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A HETEROPOLYMER NEAR A LINEAR INTERFACE

By Marek Biskup and Frank den Hollander

Charles University of Prague and University of Nijmegen

We consider a quenched-disordered heteropolymer, consisting of hy-
drophobic and hydrophylic monomers, in the vicinity of an oil–water in-
terface. The heteropolymer is modeled by a directed simple random walk
�i�Si�i∈N on N×Z with an interaction given by the Hamiltonians Hω

n �S� =
λ
∑n
i=1�ωi +h� sign�Si� (n ∈ N). Here, λ and h are parameters and �ωi�i∈N

are i.i.d. ±1-valued random variables. The sign�Si�=±1 indicates whether
the ith monomer is above or below the interface, the ωi = ±1 indicates
whether the ith monomer is hydrophobic or hydrophylic. It was shown by
Bolthausen and den Hollander that the free energy exhibits a localization–
delocalization phase transition at a curve in the �λ�h�-plane.

In the present paper we show that the free-energy localization concept is
equivalent to pathwise localization. In particular, we prove that free-energy
localization implies exponential tightness of the polymer excursions away
from the interface, strictly positive density of intersections with the inter-
face and convergence of ergodic averages along the polymer. We include
an argument due to G. Giacomin, showing that free-energy delocalization
implies that there is pathwise delocalization in a certain weak sense.

1. Introduction. Heteropolymers near an interface between two solvents
are intriguing because of the possibility of a localization–delocalization phase
transition. A typical example is a polymer consisting of hydrophobic and hy-
drophylic monomers in the presence of an oil–water interface.

In the bulk of a single solvent, the polymer is subject to thermal fluctua-
tions and therefore is rough on all space scales. However, near the interface
the polymer can benefit from the fact that part of its monomers prefer to be
in one solvent and part in the other. The energy it may gain by placing as
many monomers as possible in their preferred solvent can, at least for low
temperatures, tame the entropy-driven fluctuations. Consequently, the poly-
mer becomes captured by the interface and therefore is smooth on large space
scales. The two regimes of characteristic behavior are separated by a phase
transition.

1.1. The model. The polymer is modeled by a random walk path �i�Si�i∈L,
where L ⊆ Z indexes the monomers, Si ∈ Z and Si−Si−1 = ±1. The interface
is the horizontal in L × Z. We distinguish two cases:

1. The singly infinite polymer, where L = N and S0 = 0;
2. The doubly infinite polymer, where L = Z and S0 ∈ 2Z.

Received July 1998; revised October 1998.
AMS 1991 subject classifications. Primary 60K35; secondary 82B44, 82D30.
Key words and phrases. Heteropolymer, quenched disorder, localization, Gibbs state.

668



HETEROPOLYMER NEAR A LINEAR INTERFACE 669

The heterogeneity within the polymer is represented by assigning a random
variable ωi = ±1 to monomer i for each i ∈ L, where ωi = +1 means that
monomer i is hydrophobic and ωi = −1 that it is hydrophylic.

Let F�L� be the set of all finite connected subsets of L. In the simplest
model, the thermodynamics of the heteropolymer is governed by the family
�Hω�λ�h


 �
∈F�L� of Hamiltonians

�1�1� H
ω�λ�h

 �S� = λ

∑
i∈


�ωi + h��i�S�

w.r.t. the reference measure giving all paths S = �Si�i∈L equal probability,
that is, the measure P for simple random walk (SRW). Here, λ and h are
parameters, ω = �ωi�i∈L is the disorder configuration, and

�1�2� �i�S� =
{

sign�Si�� if Si 
= 0,
sign�Si−1�� if Si = 0�

The role of the Hamiltonian is that (for λ > 0) it favors the combinations
Si > 0, ωi = +1 and Si < 0, ωi = −1, so hydrophobic monomers in the oil
above the interface (L × Z+) and hydrophylic monomers in the water below
the interface (L × Z−). [Note that the definition of �i�S� actually corresponds
to a bond model.] The parameter λ plays the role of the inverse temperature,
whereas h expresses the asymmetry between the affinities of the monomer
species with the solvents.

The Hamiltonian is �S�ω�h� → �−S�−ω�−h� symmetric. In view of this,
we shall henceforth take

�1�3� � = {�λ�h�� λ > 0� h ≥ 0
}

as our parameter space.

1.2. The free energy and a phase transition. The singly infinite quenched
i.i.d. random model with Hamiltonian (1.1) and with a symmetric disorder
distribution was recently analyzed in detail by Bolthausen and den Hollander
(1997). For the reader’s convenience we describe some of the results obtained
in that paper.

The localization–delocalization phase transition is established by estimat-
ing the free energy

�1�4� φ�λ�h� = lim
n→∞

1
�
n�

logE
(
eH

ω�λ�h

n

)
�

where 
n = �1� � � � � n� and where E stands for the expectation w.r.t. SRW
starting at 0. The limit is shown to exist and to be ω-independent a.s. by the
subadditive ergodic theorem.

It was observed that φ�λ�h� ≥ λh, with the lower bound attained for de-
localized paths. Indeed, P�Si ≥ 0 ∀ 0 ≤ i ≤ n� ∼ C/

√
n (n → ∞), and

conditioned on this event,

�1�5� 1
�
n�

H
ω�λ�h

n

= 1
�
n�

λ
∑
i∈
n

�ωi + h� = λh�1 + o�1��� ω-a.s.
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For this reason, it is natural to work with the excess free energy

�1�6� ψ�λ�h� = φ�λ�h� − λh

and to put forward the following concept of a phase transition.

Definition 1 [Bolthausen and den Hollander (1997)]. The polymer is said
to be:

(a) Localized if ψ > 0;
(b) Delocalized if ψ = 0.

As indicated by (1.5), (b) is justified by noting that delocalized paths yield
no contribution to ψ. Conversely, (a) is justified by noting that only those
excursions that move below the interface can give a positive contribution to ψ.
Nonetheless, Definition 1 makes no claims as to the actual path behavior. The
present paper shows that, in fact, a bit of work is needed to obtain a path
statement from (a) and (b).

Let us define

� = �ψ > 0� ∩� �(1.7)

� = �ψ = 0� ∩�(1.8)

as the sets of parameters for which the model is localized, respectively, delo-
calized in the sense of Definition 1. Neither of these sets is trivial, as shown
by the following theorem.

