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THE LOAD TRANSFER MODEL

BY M. BEGUIN, L. GRAY AND B. YCART

LMCrIMAG, University of Minnesota and LMCrIMAG

An interacting particle model for load transferring in parallel archi-
tectures is defined. In the case of an infinite lattice the model is proved to
be ergodic and to converge exponentially fast to its equilibrium. When the
architecture is that of a complete graph, the total number of loads behaves
as a birth and death process, and explicit upper bounds on the benefits
that can be expected from a transferring policy are derived. Experimental
results for different types of architectures are presented and compared to
the solution of the mean field equations. There is fairly good agreement
between the two for quantities of practical interest.

1. Introduction. A parallel architecture is a set of processors arranged
into an unoriented graph pattern by communication lines that connect them.
Currently used architectures include cycles, grids, toruses, hypercubes and
complete graphs. One advantage of such an arrangement is to allow an even
distribution of tasks over the whole set of processors. Typically, a situation
where one processor has a long file of tasks waiting to be executed while one
of its neighbors remains idle will be avoided by transferring part of the load
from the first processor onto the latter. Since such a transferring policy may
be costly in time and resources, it is of interest to evaluate the gain one can

Ž w x .expect from its implementation cf. 3 for a general reference .
Assuming immediate transfers, we propose to compute upper bounds on

the best possible gains, based on an interacting particle model that can be
described informally as follows. Each processor taken individually is seen as
a Markovian queue with limited capacity. Tasks are supposed to arrive one
by one according to a Poisson process with intensity l, and they are com-
pleted by processors in exponential time, independently of each other. The
time unit can be arbitrarily fixed to equal the average completion time of a
task. The state of a given processor is the number of tasks either being
treated or waiting to be treated by that processor. Since buffers have limited
capacity, the state of a processor is bounded above by some fixed integer K.
Any task that arrives at a processor at level K is rejected from the system.

Ž .We will be interested in the probabilities P l that, in the stationary regime,i
a processor is in state i s 0, . . . , K. If the processors are not connected, they
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behave as independent MrMr1rK queues, and these probabilities are

1 y l¡
il , if l / 1,Kq11 y l~1.1 P l sŽ . Ž .i 1

, if l s 1.¢K q 1

The performance criteria usually considered in the computer science litera-
w x Ž .ture 3 can be expressed in terms of the probabilities P l . These criteriai

are as follows:

1. The rejection probability
P l .Ž .K

2. The mean number of tasks treated per processor and per time unit

l 1 y P l .Ž .Ž .K

3. The mean load per processor
K

iP l .Ž .Ý i
is0

4. The mean response time

ÝK iP lŽ .is0 i
.

l 1 y P lŽ .Ž .K

Ž w x.The last expression comes from Little’s formula cf., e.g., 17 . One objective
is to compute the same equilibrium probabilities under a policy of immediate

Ž .transfer and to compare them with the expressions 1.1 above. We shall
assume that immediate transfers occur between neighboring processors as
soon as the difference of load between them exceeds 1. Suppose that processor
x has level i - K and some of its neighbors have levels less than i, thus
being available to receive a possible transfer from x. Any incoming new task
on x will immediately be transferred with equal probability onto any of the
possible targets. However, these neighbors may in turn have other neighbors
with less tasks. The incoming task may thus cascade down from its arrival
processor onto another processor at further distance. Notice that, due to the
limited capacity hypothesis, the number of successive transfers of an arriving
task, or the distance between the initial arrival point and the final destina-

Ž .tion, can be at most K y 1 from a processor at level K y 1 to one at level 0 .
Also, according to this rule, the load of a processor can increase only if it is
less than or equal to that of its neighbors. So far, the model we have
described is akin to sandpile models, widely studied in the physics literature
Ž w x w xsee 5 for a recent reference or 14 for a model closer to the one considered

.here . There is also an analogy with the crystal growth models of Gates and
w xWestcott 10 , in the sense that the rate of increase of a configuration at a

given site depends on the difference of height between that site and its
neighbors.
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Unlike in sandpile or crystal growth models, tasks leave the system at
each site as they are completed. The situation after the completion of a task is
symmetric to the one described above after the arrival of a task. Assume a
task is ready to leave processor x and some neighbors of x have higher load
levels. The departure of that task will immediately be compensated by a
transfer from any of the more loaded neighbors, chosen with equal probabil-
ity. This in turn may provoke transfers from other neighbors. As before, the
number of transfers caused by the completion of a task at x and the distance
to the last such transfer from x are at most K y 1. Due to the obligation of
transferring, an actual decrease in load can only occur at a site whose
neighbors have as many loads or less. Notice that in this setting it is implicit
that the limited capacity K should be at least 2.

