100) is satisfied whenever the firing

times �σkn ; k = 1; : : : ; β� are i.i.d. in n and satisfy the following Cramér-type

property:

E

[

exp

(

θ
β
∑

k=1

σkn

)]

≤ ξ�θ�;(106)

where ξ�θ� is some finite function on the interval �0; θ∗� for some θ∗ > 0.

In order to see this, we can write

E�exp�θDi
n��

≤ E�exp�θmax
i
Di
n��

= E

[

exp
(

θ
{

max
i0; i1;:::;in∈�1;:::;α�

�A−1�i0; i1 + · · · + �A−n�in−1; in
+ �B−n�in

})]

= E

[

max
i0; i1;:::;in∈�1;:::;α�

exp�θ��A−1�i0; i1 + · · · + �A−n�in−1; in
+ �B−n�in��

]

≤
∑

i0; i1;:::;in∈�1;:::;α�

E
[

exp�θ��A−1�i0; i1 + · · · + �A−n�in−1; in
+ �B−n�in��

]

:
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The following uniform bound follows from the definition of An and Bn in (30)

and (31):

�A−1�i0; i1 + · · · + �A−n�in−1; in
+ �B−n�in ≤

β
∑

k=1

n
∑

p=0

σk−p:

Thus, using (106) and the independence assumptions, we get

E
[

exp�θDi
n�
]

≤ αnξ�θ�n+1;(107)

which concludes the proof of (100) in this case.

8. Future research. Future research will bear on the extension of

this computational point process approach to the derivation of expansions

for Laplace transforms and higher moments and eventually to the case of

networks with non-Poisson input processes.
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