Theorem 1 [Bolthausen and den Hollander (1997)]. There is a continuous
nondecreasing function hc� �0�∞� → �0�1� such that

�1�9� � = {�λ�h� ∈ � � 0 ≤ h < hc�λ�
}
�

Moreover,

�1�10� lim
λ→∞

hc�λ� = 1 and lim
λ↓0

hc�λ�
λ

= Kc�

where 0 < Kc < ∞ is a number related to a Brownian version of the model.

Theorem 1 asserts that � and � are separated by a phase transition line
λ → hc�λ� (which extends over all temperatures). Although it is relatively easy
to establish the existence and uniqueness of hc�λ� [essentially via the convex-
ity of φ in (1.4)] and to evaluate the limit λ → ∞ [through an appropriate
lower bound on the expectation in (1.4)], the scaling law for λ ↓ 0 is a rather
involved problem. The intuitive reason why a Brownian constant should ap-
pear for λ ↓ 0 is that for high temperatures the polymer excursions are large.
Therefore, from a coarse-grained point of view, both the excursions and the
disorder inside the excursions may be approximated by their Brownian coun-
terparts. However, the details of this approximation are quite delicate.
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1.3. Earlier path results. As already alluded to, Theorem 1 characterizes
the phase transition in terms of the free energy rather than the path. One
would like to prove that, indeed, � corresponds to a localized path and (the
interior of) � to a delocalized path. Moreover, one would like to learn more
about the path characteristics, for example, the length and the height of a
typical excursion. Progress in this direction has been made by Sinai (1993),
who proved pathwise localization in the symmetric case h = 0 for all λ > 0.

Sinai introduces a (Gibbsian) probability distribution Qω�λ�0
n in the volume


n = �1� � � � � n�, defined by

�1�11� dQω�λ�0
n

dPn

�S� = exp�Hω�λ�0

n

�S��
Z
ω�λ�0

n

�

where the reference measure Pn is the projection onto 
n of the SRW-measure
P with S0 = 0, and Z

ω�λ�0

n

is the normalizing constant or position function.
His result appears in the following theorem.

Theorem 2 [Sinai (1993)]. Let h = 0 and λ > 0. Then there exist a deter-
ministic number ζ = ζ�λ� > 0 and two random variables n�ω� ∈ N, m�ω� ∈ N

such that for almost all ω,

�1�12� sup
0≤i≤n

Qω�λ�0
n

(�Si� > s
) ≤ e−ζs� n ≥ n�ω�� s ≥ m�ω��

Theorem 2 states that the path measure is exponentially tight in the vertical
direction. This result has been extended by Albeverio and Zhou (1996), who
show that the length of the longest excursion in 
n is of order log n and so is
the height of the highest excursion.

1.4. Path results in the present paper—outline. The goal of the present
paper is to give a complete description of the path for all �λ�h� ∈ � . We in
fact adopt a more comprehensive attitude by discussing the entire Gibbsian
structure associated with the Hamiltonian (1.1). (Theorems 1 and 2 are in this
respect statements about the Gibbs measures generated by the free boundary
condition for the singly infinite model.)

We begin by singling out a class of “regular” Gibbs measures (Section 2).
For this, measurability and moderate growth of the boundary condition are
the key concepts. Within this class we establish, for all �λ�h� ∈ � , unique-
ness of the Gibbs measure, exponential tightness of the path in the vertical
direction and ergodicity in the horizontal direction (Sections 3 and 5). The
proof requires three preparatory lemmas, leading up to positivity of the lower
density of intersections with the interface, which is the key ingredient in the
proof (Section 4). The paper is concluded by showing that for �λ�h� ∈ � the
path is delocalized in a weak sense, namely, it spends a zero fraction of its
time in any finite layer around the interface (Section 6).

The main results of the present paper are Theorem 3 (Section 3) and The-
orem 4 (Section 6).
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1.5. Literature remarks. The annealed model (i.e., the partition sum is av-
eraged over ω) treated by Sinai and Spohn (1996) is exactly solvable when the
ωi’s are i.i.d. or interact via an Ising Hamiltonian. It turns out that the an-
nealed heteropolymer is delocalized despite the influence of the interface. To
get localization, an additional binding potential at the interface has to be su-
perimposed.

The quenched model (i.e., ω is kept frozen) is mathematically much harder.
The periodic case (e.g., ω represents some periodic constraint within the poly-
mer) has been successfully dealt with by using a transfer-matrix approach
[Grosberg, Izrailev and Nechaev (1994)]. In that paper, the underlying ran-
dom walk is three-dimensional, undirected and with Gaussian steps, while
the interface is a two-dimensional plane. It turns out that the phase transi-
tion curve diverges at some finite value of λ. This may be attributed to the
flexibility of the Gaussian random walk to keep its monomers in their pre-
ferred solvent (by making large steps when necessary).

Prior to Sinai (1993) and Bolthausen and den Hollander (1997), the ran-
dom case (e.g., ω i.i.d.) had been analyzed by Garel, Huse, Leibler and Orland
(1989) using the replica method. The latter study draws a conclusion qualita-
tively similar to that of Theorem 1.

The free-energy localization concept has proved to be useful also in the
study of higher-dimensional generalizations of the present model (Bolthausen
and Giacomin, in preparation). The latter authors consider a d-dimensional
Gaussian surface, pinned at the interface outside a finite box and weighted by
the same type of Hamiltonian as in (1.1). A localization–delocalization phase
transition in the sense of Definition 1 is found, but the properties of the phase
transition line are not yet fully understood and are possibly different from the
ones in Theorem 1.

Whittington (1998a, b) and Orlandini, Tesi and Whittington (1998) consider
the model where the heteropolymer is confined to a half-space above the in-
terface and has an attractive interaction at the interface. Both for periodic
and random quenched disorder they establish the existence of a localization–
delocalization phase transition for the free energy.

2. Preliminaries.

2.1. Gibbsian structure. Let �ωi�i∈L be an i.i.d. sequence of ±1-valued ran-
dom variables defined on a probability space �����P�. Here � = �−1�1�L, �
is the σ-algebra generated by the cylinder sets and P is the i.i.d. measure with
P�ωi = +1� = P�ωi = −1� = 1/2. Expectation w.r.t. P will be denoted by E.