� 4The model described above is a spin system with values in 0, . . . , K
Ž w x .cf. 12 for a general reference and its formal description will be given in
Section 2, together with some basic properties.

In the case of massively parallel architectures, several thousands of pro-
cessors have to be connected and, mainly for technical reasons, the most
frequently used architecture is that of a torus. It is therefore of practical
interest to study the load transfer model on Z2 ; it is also of mathematical
interest. Section 3 contains our main result: the load transfer model is proved
to be ergodic for any lattice structure on Zd and any values of K and l, and
to converge at exponential speed to its equilibrium state. The proof uses a
specific coupling, together with classical techniques of stochastic comparison.

The architecture for which optimal gains can be expected is obviously the
complete graph. In that case, the total number of loads in the system evolves
as a birth and death process. Its stationary measure and thus all quantities
of interest can be computed explicitly. This will be treated in Section 4. The
complete graph case has already been considered with different modeling

w x w xhypotheses by Malyshev and Robert 13 and Spies 16 .
The theoretical results of Section 3 and 4 will be complemented by approxi-

Ž .mate computations of the probabilities P l of the different levels of loads.i
Two types of approximations have been considered, using computer simula-
tion and the mean field heuristics. The results turn out to be in close
agreement. Numerical results will be presented in Section 5.

2. The load transfer model. Our model being a spin system with
� 4 w xvalues in 0, . . . , K , we shall stay as close as possible to Chapter III of 12

regarding terminology and notations. The set of processors or sites is denoted
by S. The communication channels are seen as edges an their set is denoted
by E. If x is a site, its successive sets of neighbors are defined as

� 4 � 4NN x s NN x s x j y g S ; x , y g E� 4Ž . Ž .1

and

;k G 2, NN x s NN y .Ž . Ž .Dk
Ž .yg NN xky1
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A configuration h is a mapping that describes the load level of each processor:

� 4; x g S, h x g 0, . . . , K .Ž .
� 4SThe set of all configurations, X s 0, . . . , K , should a priori be the state

space of the process. However, it will be convenient to reduce it to the subset
AA of configurations such that the load difference between neighbors is at
most 1:

� 4AA s h g X s.t. ; x , y g E, h x y h y F 1 .� 4Ž . Ž .
In our model, configurations are allowed to change at one site at a time at

Ž .most spin system dynamics . Any such movement is either an arrival or a
Ždeparture of a task at some site x possibly as the result of a series of load

.transfers ending at x , and the configuration will be increased or decreased
by 1 at x. This corresponds to a transition from configuration h to one of the
two configurations denoted by hq and hy and defined byx x

hq x s h x q 1, hy x s h x y 1,Ž . Ž . Ž . Ž .x x

hq y s h y , ; y / x , hy y s h y , ; y / x .Ž . Ž . Ž . Ž .x x

q Ž . Ž .The transition rate from h to h arrival at x will be denoted by a x, h ;x
y Ž . Ž .that from h to h departure at x will be denoted by d x, h .x

Ž . Ž .The definitions of a x, h and d x, h have to take transfers into account.
The arrival of a task at site x can happen only if x is a local minimum for
configuration h, but it can correspond either to a direct arrival at x from

Ž .outside or to an arrival at some other site in NN x that cascades down to xKy1
Ž . w Ž .xthrough successive transfers. We denote by n x, h respectively, n x, h the

Ž .number of neighbors of x with a strictly higher respectively, lower load
Ž .level under configuration h. We define the virtual arrival rate a x, h of any

site x under configuration h recursively as follows.

Ž . Ž .DEFINITION 1. i If n x, h s 0, then

l, if h x - K ,Ž .
a x , h sŽ . ½ 0, if h x s K .Ž .

Ž . Ž .ii If n x, h ) 0, then

a y , hŽ .
a x , h s l q .Ž . Ý n y , nŽ .Ž .yg NN x

Ž . Ž .h y )h x

The actual arrival rate at x can be nonzero only if x is a local minimum
for h:

a x , h , if n x , h s 0,Ž . Ž .
a x , h sŽ . ½ 0, if n x , h ) 0.Ž .