Let

�2�1� ! =
{{

S = �Si�i∈N� S0 = 0� �Si −Si−1� = ±1∀ i ∈ N
}

{
S = �Si�i∈Z� S0 ∈ 2Z� �Si −Si−1� = ±1∀ i ∈ Z

} ∪ �S ≡ ±∞�
be the space of SRW-paths for the singly infinite (L = N) and the doubly
infinite (L = Z) case, respectively.
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Let � be the σ-algebra generated by the cylinder sets. For 
 ⊂ L, let �


be the projection of � onto 
, and let � = ⋂

∈F�L� �
c be the tail σ-field

[remember that F�L� denotes the set of all finite connected subsets of L]. We
use � �!�� � to denote the space of all probability measures on �!�� �. Note
that � �!�� � is compact in the weak topology for both the singly infinite and
the doubly infinite case. [This is why we added �S ≡ ±∞� in (2.1) for the
doubly infinite case. In Section 5 we shall see that when �λ�h� ∈ � the Gibbs
measures assign zero probability to �S ≡ ±∞�.] Let P�E denote probability
and expectation under SRW.

We define Gibbs measures by means of the Gibbsian specification [for details
see Georgii (1988), Chapter 1]

�2�2� γ
ω�λ�h



(
S � S̃) = exp�Hω�λ�h


 �S��
Z
ω�λ�h

 �S̃�

P�S
 � S̃
c�1�S
c=S̃
c�� 
 ∈ F�L��

This specification is a probability measure on infinite paths S = S
 ∨ S̃
c ∈ !
(with S
 = �Si�i∈
 and S̃
c = �S̃i�i∈
c ), is absolutely continuous w.r.t. the
conditional measure P�S
 � S̃
c� corresponding to the SRW-bridge, and is a
measurable function of the boundary condition S̃ ∈ !. The partition func-
tion Z

ω�λ�h

 �S̃� is the normalizing constant [which actually only depends on

S̃∂
 = �S̃i�i∈∂
, with ∂
 the outer boundary of 
]. It is easy to verify that the
specifications �γω�λ�h
 �
∈F�L� form a consistent family.

Given ω ∈ � and �λ�h� ∈ � , the Gibbs measures are defined as follows:

�2�3� � λ�h
ω = {

µ ∈ � �!�� �� µ = µγ
ω�λ�h

 ∀
 ∈ F�L�}�

that is, γω�λ�h
 is the conditional expectation of µ in 
 given the boundary
condition in 
c. By compactness of � �!�� �, any weak (subsequential) limit
of γω�λ�h
 �· � S̃� as 
 → L, with a fixed boundary condition S̃, leads to a Gibbs
measure (because the specifications are consistent). Hence � λ�h

ω 
= �.

2.2. Regular measures. As is typical for Gibbs measures with unbounded
single-component state spaces, an extreme boundary condition may overule
the effect of the interaction itself. In our setting, for the singly infinite case
and for any �λ�h� ∈ � , there is a whole class of Gibbs measures (of at least
countably infinite cardinality) for which delocalized behavior is enforced when
S̃i grows linearly with i. Similarly for the doubly infinite case. This class we
want to throw out.

One can analyze this situation by looking at the lower excess free energy ψS̃

corresponding to S̃, defined by

φS̃�λ�h� = lim inf
n→∞

1
�
n�

E
(
logZω�λ�h


n
�S̃�)�(2.4)

ψS̃�λ�h� = φS̃�λ�h� − λh�(2.5)
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Lemma 1. (a) Consider the singly infinite case. Let limi→∞ S̃i/i = 0. Then
ψS̃�λ�h� ≥ ψ�λ�h� and similarly for the doubly infinite case.

Proof. To find a lower bound on φS̃�λ�h�, we take 
2n and restrict the
summation in Z

ω�λ�h

2n

�S̃� to paths that end by hitting the interface and subse-

quently moving at maximal speed. More precisely, if cn = S̃2n/2n ≥ 0, then the
path moves from height 0 at position 2n�1− cn� to height 2ncn at position 2n.
This gives

�2�6� Z
ω�λ�h

2n

�S̃� ≥ Z
ω�λ�h

2n�1−cn�

�0� exp
[
λ

2n∑
i=2n�1−cn�+1

�ωi + h�
]
(

2n�1 − cn�
n�1 − cn�

)
(

2n

n�1 − cn�
) �

where Zω�λ�h

2m

�0� denotes the partition sum with boundary condition S̃2m = 0
(m ∈ N). The binomial factors come from the fact that the path must match the
boundary condition (recall that the partition sum is defined w.r.t. the SRW-
bridge). Now, it was shown by Bolthausen and den Hollander (1997) that the
ratio of Zω�λ�h


2n
�0� and the partition function with free boundary condition,

which was used to define φ�λ�h�, is of linear order in n. Therefore, the claim
follows after taking logarithms, dividing by 2n, letting n → ∞, using that
cn → 0, and using the relation between φ and ψ in (1.6). The case cn ≤ 0 and
the doubly infinite case are completely analogous. ✷

Lemma 1 shows that any sublinear boundary condition cannot destroy lo-
calization in the sense of Definition 1. Thus, a natural distinction between
sublinear and linear boundary conditions arises. This leads us to the follow-
ing definition.

Definition 2. Given �λ�h� ∈ � , the regular Gibbs measures are those
µ ∈ � λ�h

ω for which limi→±∞Si/i = 0 µ-a.s. The set of regular Gibbs measures
is denoted by �R�λ�h

ω .

The theory of Gibbs measures guarantees that all regular Gibbs measures
lie in the closed convex hull of all the weak limits generated by sublinear
boundary conditions.

2.3. Measurable Gibbsian sections. As we noted earlier, � λ�h
ω 
= � for all ω

by compactness. However, although µω ∈ � λ�h
ω for different ω can be arranged

into a measure-valued function of ω, it is not a priori clear that this can be
done in a measurable way, because of possible nonuniqueness of the Gibbs
measure. Formally, if we put �R�λ�h = ⋃

ω∈���ω�µ�� µ ∈ �R�λ�h
ω �, then the

question is whether or not there are measurable sections �ω�µω�ω∈� ∈ �R�λ�h.
We shall answer this question affirmatively when �λ�h� ∈ � . Measurability
will be important later on because we shall want to integrate over ω.
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Define

�2�8� �̂R�λ�h = {
µ�·�� � → � �!�� �� µω ∈ �R�λ�h

ω ∀ω ∈ ��

µ�·��A� �-measurable ∀A ∈ �
}

to be the set of regular measurable Gibbsian sections. Observe that µ�·� ∈
�̂R�λ�h implies that µ�·�, when regarded as a measure-valued function on �,
is measurable w.r.t. the Borel σ-algebra associated with the weak topology on
� �!�� �.

Lemma 2. Let �λ�h� ∈ � . Then:

(a) �̂R�λ�h 
= � is nonempty both for the singly infinite and the doubly
infinite case.

(b) For the doubly infinite case there is a µ�·��� → � �!�� � such that µ�·��A�
is �-measurable for all A ∈ � and

(i) µω��S0� < ∞� = 1;
(ii) µω is regular Gibbsian, that is, µω ∈ �R�λ�h

ω ;
(iii) µσω�σA� = µω�A� for all A ∈ �

hold for P-almost all ω. Here σ denotes the left-shift by two (!) lattice sites,
acting on path and disorder.

The proof of Lemma 2 is given in Section 5 and requires a large devia-
tion estimate on the partition function appearing in (2.2), which is derived in
Lemma 3 (Section 4). The main point here is to rule out that mass escapes to
infinity under the doubly infinite measure µω �i.e., µω��S ≡ ±∞�� = 0��. This
is in fact likely to happen when �λ�h� ∈ � , but here we are only considering
�λ�h� ∈ � .

3. Uniqueness and positive density in the localization regime. It
is intuitively clear that ψ > 0 implies recurrence, that is, the path hits the
interface infinitely often. Indeed, if ψ > 0, then by Lemma 7 for any regular
boundary condition S̃ we have Zω�λ�h


 �S̃�e−λh�
� = exp��
�ψS̃�λ�h� + o��
��� →
∞ as 
 → L, which implies that the set �S ∈ !� Si > 0∀ i ≥ n� has zero
probability for all n [recall (1.1) and (2.1)]. Below we shall in fact prove more,
namely, that all regular Gibbs measures are positively recurrent, that is, the
path hits the interface with a certain positive frequency.

For a ∈ Z, let

�3�1� (−
a �S� = lim inf


→L

2
�
�

∑
i∈


1�Si=a��

where the factor 2 takes care of the parity of SRW. We shall say that
�ω�µω�ω∈� ∈ �R�λ�h is localized if Eµω�(−

0 > 0� = 1, that is, if µω�(−
0 > 0� = 1

for P-almost all ω. Now we are ready to state the main theorem of our paper.
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Theorem 3. Let �λ�h� ∈ � . Then:

(a) �̂R�λ�h is a singleton both for the singly infinite and the doubly infinite
case.

(b) The unique doubly infinite Gibbsian section �ω�µω�ω∈� is localized and
is jointly translation invariant (i.e., µσω�σA� = µω�A� for P-almost all ω and
all A ∈ � ).

(c) The unique singly infinite Gibbsian section �ω� νω�ω∈� is localized and
is asymptotically equal to �ω�µω�ω∈�:

�3�2� lim
n→∞ sup

A∈�

∣∣νω�σnA� − µω�σnA�∣∣ = 0 for P-almost all ω�

(d) Both Gibbsian sections have a.s. constant densities, that is, for P-almost
all ω and all A ∈ � �

�3�3� lim

→L

1
�
�

∑
i∈


1σiA�S� = Eµω�A� for µω-almost all S ∈ !�

and similarly for νω.
(e) Both Gibbsian sections are exponentially tight: for any s ∈ Z and ε > 0

there exists a random number n0�s� ε�ω� such that

�3�4� νω�Sn = s� ≤ 	 �1� exp�−�ζs − ε��2s��� n ≥ n0�s� ε�ω��
with ζs = ψ�λ�h� when s > 0 and ζs = ψ�λ�h� + λh when s < 0.

Assertions (a) and (b) establish uniqueness within the class of regular Gibb-
sian sections [for �λ�h� ∈ � ]. The measures νω, respectively, µω can be viewed
as describing the behavior of the polymer near the endpoint, respectively, away
from the endpoints. Assertion (c) claims that these two blend into each other
at infinity. Assertion (d) corresponds to ergodicity along the polymer. (Note
that the probabilities µω�σiA� typically vary a great deal with i according to
the local disorder.) Assertion (e) provides an extension of Sinai’s result cited
in Theorem 2, with explicit bounds on the decay rate.

4. Three preparatory lemmas. In order to prove Lemma 2 and Theo-
rem 3, we first have to state a couple of technical lemmas that establish expo-
nential growth of the partition function (Lemma 3), exponential tightness of
the interarrival times to the interface (Lemma 4), and, most importantly, a.s.
positivity of the lower density of intersections with the interface under both
µω and νω (Lemma 5). To avoid confusion, we emphasize that the proof of
Lemma 2 requires only the result of Lemma 3, hence there is no problem with
the assumption of measurability in Lemmas 4 and 5. Throughout the sequel
we assume �λ�h� ∈ � and suppress these parameters from the notation.

4.1. Large deviations for the partition sum. The assertion of Lemma 3 is
a large deviation estimate for the partition sum that will be needed later on,
in particular, in conjunction with a Borel–Cantelli argument.
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Lemma 3. Let Zω
2n = Zω


2n
�0� be the partition function for the boundary

condition S̃0 = S̃2n = 0. Then for each ε ∈ �0� ψ� there is a δε > 0 such that

�4�1� P

(
1

2n
logZω

2n < ψ+ λh− ε

)
≤ 	 �1� exp�−δε2n�� n → ∞�

Proof. Given ε > 0, there is an m large enough such that

�4�2� 1
2m

E�logZω
2m� ≥ ψ+ λh− ε/2�

This follows from the fact that a sublinear boundary condition does not lower
the free energy (see Lemma 1). Pick any such an m and put k = �n/m . Then,
by restricting the path to return to 0 at positions 2m, 4m� � � � �2km �≤ 2n�,
we obtain

�4�3� Zω
2n ≥

(
2m

m

)k (
2�n− km�
n− km

)
(

2n

n

) [ k−1∏
j=0

Zσjmω
2m

]
Zσkmω

2n−2km�

Here the binomial factor reflects the fact that the partition sum is defined
w.r.t. the SRW-bridge. After taking logarithms and dividing by 2n we get

�4�4�
P

(
1

2n
logZω

2n < ψ+ λh− ε

)