The above definitions can be read as follows. If x is a local maximum for
Ž Ž . .configuration h n x, h s 0 , then no incoming task can be transferred onto
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x. A task may arrive directly from outside, provided x is not at the maximal
capacity K. If x is not a local maximum, then at least one site y among its

Žneighbors has a higher load. Any task received by y either directly or after
.transfer from another neighbor will be transferred to x with a probability

Ž Ž ..1r n y, h depending on the number of neighbors that can receive such a
Ž .transfer at least 1 since x is included .

There is a symmetry in the model that makes the definition of departure
rates completely analogous to that of arrival rates. We first define recursively
the virtual departure rate of any site x under configuration h.

Ž . Ž .DEFINITION 2. i If n x, h s 0, then

1, if h x ) 0,Ž .
d x , h sŽ . ½ 0, if h x s 0.Ž .

Ž . Ž .ii If n x, h ) 0, then

d y , hŽ .
d x , h s 1 q .Ž . Ý n y , hŽ .Ž .yg NN x

Ž . Ž .h y -h x

The actual departure rate of x under configuration h can be nonzero only if x
is a local maximum for h:

d x , h , if n x , h s 0,Ž . Ž .
d x , h sŽ . ½ 0, if n x , h ) 0.Ž .

If x is a local minimum, there is no site to which x could transfer a task. One
Ž .task can leave x after completion, provided h x ) 0. If x is not a local

minimum, then at least one task y among its neighbors has a lower level. If
this site y loses a task}either by completion or transfer}x will be able to

Ž Ž ..transfer one of its tasks onto y, with probability 1r n y, h depending on the
number of neighbors of y that can benefit from such a transfer.

The rates that have just been defined correspond obviously to finite range
interactions, since the arrival and departure rates at x depend only on the

Ž . dvalues of the configuration in NN x . When S s Z , endowed with a latticeK
structure, the rates are translation invariant and the process can be con-

Ž w x .structed explicitly using Harris’ argument cf. 6 , page 119 . The interacting
particle system so defined will be referred to as the load transfer model
Ž .LTM .

Ž . Ž .So far, the rates a x, h and d x, h have been defined for any configura-
� 4Stion h in X s 0, . . . , K . However, the set AA of those configurations such

that the load difference between neighbors is at most 1, is absorbing. Indeed
the only possible movements are either arrivals at local minima or depar-
tures at local maxima. If h g AA and x is a local minimum for h, then the load
differences between x and its neighbors can only be 0 or y1. An arrival at x
will change these differences to q1 or 0, and the new configuration hq willx
still be in AA. The situation is symmetric for a departure at a local maximum.
From now on we shall consider that the state space of the LTM is AA.
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Two basic properties of the LTM can immediately be derived from the
definition of the rates. First, the roles of arrivals and departures are exactly

Ž .symmetric. Suppose one associates to each processor its free space K y h x
Ž .instead of its load level h x . The process of free spaces has exactly the same

dynamics as above, with the roles of l and 1 exchanged.
Another basic property is attractiveness.

PROPOSITION 1. Consider on AA the natural componentwise ordering

h F z m ; x g S, h x F z x .Ž . Ž .

The LTM is attractive on AA in the following sense

a x , h F a x , z ,Ž . Ž .
2.1 ;h F z g AA, h x s z x «Ž . Ž . Ž . ½ d x , h G d x , z .Ž . Ž .

In other terms, the dynamics of the LTM tend to have each site agree with
its neighbors.

Ž . Ž .PROOF. Assume h F z g AA. Let x g S be such that h x s z x . We shall
check the result for arrivals only; the situation for departures is symmetric. If
x is not a local minimum for h, the inequality is trivially satisfied. If x is a
local minimum for h, it is also a local minimum for z . Call a descending path
for h any path in the sense of the graph structure of S, ending at x, along
which the values of h decrease exactly by 1 at each step. The key observation
is that along any descending path for h, the values of z must coincide with

Ž . Ž .those of h since z g AA . The arrival rate a x, h can be seen as the product
by l of the sum of all descending paths of the probability for a load arriving
at the beginning of that path, to follow it through successive transfers, all the
way to site x. If g is such a path, the probability to follow it is larger on z
than on h. Since z has at least as many descending paths as h, one obtains
the desired inequality. I

Ž w x.It is easy to extend Theorem 2.2 page 134 of 12 to check that attractive-
Ž .ness in the sense of 2.1 above is equivalent to stochastic monotonicity for

Žw x .spin systems on AA 12 , Definition 2.3, page 72 . One can view it also as a
Ž w x.particular case of Theorem 3.3 page 596 of 9 . Stochastic monotonicity will

be an important ingredient for the proof of ergodicity in Theorem 1.