≤ P

(
1
k

k−1∑
j=0

1
2m

logZσjmω
2m < ψ+ λh− 3ε

4

)
�

where we have assumed n so large that the factors outside the square brackets
in (4.3) give rise to a correction less than ε/4. Now, �1/2m� logZσjmω

2m �j =
0� � � � � k− 1� are i.i.d. bounded random variables. Therefore a standard large
deviation estimate gives that the r.h.s. of (4.4) is bounded by 	 �1� exp�−δ′

ε2k�
for some δ′

ε > 0. From this the claim easily follows by choosing δε = δ′
ε/m

[we neglect the additional correction coming from rounding off �n/m , which
is absorbed into the 	 �1�-term]. ✷

4.2. Exponential tightness of the interarrival times. Let us introduce the
notion of arrival times, defined as the positions where the path hits the inter-
face, that is,

�4�5� · · · < N−1 < N0 ≤ 0 < N1 < N2 < · · ·
specified by S2Nk

= 0 (k ∈ Z) and S2r 
= 0 if r 
∈ �Nk�. Let ξk = Nk+1 −Nk

(k ∈ Z) be the interarrival times. (Both sequences end when no further arrivals
occur.) Note that only the even sites are counted in the excursions.



678 M. BISKUP AND F. DEN HOLLANDER

Lemma 4. If �ω�µω�ω∈� ∈ �R�λ�R is a measurable Gibbsian section, then
there is a κ > 0 such that for any i ∈ Z, K ∈ N, L ∈ Z, and any mi+j ∈ N

(j = 0� � � � �K− 1),

�4�6�
E
[
µω
(
ξi+j = mi+j ∀j = 0� � � � �K− 1 �Ni = L

)]
≤ 	 �1�

K−1∏
j=0

exp�−κmi+j��

Proof. Fix i�K�L. The event

�4�7� A = {
ξi+j = mi+j ∀j = 0� � � � �K− 1

}
�

if conditioned on �Ni = L�, means that S2kj = 0 for kj = L + ∑j−1
l=0 mi+l

�j = 0� � � � �K� and S2r 
= 0 for kj < r < kj+1 �j = 0� � � � �K − 1�. Since µω is
Gibbsian, we can apply conditioning to write [recall (1.1)]

�4�8�
µω�A �Ni = L� =

[K−1∏
j=0

1 + exp�−2λ��Ij
+ h�Ij���

2Zω
Ij

exp�−λ��Ij
+ h�Ij���

PIj

]

× µω
(
S2kj+1

= 0∀j = 0� � � � �K− 1 �Ni = L
)
�

where Ij = �2kj�2kj+1" ∩ Z, �Ij
= ∑

l∈Ij ωl, and PIj
is the probability that

SRW conditioned on S2kj = 0 = S2kj+1
never touches the interface in between.

By neglecting the last factor, we obtain

�4�9� µω�A �Ni = L� ≤
K−1∏
j=0

1 + exp�−2λ��Ij
+ h�Ij���

2Zω
Ij

exp�−λ��Ij
+ h�Ij���

PIj
�

Pick ε > 0. By Lemma 3, there exists a δε > 0 such that

�4�10� P
(
Zω
Ij

exp�−λh�Ij�� < exp��ψ− ε��Ij��
)

≤ 	 �1� exp�−δε�Ij�� for all j.

Moreover, a standard large deviation estimate gives that there exists a δ′
ε > 0

such that

�4�11� P

(
��Ij

� > ε

λ
�Ij�

)
≤ 	 �1� exp�−δ′

ε�Ij�� for all j�

Hence, by using (4.11) to estimate the numerator of the fractions in (4.9), and
(4.10) to estimate the denominator of the fractions in (4.9) on the complement
of the event in (4.11), we get

�4�12�
E
[
µω�A �Ni = L�]

≤ 	 �1�
K−1∏
j=0

[
exp�−δε�Ij�� + exp�−δ′

ε�Ij�� + exp�−�ψ− 2ε��Ij��
]
�

[Here we also used that each factor in the r.h.s. of (4.9) is less than or equal
to 1.] The desired estimate (4.6) is now obtained by setting κ = 2 supε>0
min�δε� δ′

ε� ψ− 2ε�. Since ψ > 0, we obviously have κ > 0. ✷
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4.3. Positive lower density of intersections. Now comes the most important
lemma, which establishes a.s. positivity of (−

0 [recall (3.1)]. As explained in
Section 5, this result will make accessible certain coupling techniques that
will be used to prove Theorem 3.

Lemma 5. There is a (̂ > 0 such that for any measurable Gibbsian section
�ω�µω�ω∈� ∈ �̂R�λ�h: µω�(−

0 ≥ (̂� = 1 for P-almost all ω.

Proof. Let us concentrate on the doubly infinite case. (The singly infinite
case can be handled analogously.) Let

�4�13� An#k =
{ n∑
j=−n

1�S2j=0� ≤ k

}
�

Let −2�n+n−� label the last arrival before −2n and 2�n+n+� the first arrival
after 2n. Since Lemma 4 provides an estimate for interarrival times in a row,
we have for 0 ≤ k ≤ n�

�4�14�
Eµω�An#k� ≤ 	 �1�

[ k∑
l=0

(
2n+ 1

l

)] ∞∑
n+� n−=1

exp�−κ�2n+ n− + n+ + 1��

≤ 	 �n�
(

2n+ 1

k

)
exp�−κn��

where the binomial factor accounts for all possible positions of the k arrivals
within $−2n�2n".

Pick 0 < (̂ < 1/2 and pick k = k�n� = ��2n + 1�(̂ . Then, using Stirling’s
formula, we obtain

�4�15� Eµω�An#k�n�� ≤ 	 �n�[exp�−κ/2�(̂−(̂�1 − (̂�−�1−(̂�]2n�
So if (̂ satisfies (̂ log (̂+ �1 − (̂� log�1 − (̂� + κ/2 > 0, which is the case for ρ̂
small enough because κ > 0, then the r.h.s. is summable on n, and hence

�4�16� Eµω
(
An#k�n� i.o.

) = 0

by the Borel–Cantelli lemma. Consequently,

�4�17�
n∑

j=−n
1�S2j=0� >

⌊�2n+ 1�(̂⌋
eventually under Eµω, and hence under µω for P-almost all ω. Therefore the
claim follows [recall (3.1)]. ✷

5. Proofs.

5.1. Proof of Lemma 2. Fix �λ�h� ∈ � and suppress these parameters
from the notation. We shall consider the doubly infinite case and construct a
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measure-valued function ω → µω with the desired properties. The existence
proof in the singly infinite case is analogous.