3. The load transfer model on lattices. Throughout this section, the
set of sites is S s Zd. The only restriction on the graph structure is that it
should be translation invariant and locally finite. For instance,

5 5� 4; x g S, NN x s y s.t. x y y F r ,Ž .

5 5where ? is any of the usual norms and r is a fixed integer.
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THEOREM 1. The LTM on Zd is ergodic and converges exponentially fast to
its stationary measure.

� 4PROOF. For an attractive spin system with values in 0, 1 , the classical
w x Žtechnique of proof for ergodicity is described in 12 Chapter III, Theorem 2.3

.and Corollary 2.4, page 136 . It can easily be extended to attractive spin
� 4systems with values in 0, . . . , K . The general idea is the following. Consider

two copies of the process: one starts at time 0 from the minimal configuration;
the other starts from the maximal configuration. The two copies are coupled
in such a way that the initial order is preserved at any instant. If the
difference between the two copies tends to zero in distribution, then the
process is ergodic. The coupling traditionally used is the so-called basic or

Žw x .Vasershtein coupling 12 , page 124 . We shall use a stronger coupling,
which not only preserves the order between configurations, but is also such
that the overall difference of loads between the two copies can only decrease
in time. Moreover, our coupling has the advantage that it fits the intuitive
description of the model that was given in the Introduction. In the basic
coupling, the two copies evolve independently at each site until they first
meet. We shall allow much less independence, and decide that arrivals and
completions of tasks are simultaneous for both copies.

� Ž . 4 � Ž .To each site x, associate two Poisson processes A x ; t G 0 and D x :t t
4t G 0 with respective intensities l and 1; all these processes are indepen-

� Ž .4 Ždent. The process A x counts the arrivals of tasks at site x accepted ort
. � Ž .4not and the process D x counts the completions of tasks at site xt

Ž . �Ž . 4effective or not . We want to construct a Feller process h , z ; t G 0 ont t
AA = AA starting from the initial couple of configurations

; x g S, h x , z x s 0, K .Ž . Ž . Ž .Ž .0 0

Since both initial configurations are in the set AA, which is absorbing for the
dynamics of the LTM, both coordinates will stay in AA at any time. Therefore,
in the construction below we can assume that all configurations are such that
the difference of load between neighbors is at most 1. The main requirement
is that the initial ordering should be preserved, that is,

; x g S, ;t G 0, h x F z x .Ž . Ž .t t

We shall describe only the evolution of both coordinates upon an arrival at
Ž .site x, that is, an instant of jump for A x . The evolution for a departure ist

Ž . Ž . Ž .exactly symmetric and is obtained by replacing h x by K y h x and A xt
Ž .by D x .t

Assume that at some instant t, h s h and z s z with h F z , and a taskt t
arrives at site x. Three cases are possible.

Ž . Ž .Case 1. If h x s K and z x s K, the task is rejected and both configu-
rations stay the same.

Ž . Ž .Case 2. If h x - K and z x s K, the task is rejected by the second
coordinate and z stays the same. It is accepted by the first coordinate and
provokes an increase of configuration h at a certain site. This site is x itself if
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it was a local minimum. If not, the increase of h happens at some other site y
Ž .in NN x , chosen according to the transferring rules described in the Intro-K

duction. For this to happen, there has to be some chain of successive neigh-
bors linking x to y, along which h decreases exactly by 1 at each step. Along

Ž .the same sequence z can decrease by at most 1 at each step. Since h x is
Ž . Ž . Ž .strictly less than z x , the same has to be true for h y and z y , so the

ordering of configurations is preserved by the increase of h at site y.
Ž . Ž .Case 3. If h x - K and z x - K, the task is accepted and provokes for

Ž .each configuration an increase at some site in NN x . Assume first thatK
Ž . Ž .h x - z x . The incoming task will either stay at x or go elsewhere accord-

ing to whether x is a local minimum or not. The random choices in successive
transfers are made independently. Let y be the final destination of the task

Ž .for configuration h. By the argument already used in the previous case, h y
Ž .had to be strictly less than z y . So the increase of h at y preserves the

Ž . Ž .ordering. Assume now that h x s z x . To preserve the ordering, one has to
have transfers agree as much as possible. Let us examine the first move. If x
was a local minimum for h, then it had to be the same for z . In this case, both
configurations increase at x. If x was a local minimum for z and not for h,
then the increase of z is at x and the increase for h happens at some site

Ž . Ž .y / x. By the already used argument h y had to be strictly less than z y
and the ordering is preserved. The last case is when x is not a local minimum

Ž . Ž .for either h or z . Since h x s z x and h F z , necessarily the incoming task
has at least the same possibilities of transfer on h as on z . Let us choose
randomly the first destination y of the task for h. If y is also a possible
destination for z , let the task to go to that same place on both configurations.
If the chosen destination y was not possible for z , then send the task there
for h and send the task on z elsewhere with another random choice, indepen-
dent from the first. Saying that y was a possible destination for h and not for

Ž . Ž .z implies that h y - z y , so that an increase at y for h preserves the
ordering. Now iterate the same procedure if the chosen destinations were the
same; go on independently if they were different. The final destination of
the task on h will necessarily be either the same as for z or at a site where h
is strictly less than z ; thus the ordering will be preserved.

Let R ; S be a finite subset of sites. Define the load difference over R at
Ž .time t, denoted by C R , as the cumulated difference between configura-t

tions:

C R s z x y h x .Ž . Ž . Ž .Ýt t t
xgR

From the above construction, it is clear that upon an arrival at site x, the
Ž .load difference over any set R containing NN x can only decrease by 1K

Ž . Ž .the task is rejected by z , not by h or stay the same any other case . Thet t
coupling being exactly symmetric for a departure at x, this property of
decreasing load differences holds at any instant. This will be a key ingredient
in the rest of the proof.
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�Ž . 4Let h , z ; t G 0 be the coupled process defined above. To prove Theoremt t
1, we have to find a positive constant d such that for any function f from AA
into R, depending on a finite number of coordinates, there exists a constant
g such that

yd tE f z y f h F g e .Ž . Ž .t t

By a standard argument involving translation invariance, it is sufficient to
prove that

yd t� 4Prob z x y h x ) 0 s Prob C x ) 0 F g eŽ . Ž . Ž .t t t

Ž . Ž .for some positive constants g and d . Let x be a site at which z x ) h x .t t
The next step consists in showing that over a unit interval of time the load
difference at x will actually decrease by 1 with positive probability:

� 4 � 4Prob C x y C x s y1 G d ) 0.Ž . Ž .tq1 t

Ž . Ž .To do this, we consider two configurations h F z with h x - z x and
construct an event depending on x, h and z according to which a task
arriving at x will be rejected by the higher configuration and not by the

Ž .lower; no site outside NN x is affected. To construct this event, the idea is to2 K
Ž . w Ž .xask for enough arrivals in NN x and no other event in NN x so as toK 2 K

achieve the following criteria:

1. To raise configuration z up to K at site x.
2. To maintain configuration h strictly below K at site x.

Then one more arrival on x will be rejected by z and not by h.
We call a descending path of z any chain of neighbors, starting from x and

ending at a local minimum of configuration z , along which configuration z
decreases strictly. There is only a finite number of these paths, bounded

< Ž . < K Ž .above by NN x , and all descending paths are included in NN x . First askK
Ž .for one arrival of a task on all ends of descending paths local minima for z .

After these arrivals, the configuration z has been changed into another
configuration for which all descending paths are shorter by exactly 1. After at

Ž .most K y 1 iterations of this procedure, z x has not been changed and x
becomes a local minimum of configuration z . Meanwhile, the other coordinate

Ž .h has been changed only at sites in NN x . Some of the incoming loads might2 K
have been transferred to x itself for configuration h, but this can only happen
when there exists a descending path for h, from the arrival site to x, which
implies that the difference between both configurations at x remains positive.

Ž .If z x s K, then one more arrival at x will be rejected at z and not by h,
and the desired event occurs. Otherwise, one more arrival at x increases z

Ž . Ž .by 1 at x, still preserving the property z x ) h x . Repeating again the
whole procedure at most K y 1 times leads to the desired event. Whatever h
and z , the probability for that event to occur between t and t q 1 is strictly
greater than some d ) 0.
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w x d dConsider now the cube R s yn, qn l Z and denote by R9 its closure
with respect to neighborhoods at distance 2 K :

R9 s NN x .Ž .D 2 K
xgR

Ž .The load difference over R9, C R9 , is bound to decrease due to arrivals andt
Ž . Ž .departures at those sites in R such that z x y h x ) 0. It can alsot t

increase due to edge effects. These increases can only come from arrivals and
Ž .departures at sites whose distance in the sense of the graph structure is at

most K from the boundary of R. The number of such sites is bounded by
some constant multiplied by ndy1. For each site x in R, the probability of an
actual decrease due to the rejection of an incoming task at x by z and not by
h is larger than

d Prob z x y h x ) 0 .Ž . Ž .t t

Hence
d dE C R y C R F y 2n q 1 d Prob z x y h x ) 0 q o n .Ž . Ž . Ž . Ž . Ž . Ž .tq1 t t t