We start the construction by defining a finite-volume jointly translation-
invariant Gibbs measure on SRW-paths and disorder configurations and then
identifying a thermodynamic limit thereof. The construction guarantees that
the limit fulfils the requirements stated in Lemma 2(b). Lemma 4 will be used
to show that no mass escapes to infinity.

Consider a finite string 
 ⊂ Z, with �
� even and 
 % 0. Let γ̃ω
 be the
Gibbsian specification in 
 defined by

�5�1� γ̃ω
�S
� = 1
2�
�

exp�Hω

�S
��

Z̃ω



1�∃�2i�∈
� S2i=0�1�Smax
−Smin
=±1��

Note that here we force the path to intersect the interface somewhere and
that we impose periodic boundary conditions. Clearly, γ̃σω
 �σA� = γ̃ω
�A� for
any A ∈ �
 (where σ acts cyclically).

Pick a sequence �
2n� of such intervals with �
2n� = 2n. Now define µ�n�
B �A�

by

�5�2� µ
�n�
B �A� =

∫
�

P�dω�1B�ω�γ̃ω
2n
�A�� A ∈ �
2n

�B ∈ �
2n
�

By compactness, we have µ
�nk�
B �A� → µB�A� for some µB�A� along a subse-

quence �nk� for all A ∈ ⋃
n �
2n

, all B ∈ ⋃
n�
2n

. Since µB�A� is σ-additive
on

⋃
n�
2n

× ⋃
n �
2n

, it has a unique extension µ̄B�A� to � × � by the
Caratheodory theorem.

Before we extract µω from µ̄�, we first verify that µ̄� assigns zero probabil-
ity to �S ≡ ±∞�, which is Lemma 2(b)(i). This will follow if µ̄���S0� ≥ a� → 0
for a → ∞. Indeed, since γ̃ω
 is Gibbsian, we may estimate with the aid of (4.6)

�5�3�
µ

�nk�
�

(�S0� ≥ 2a
) ≤ Eγ̃ω
2nk

�N0 ≤ −a� N1 ≥ a�

≤ 	 �1�
∞∑

i1� i2=a
exp�−κ�i1 + i2 + 1�� → 0� a → ∞

uniformly in nk. Moreover, µB�A� ≤ P�B� implies µ̄B�A� ≤ P�B�, so by the
Radon–Nikodym theorem there exists a unique µω such that

�5�4� µ̄B�A� =
∫
�

P�dω�1B�ω�µω�A�� A ∈ � �B ∈ ��

Clearly, by (5.3), µω��S0� < ∞� = 1 for P-almost all ω, so Lemma 2(b)(i) is
established.

The uniqueness of the representation in (5.4) implies that µω is a σ-additive
probability measure and that µω ∈ �R�λ�h

ω for P-almost all ω. To prove the
latter property, which is Lemma 2(b)(ii), pick 
 ⊂ � ∈ F�Z�, D ∈ � , ω̃ ∈ �,
take B = �ω ∈ �� ω�� = ω̃���, and subtract (5.2) with A = D from (5.2) with
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A replaced by the function γω̃
�D � · � [i.e., the specification defined in (2.2)],
to get

�5�5�
∫
�

P�dω�1�ω∈�� ω��=ω̃���
[
µω�D� −Eµω

γω̃
�D � · �] = 0�

where Eµω
stands for expectation w.r.t. µω. Here we have been able to use the

Gibbsianness of γ̃ω
2n
(for n such that � ⊂ 
2n) even under integration over ω,

because ω is equal to ω̃ inside 
. Now proceed by letting � → Z to show
that µω̃�D� = Eµω̃

γω̃
�D � · � for P-almost all ω̃. Since 
 and D are arbitrary,
it follows that µω is a Gibbs measure for the Hamiltonian in (1.1). It follows
from (5.3) and a straightforward Borel–Cantelli argument that µ̄� is regular
and, consequently, µω is regular P-almost surely, which completes the proof of
Lemma 2(b)(ii).

Finally, Lemma 2(b)(iii) follows from the periodicity of the specification γ̃ω
 ,
which is trivially jointly translation-invariant. ✷

5.2. Proof of Theorem 3. The proof will come in four steps. Step 1, which is
the most technical, shows that for two arbitrary Gibbsian sections correspond-
ing to the same medium, the paths intersect infinitely often. Via a coupling
argument in Step 2 this will prove items (a)–(c) of Theorem 3. Items (d) and
(e) are established in Steps 3 and 4, respectively.

Step 1. Let �ω�µω�ω∈� ∈ �R�λ�h be the doubly infinite measurable Gibb-
sian section whose existence was established in Lemma 2. Let �ω� νω�ω∈� ∈
�̂R�λ�h, either singly infinite or doubly infinite. In order to make coupling
possible, we have to show that paths intersect infinitely often under a joint
measure. The result of Lemma 5 allows us to choose the product measure.

Label the paths under µω by 1, the paths under νω by 2. Let

�5�6� C∞ = {�S1� S2�� S1
n = S2

n i.o.
}

be the set of pairs of paths that intersect infinitely often. We shall show that
�µω × νω��C∞� = 1 for P-almost all ω. The proof goes as follows.

As was shown in Lemma 5, both measures have a positive lower density of
intersections with the interface. Hence the function fM = 1�N1−N0≥M�, which
is the indicator of the event that 0 belongs to an excursion larger than M
[recall (4.5)], is well defined on a set of full measure. Since fM ∈ L1�!�� �
Eµω�, we have by the ergodic theorem (recall that Eµω is σ-invariant) that
there exists an f̄M such that

�5�7� lim
n→∞

1
2n+ 1

n∑
j=−n

σjfM = f̄M� Eµω-a.s.,

where σ acts on !, and EEµω
�f̄M� = EEµω

�fM�. Moreover, σf̄M = f̄M. Hence,
for every a > 0, µω�f̄M > a� is constant P-a.s. (by ergodicity w.r.t. the disor-
der) and

�5�8� µω�f̄M > a� = Eµω�f̄M > a� ≤ EEµω
�f̄M�
a

= EEµω
�fM�
a

�
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The r.h.s. can be further estimated with the help of Lemma 4, namely,

�5�9� EEµω
�fM� ≤ 	 �1�

∞∑
n=M

ne−κn = 	 �M�e−κM� M → ∞�

where we use that Eµω�fM = 1� is bounded by the sum over n ≥ M of the
l.h.s. of (4.6) with i = 0, K = 1, and L running from −n + 1 to 0. Therefore,
combining (5.8) and (5.9), we have

�5�10� µω�f̄M > a� ≤ 	 �M�
a

e−κM for P-almost all ω.