However, the left-hand side of the above inequality is also
d � 4 � 4E C R y C R s 2n q 1 E C x y C x .Ž . Ž . Ž . Ž . Ž .tq1 t tq1 t

For n large enough, one gets

� 4 � 4 � 4E C x y C x F yd 9 Prob C x ) 0 .Ž . Ž . Ž .tq1 t t

Ž� 4. � 4However, C x is a random variable with values in 0, . . . , K . Hencet

1
� 4 � 4E C x F Prob C x ) 0 .Ž . Ž .t tK

Thus
d 9

� 4 � 4 � 4E C x y E C x F y E C x .Ž . Ž . Ž .tq1 t tK

For any positive integer m, one gets
m

d 9
� 4 � 4E C x F 1 y E C x ;Ž . Ž .m 0ž /K

hence, there exist two positive constants g and d 0 such that for all t G 0,
yd 0 t� 4E C x F g eŽ .t

and also
yd 0 t� 4Prob C x ) 0 F g e . IŽ .t

4. The complete graph case. In this section the set of sites S is finite
with n elements. It turns out that the best possible benefits that one can
expect from transferring are obtained in the complete graph case. This

w x �� 4 4situation was studied in full detail in 2 . Let E s x, y ; x, y g S and let
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� 4 Ž .h , t G 0 be the LTM on S, E with rate l. Let L denote the total load oft t
the system at time t:

L s h x .Ž .Ýt t
xgS

The main observation is that, due to the symmetry of the system, the
� 4process L , t G 0 satisfies the classical lumpability conditions of Rosenblattt

w x Ž w x.15 . Hence it is a birth and death process cf., e.g, 1 with values in
� 40, . . . , Kn and birth and death rates as follows:

Ž .Birth rate from j to j q 1 :

nl, for j s 0, . . . , K y 1 n ,Ž .
l j sŽ . ½ Kn y j l, for j s K y 1 n , . . . , Kn y 1.Ž . Ž .
Ž .Death rate from j to j y 1 :

j, for j s 1, . . . , n ,
m j sŽ . ½ n , for j s n q 1, . . . , Kn.

Ž .Indeed, as long as there are no more than n K y 1 tasks in the system, all
processors have at most K y 1 tasks, and any new task is accepted. If there

Ž .are j s n K y 1 q l tasks in the system, l processors have K tasks and only
n y l processors can accept new tasks. The situation is symmetric for depar-

� Ž . 4tures, as already noticed. In other words, in the range 0, . . . , K y 1 n , the
� 4process L behaves as an MrMrn queue, with n servers, arrival rate nlt

Ž .and service rate 1 for each server. The stationary distribution p ofj 0 F jF K n
� 4 Ž .L is easy to compute. As in the Introduction, we denote by P l thet i

Ž .probability for each site to be at level i, for i s 0, . . . , K. The P l s arei
related to the p s asj

ny1 n y j
P l s p ,Ž . Ý0 jnjs0

ny1 n y j
P l s p ,Ž . ÝK K nyjnjs0

n ny1j n y j
;0- j-K , P l s p q p .Ž . Ý Ýi Ž iy1.nqj inqjn njs0 js1

Ž .Indeed, when there are i y 1 n q j tasks in the system, j processors have i
tasks and n y j processors have j y 1 tasks. The explicit expressions of these

Ž w x.quantities are easily derived and we shall not reproduce them here cf. 2 .
Their asymptotics as n tends to infinity are more interesting. Indeed the
benefits one can expect from transfer are an increasing function of n;
therefore, the asymptotics given in Proposition 2 yield upper bounds of these
benefits, whatever the criterion of evaluation. Moreover, numerical evidence
shows that these limits give good approximations for finite ns even for
relatively low values.
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TABLE 1

l - 1 l s 1 l ) 1

Ž . Ž . Ž .P l ª 1 y l P l ª 0 P l ª 00 0 0
Ž . Ž . Ž . Ž .P l ª l P l ª 1r 2 K y 4 P l ª 01 1 1. . .. . .. . .
Ž . Ž . Ž . Ž .P l ª 0 P l ª 1r K y 2 P l ª 0i i i. . .. . .. . .