Now, on �f̄M ≤ a� the fraction of sites of 2Z covered by excursions of length
≥ M is at most a. Hence, on �f̄M < (̂/2�×! at least half of the arrivals of S2

occur within the S1-excursions of length <M [recall from Lemma 5 that (̂ is
a lower bound for (−

0 defined in (3.1)]. If the two paths �S1� S2� are to avoid
each other, then the first has to stay either above or below the other during
all of these (infinitely many) excursions.

To show that the probability of the latter event is zero we introduce some
definitions. Let

�5�11� p�n�ω� = γ
2n
�Si > 0∀1 ≤ i < 2n �0�

γ
2n
�Si 
= 0∀1 ≤ i < 2n �0�

and put pM = maxn<M maxω∈� max�p�n�ω��1 − p�n�ω��. An easy computa-
tion shows that pM = �1 + exp�−2λ�1 + h��M− 1���−1 < 1. This is the least
price to pay (when conditioning upon the arrivals) to avoid that the path S1

be swapped to −S1 during an excursion of length less than M.
Next, define the remotest intersection time as

�5�12� τ =
{

max
{
k� S1

2k = S2
2k or S1

−2k = S2
−2k

}
� �S1� S2� 
∈ C∞,

∞� �S1� S2� ∈ C∞.

Also define 
k�M�n� = #�i� k ≤ i ≤ n + k� S2
2i = 0� fM�σiS1� = 0� and

AM = �f̄M < (̂/2� × !. On AM we have

�5�13� lim inf
n→∞


k�M�n�
n

≥ (̂/2 > 0� Eνω-a.s.

as follows from Lemma 5 and the reasoning below (5.10). Therefore we get

�5�14�
�µω × νω�

(
AM ∩ $C∞"c)

≤
∞∑
k=1

[
2�µω × νω�

([
lim
n→∞p


k�M�n�
M

]
1AM

1�τ=k�
)]

= 0�

Here we decompose according to the values of τ, condition upon the arrivals of
both S1 and S2 in $τ� τ + n", then bound by pM the interarrival probabilities
of S1 for excursions of length < M containing at least one arrival of S2, and
bound by 1 otherwise, and finally use that 1AM

p

k�M�n�
M ≤ exp�n�(̂/4� logpM�

for n large enough, as follows from (5.13). The factor 2 reflects whether S1
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stays above S2 from τ onward or vice versa. Note that there is no problem
with 1AM

in the conditioning, because AM is a tail event.
The conclusion of (5.14) is that �µω × νω��AM ∩ $C∞"c� = 0 for all M. On

the other hand,

�5�15� µω

( ∞⋃
M=1

AM

)
= 1

by the Borel–Cantelli lemma and (5.10). Hence, combining (5.14) and (5.15),
we find that �µω × νω��$C∞"c� = 0, that is, the paths S1 and S2 intersect
infinitely often �µω × νω�-almost surely.

Step 2. We show by a coupling inequality that µω and νω have to agree
on the tail σ-field � . Besides other things, this implies uniqueness of the
Gibbs measure. The proof is done for νω singly infinite, the doubly infinite
case requiring only formal alterations.

Let k ∈ N and A ∈ �
c
k

(A should be thought of as approximating a tail
event). Define

�5�16� τ = inf
{
n ≥ 0� S1

n = S2
n

}
�

Let Eω denote the expectation w.r.t. the product measure µω × νω. Then we
can write

�5�17�

∣∣µω�A� − νω�A�∣∣ = ∣∣Eω�A× !� −Eω�!×A�∣∣
≤ ∣∣Eω�1�τ>k�1A×!� −Eω�1�τ>k�1!×A�

∣∣
≤ Eω�1�τ>k���

where we use that Eω�1�τ≤k�1A×!� = Eω�1�τ≤k�1!×A� because µω and νω have
the same conditional probabilities. Hence

�5�18� sup
A∈�
c

k

∣∣µω�A� − νω�A�∣∣ ≤ Eω�1�τ>k���

By Step 1 the r.h.s. tends to 0 as k → ∞. Consequently, µω and νω agree on
the tail σ-field � . In particular, we get (3.2):

�5�19� lim
k→∞

sup
A∈�

∣∣µω�σkA� − νω�σkA�∣∣ = 0 for P-almost all ω.

Step 3. The a.s. convergence of ergodic averages under νω can be proved
through a comparison with the a.s. convergence under Eµω, which is transla-
tion invariant. Namely, given a set A ∈ � , let

�5�20� A> =
{

lim sup
n→∞

1
n

n−1∑
k=0

1σkA > Eµω�A�
}
�

Clearly, A> is a tail event, and Eµω�A>� = 0 by the translation invariance
of Eµω. However, this implies Eνω�A>� = 0, since Eνω coincides with Eµω
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on � . So

�5�21� lim sup
n→∞

1
n

n−1∑
k=0

1σkA ≤ Eµω�A� νω-a.s. for P-almost all ω.

The same argument works for the limes inferior, so the limit in (3.3) is estab-
lished.

Step 4. The last property to prove is that µω and νω are exponentially
tight. Since we know by (5.19) that

∣∣µω�σnA� − νω�σnA�∣∣ → 0 as n → ∞, it
suffices to study the tail of µω. To that end, pick s ∈ Z� s > 0. We have from
Gibbsianness

�5�22�
µω�S0 = 2s� =

∞∑
n+� n−=s

Pn+� n−�S0 = 2s�
Zω
In+� n−

exp�−λ��In+� n−
+ h�In+� n−���

× µω�S−2n− = S2n+ = 0��
where In+� n− = �−2n−�2n+" ∩ Z, and Pn+� n−�S0 = 2s� is the probability that
SRW, conditioned on hitting the interface at −2n− and 2n+, climbes to height
2s at 0 without ever touching the interface in between. By using Lemma 3
[and using the Borel–Cantelli lemma to get rid of E as in (5.10)], we have for
any ε > 0�

�5�23� (
Zω
In+� n−

exp�−λh�In+� n−��
)−1 ≤ 	 �1� exp�−�In+� n−��ψ− ε���

so the r.h.s. of (5.22) is P-a.s. absolutely summable and of order exp�−4s ·
�ψ − ε�� as s → ∞ [note that exp�−λ�I� = o�exp�ε�I��� for each ε > 0 as
�I� → ∞]. After letting ε ↓ 0� we obtain that the tail property in (3.4) is
proved for s > 0, with ζs = ψ. For s ∈ Z, s < 0 there is an additional factor

�5�24� exp
[
−2λ

∑
l∈In−� n+

�ωl + h�
]

in the numerator of each summand. This raises ζs by λh. ✷

6. Zero density in the delocalization regime. In this section we con-
sider the singly infinite case and present an argument due to G. Giacomin
(private communication), showing that in the interior of the delocalization
regime the path is delocalized in the following sense:

Theorem 4. Let �λ�h� ∈ int�� � and let νω ∈ �R�λ�h
ω be an arbitrary singly

infinite regular Gibbs measure. Then for P-almost all ω�

�6�1� lim
n→∞

1
n

n∑
i=1

1�Si=a� = 0 in νω-probability for all a ∈ Z�

Remark. Note that Theorem 4 makes a claim about all regular Gibbs
measures under a typical disorder. Since we do not have Lemma 2 for �λ�h� ∈
� , the notion of a measurable Gibbsian section is not available.
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Proof. Fix a ∈ 2Z (without loss of generality). For k� l ∈ N, define

�6�2� Aa
k� l =

{ l∑
i=0

1�S2i=a� ≥ k+ 1
}
�

We shall show that for any boundary condition S̃ and any ε > 0 the event
Aa

�εn �n has a probability decaying to zero under the finite-volume specification

γω
2n
� · � S̃� in the limit as n → ∞. The key ingredient is the well-known entropy

inequality

�6�3� γω
2n

(
Aa

�εn � n
∣∣ S̃) ≤ log 2 +� ω

2n

log
(
1/P2n�Aa

�εn � n
∣∣S̃�) �

where P2n� · � S̃� is the SRW-bridge probability measure between 0 and S̃2n,
and

�6�4� � ω
2n = �

(
γω
2n

� · �S̃� ∣∣P2n� · �S̃�)
denotes the relative entropy of the probability measure γω
2n

� · � S̃� w.r.t.

P2n� · � S̃�.
We first note that for �λ�h� ∈ int�D� the specific relative entropy � ω

2n/2n
vanishes in the thermodynamic limit:

�6�5� lim
n→∞

� ω
2n

2n
= −φ�λ�h� + λ

∂φ

∂λ
�λ�h� = 0 for P-almost all ω.

Indeed, by (1.1) and (2.2),

�6�6�

� ω
2n = ∑

S
2n

γω
2n
�S
2n

� S̃� log
γω
2n

�S
2n
� S̃�

P2n�S
2n
� S̃�

= − logZω

2n

�S̃� + 1

Zω

2n

�S̃�
∑
S
2n

Hω

2n

�S
2n
∨S
c

2n
�

× exp�Hω

2n

�S
2n
∨S
c

2n
��P2n�S
2n

� S̃�
= − logZω


2n
�S̃� + λ

∂

∂λ
logZω


2n
�S̃��

Hence, the first equality in (6.5) follows after letting n → ∞ and interchanging
the limit with ∂/∂λ [which is allowed because of the convexity and regularity
of φ in int�� �], while the second equality in (6.5) holds because φ�λ�h� = λh
on � . Thus, after we show that

�6�7� lim sup
n→∞

1
2n

logP2n
(
Aa

�εn � n � S̃) < 0 for all ε > 0�

it will follow from (6.3) and (6.5) that limn→∞ γω
2n
�Aa

�εn � n � S̃� = 0. Condition-
ing then implies the same for any (regular) Gibbs measure νω.
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Pick νω and define τ1 (τ2) to be the leftmost (rightmost) site i with 0 ≤ i ≤ 2n
such that Si = a. If no such sites occur, then (6.1) is trivially satisfied. Hence

�6�8�
P2n�Aa

�εn � n � S̃�
= ∑

0≤l1≤l2≤n
P2n

(
τ1 =2l1� τ2 =2l2 � S̃)P2�l2−l1�

(
A0

�εn � l2−l1 �0
)
�

where the last factor can be further estimated by the corresponding number
for the free SRW, namely,

�6�9� P2�l2−l1�
(
A0

�εn � l2−l1 �0
) ≤ P

(
A0

�εn � l2−l1 ∩ {S2�l2−l1� = 0
})

P
(
S2�l2−l1� = 0

)
≤ 	 �√n�P(A0

�εn � n
)
�

where we used that l2 − l1 ≤ n and P�S2n = 0� ∼ C/
√
n. Thus

�6�10� P2n
(
Aa

�εn � n � S̃) ≤ 	 �√n�P(A0
�εn � n

)
�

so we need only consider the case a = 0.
Next, similarily as in the proof of Theorem 3, let us define the interarrival

time ξi as the duration between the ith and the �i+1�st intersection with the
interface. Then we may write

�6�11� A0
�εn � n =

{ �εn ∑
i=1

ξi ≤ n

}
�

Now, under P the ξi are i.i.d. with distribution function satisfying

�6�12� ∑
l=1

P�ξ1 = l�zl = 1 −
√

1 − z2 for all 0 ≤ z < 1�

By the exponential Chebyshev inequality we therefore have

�6�13� P

( �εn ∑
i=1

ξi ≤ n

)
≤ z−n

(
1 −

√
1 − z2

)�εn for all 0 < z < 1�

The r.h.s. attains its minimum at z such that z2 = �1 − 2ε′n��1 − ε′n�−2 with
ε′n = �εn /n ≤ ε. Consequently, using (6.10), (6.11) and (6.13) we get the bound

�6�14�
lim sup
n→∞

1
2n

logP2n
(
Aa

�εn � n � S̃)
≤ �1 − ε� log�1 − ε� − 1

2
�1 − 2ε� log�1 − 2ε��

when ε is small enough. The r.h.s. is ∼ −ε2 as ε ↓ 0. Hence (6.7) holds for all
ε > 0 and the proof of (6.1) is complete. ✷
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