Ž . Ž . Ž . Ž .P l ª 0 P l ª 1r 2 K y 4 P l ª 1rlKy 1 Ky1 Ky1
Ž . Ž . Ž .P l ª 0 P l ª 0 P l ª 1 y 1rlK K K

PROPOSITION 2. Assume the capacity of each processor is K G 3. As n
tends to infinity, the probabilities of the different levels of load for the LTM on
the complete graph with n vertices have the limits shown in Table 1.

The results in Table 1 hold also for K s 2 except when l s 1, in which
Ž .case P l tends to 1. For K ) 2, the limit of the stationary distribution of the1

load levels has a discontinuity at l s 1. Such an irregular behavior was
w xalready observed in a simpler model by Malyshev and Robert 13 . The

Ž w x.technical proof of Proposition 2 cf. 2 requires some analytical computations
that we shall not reproduce here.

5. Mean field heuristics and simulation experiments. As was ex-
plained in the Introduction, the usual performance evaluation criteria of

Ž .practical interest can be expressed in terms of the probabilities P l of thei
different load levels in the stationary limit. Our main objective in this section

Ž .is the numerical evaluation of the P l s, using the mean field heuristics, andi
the comparison with simulation experiments.

The idea of the mean field heuristics is to treat the stationary measure of
an interacting particle system as if it was the product measure of local

w Ž Ž .. xdistribution at each site in our case P l . This idea is widely usedi 0 F iF K
in the physics literature. For models similar to the one considered here,

w x w xexamples are reported, for instance, in 11 and 8 . De Masi, Ferrari and
Lebowitz gave a rigorous justification by proving that if fast stirring is added
to an interacting particle system, then the distribution stays close to a

Ž w x w x .product measure see 4 and 7 for precise definitions .
Consider the LTM on a finite set of sites or on a lattice of Zd. In both cases,

there exists a unique stationary measure. That probability measure will be
denoted by p and the corresponding expectation will be denoted by E . If R isp

Ž .a subset of S, the set of configurations on R will be denoted by X R and the
restriction of p to R will be denoted by p :< R

w x;z g X R , p z s p h g AA s.t. h x s z x ; x g R .� 4Ž . Ž . Ž .< R
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We shall assume that some group of transformations operates transitively on
Ž .S, E , which is true for all cases of practical interest. Then

w x; x g S, ; i s 0, . . . , K , P l s p i .Ž .i <� x4

Applying the definition of the generator of the LTM to the indicator function
of site x being in state i, | , yields the following local balance equation:hŽ x .si

E a x , h | y | q d x , h | y | s 0.Ž . Ž .Ž . Ž .p h Ž x .siy1 h Ž x .si h Ž x .siq1 h Ž x .si

Since the rates depend only on the coordinates of h in NN , the expectationK
Ž .above can be written as a finite sum over configurations on NN x , the set ofK

which is denoted by X 9:

w x w xa x , z p z q d x , z p zŽ . Ž .Ý Ý< NN Ž x . < NN Ž x .K K
zgX 9 zgX 9
Ž . Ž .z x si z x si

w x w xs a x , z p z q d x , z p z .Ž . Ž .Ý Ý< NN Ž x . < NN Ž x .K K
zgX 9 zgX 9

Ž . Ž .z x siy1 z x siq1

5.1Ž .

The mean field heuristics consists of replacing p by a product measure in the
Ž .local balance equation 5.1 :

w x;z g X 9, p z l P l .Ž .Ł< NN Ž x . z Ž y .K
Ž .yg NN xK

Ž . ŽThus a system of K q 1 nonlinear equations in the P l s is obtained thei
.mean field equations . For high values of K, this system will not be tractable

except in very particular cases. For K s 2, it turns out to be quite simple.
Actually, in that case the equations do not depend on the geometry of the
graph except through the cardinality of a neighborhood. Therefore, we shall
assume only that each site has exactly k neighbors. The equation for level 0
is

k
P l 1 y P l s lP lŽ . Ž . Ž .Ž .1 2 0

k 1 ky l lk y 1q lkP l 1 y P l P l .Ž . Ž . Ž .Ž .Ý1 0 0ž /l y 1lls1

5.2Ž .

To derive it, observe that a site can drop down from 1 to 0 only when there is
Ž .a departure at that site and no neighbor can benefit from it left-hand side .

The site x can go from 0 to 1, either by a direct arrival on x or by an arrival
on one of its k neighbors, say y, if it is at level 1. If that neighbor has l
possibilities of transfer, it will choose x with probability 1rl, which gives the

Ž .right-hand side. The equation 5.2 is easily simplified into
k k

5.3 P l 1 y P l s l 1 y P l y lP l 1 y P l .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 2 2 1 0

The equation for level 2 is similar:
k k

5.4 lP l 1 y P l s 1 y P l y P l 1 y P l .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž .1 0 0 1 2
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Combining these two equations, one gets

5.5 l 1 y P l s 1 y P l .Ž . Ž . Ž .Ž . Ž .2 0

This is the global balance equation of the system: the left-hand side is the
average number of tasks accepted per processor and per time unit, whereas
the right-hand side is the average number of tasks treated. Setting x s

Ž .1 y P l leads to0

l q lyk x ky1 x 1 q 1rl y 1 s 1.Ž . Ž .Ž .
Ž . x wThis equation has a single solution x l in the interval 0, 1 , which can bek

Ž .computed numerically. As k tends to infinity, x l tends to l if l - 1 and tok
1 if l G 1. Not surprisingly, the limit distribution obtained through the mean

Žfield equations tends to the asymptotics of the complete graph case Proposi-
.tion 2 as the number of neighbors per site tends to infinity.

More curiously, in the lattice case, the solution of the mean field equations
turns out to be remarkably close to the distribution of levels estimated
through simulation.

ŽSimulations were run for three types of graphs cycles, two dimensional
.toruses and hypercubes and for different values of the parameters l and K.

The program uses the classical Metropolis algorithm. Our objective was to
Ž .estimate the probabilities P l in the stationary regime. In practice, one hasi

first to decide when the stationary regime is reached for a given simulation.
We will define the access time to equilibrium to be the upper bound of the
99% confidence interval for the expectation of a certain random variable T.
The definition of this random variable makes use of stochastic monotonicity
Ž . � 4Section 2 . Consider two independent copies of the LTM: h , t G 0 andt
� 4z , t G 0 . One copy starts from the empty configuration and the other copyt
starts from the full configuration:

; x g S, h x s 0, z x s K .Ž . Ž .0 0

Ž .Since the LTM is attractive, the total load sum of coordinates of h increasest
stochastically in time; that of z decreases. We define T as the first instant att
which they meet:

T s inf t ) 0 s.t. h x G z x .Ž . Ž .Ý Ýt t½ 5
x x

The expectation and standard deviation of T were first estimated over 1000
independent simulations. For subsequent experiments, the access time to
equilibrium was fixed to the upper bound of the 99% confidence interval for

w xthe expectation E T . For different types of graphs, the curves giving the
access time to equilibrium as a function of l turned out to be quite similar.
They are of course unchanged through the transformation l l 1rl. They
increase very sharply as l approaches 1. Figure 1 shows the access time to
equilibrium as a function of l for the hypercube with 32 vertices and K s 5.

Ž .The probabilities P l in the stationary regime were then estimated usingi
the classical procedure for Monte Carlo Markov chain methods. A simulation
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FIG. 1. Access time to equilibrium as a function of l for the hypercube K s 5, d s 5.

was first run until the access time to equilibrium; then it was sampled at
regular instants.

Ž .For the cycles and toruses, the values of P l converge very quickly as thei
number of sites tends to infinity, so the values to be presented below can be
regarded as an estimate for the infinite lattice, since they were made based
on simulations involving a large number of sites.

Ž .Figure 2 plots the rejection probabilities P l as a function of l forK
different models and maximal capacity K s 2. The highest curve corresponds
to the independent case; the lowest curve corresponds to the complete graph

Ž .case large size . The intermediate curves correspond to the cycle and the
hypercube with 4096 sites. All of the curves nearly coincide for low and large
values of l. Figure 3 plots the mean response time as a function of l for the
same types of architectures and K s 6.

Some practical conclusions can be drawn from the theoretical and experi-
mental studies. The benefits that one can expect from transferring can be
approximated using the mean field equations or estimated by a Monte Carlo
method on any type of architecture using the load transfer model. These
benefits are maximal when the rate of arrival of tasks is close to their rate of
treatment. Increasing the number of neighbors per processor improves the
possibilities of transfer and, hence, increases the possible benefits. The
differences between architectures decrease as the buffer capacity increases.
This can be understood intuitively since a higher buffer capacity implies a
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FIG. 2. Rejection probabilities for K s 2.

FIG. 3. Mean response times for K s 6.
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longer range of interaction in the model and more possibilities of transfer.
Further developments should include an evaluation of the cost of transfers by
computing the expected number of transfers and by including the transfer
time in the model. This will lead to different interacting particle models.
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